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Experimental orthogonalization of highly overlapping quantum states with single photons
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We experimentally realize a nonlinear quantum protocol for single-photon qubits with linear optical elements
and appropriate measurements. Quantum nonlinearity is induced by postselecting the polarization qubit based
on a measurement result obtained for the spatial degree of freedom of the single photon which plays the role of a
second qubit. Initially, both qubits are prepared in the same quantum state and an appropriate two-qubit unitary
transformation entangles them before the measurement of the spatial part. We analyze the result by quantum
state tomography of the polarization degree of freedom. We then demonstrate the usefulness of the protocol for
quantum state discrimination by iteratively applying it to either of two slightly different quantum states which
rapidly converge to different orthogonal states by the iterative dynamics. Our work creates an opportunity to
employ effective quantum nonlinear evolution in quantum information processing.
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I. INTRODUCTION

Quantum information processing protocols are known to
exhibit speedup over classical algorithms due to specific fea-
tures of quantum mechanics, such as linear superposition of
quantum states or entanglement among subsystems. The usual
assumption in quantum information theory is that the time
evolution of the physical systems constituting the protocol is
linear, e.g., in the case of a closed system, the evolution is
described by a unitary operator. If the constraint of linearity
of the evolution is relieved and a nonlinear equation governs
the dynamics of the system, then one can design quantum
protocols efficiently solving problems which are hard even
for usual quantum algorithms [1]. For example, the ability to
quickly discriminate nonorthogonal states and thereby solve
an unstructured search is a generic feature of nonlinear quan-
tum mechanics [2]. Nonlinear time evolution can be presented
in standard quantum mechanics as an effective model, e.g., the
Gross-Pitaevskii equation [3], which approximately describes
the collective behavior of atoms in a Bose-Einstein conden-
sate. Were it not approximate, the Gross-Pitaevskii equation
would be applicable to solve the unstructured search problem
with an exponential improvement over protocols based on
standard quantum theory [2,4].

An alternative way of introducing effective nonlinear evo-
lution within the framework of standard quantum theory is to
apply selective measurements in iterated protocols [5]. The
original idea of Bechmann-Pasquinucci et al. [6] is based on
the fact that if two identically prepared qubits are subjected to
an entangling quantum operation, then by measuring one of
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the output qubits in one of the computational basis states |0〉,
the quantum state of the other qubit undergoes an effective
nonlinear transformation. The presence of two identical states
at the input, together with the entangling transformation of the
two qubits and the postselection of the second qubit according
to the result of the measurement of the first qubit, is the key
element leading to the emergent nonlinearity.

The resulting protocols, when applied iteratively, lead to
highly nontrivial dynamics, with several intriguing features,
such as a variety of fractals on the Bloch sphere representing
the initial state of the qubit, leading to nonconvergent chaotic
behavior [7–9]. One obviously cannot beat usual quantum
efficiency limits in this way, since the emergent nonlinearity
is an effective feature that results in discarded qubits [7].
Nevertheless, these protocols may find applications for spe-
cific tasks, e.g., when matching a state to a reference with a
prescribed maximum error [10].

The specific protocol we consider here is able to evolve any
initial state to one of a pair of orthogonal states, according to
a well-defined property of the initial state. Initial states, which
have a +x coordinate on the Bloch sphere, will all converge to
the quantum state pointing in the +x direction, while the states
with a −x coordinate will converge to its orthogonal pair, the
quantum state pointing in the −x direction. Since the same
protocol carries out this task for every initial state, one may
demonstrate its effectiveness by comparing the convergence
of highly overlapping initial states with x components of op-
posite sign. Our protocol is thus able to discriminate any two
quantum states with x components of opposite sign unambigu-
ously in the asymptotic limit. This approach is more general
than standard optimal quantum state discrimination methods
[11–16], where the discrimination of a pair of quantum states
requires the construction of a specific protocol. After a finite
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FIG. 1. (a) Schematic of one step of the nonlinear quantum
protocol. Here U and P denote the entangling two-qubit transforma-
tion and the projective measurement, respectively. (b) Convergence
regions of the corresponding complex map f on the complex plane,
where red (blue) represents convergence to the asymptotic state |+〉x

(|−〉x); the lighter the shading, the more iterations needed to reach the
respective state. The white line represents the Julia set of the map.

number of steps, our protocol probabilistically enhances the
overlap with one member of an orthogonal pair in a somewhat
similar manner to the method proposed by Solís-Prosser et al.
[17] for the probabilistic separation of a finite number of
quantum states.

Linear optics is a natural candidate among a variety
of physical systems [18,19] for realizing the protocols of
quantum information processing [20]. In order to effectively
implement quantum gates, linear optics has to be comple-
mented by either optical elements exhibiting strong optical
nonlinearity [21] or, alternatively, applying postselection with
ancilla modes and projective measurements [7,8,10] resulting
in probabilistic realizations.

In this paper we realize the orthogonalization of quantum
states via measurement-induced nonlinearity with single pho-
tons. We demonstrate that, after a few iterations of the non-
linear quantum transformation, one can substantially decrease
the overlap of two, initially highly overlapping, quantum
states. After several steps of the iterations they can become
almost orthogonal to each other with only a small residual
overlap.

II. THEORETICAL DESCRIPTION OF THE PROTOCOL

Our aim is to implement a measurement-induced nonlinear
quantum transformation [8] of photonic qubits. This can be
realized for one member of a pair of qubits, initially in
the same quantum state, via a controlled two-qubit unitary
transformation of the composite system and a subsequent
postselective measurement of the other member of the pair
[shown in Fig. 1(a)]. For the two qubits, we consider two

two-level systems: one encoded by the polarizations {|H〉 =
|0〉p, |V 〉 = |1〉p} and the other by the spatial modes {|D〉 =
|0〉s, |U 〉 = |1〉s} of single photons. Note that the subscripts p
and s refer to the two types of degrees of freedom.

Initially, both qubits are prepared in the same quantum state
|ψ0〉, which can be described by the single complex parameter
z, and the two-qubit system is thus a product state of the form

|ψ0〉p ⊗ |ψ0〉s = |0〉p + z|1〉p√
1 + |z|2

⊗ |0〉s + z|1〉s√
1 + |z|2

. (1)

We apply the entangling two-qubit transformation

U = 1√
2

⎛
⎜⎝

1 0 0 1
0 −1 1 0
0 1 1 0
1 0 0 −1

⎞
⎟⎠, (2)

after which the state of the composite system becomes

|�〉ps = 1√
2(1 + |z|2)

[(1 + z2)|00〉ps + 2z|10〉ps

+ (1 − z2)|11〉ps]. (3)

Then a projective measurement P = |D〉〈D| = |0〉〈0|s is ap-
plied to the spatial qubit by which one can postselect the
polarization qubit in the state

|ψ1〉p = |0〉p + f (z)|1〉p√
1 + | f (z)|2 , (4)

where

f (z) = 2z

1 + z2
. (5)

The success probability of the first iteration of the protocol is
dependent on the complex number z characterizing the input
state and can be formulated as

P (1) = P (z) = 1

2
+ 2(Rez)2

(1 + |z|2)2
. (6)

It can be seen that P (1) � 1
2 ; the equality holds for Rez = 0,

i.e., for the imaginary axis. In order to iterate the protocol,
one needs to prepare also the spatial mode in state |ψ1〉s for
the next step.

In general, after n iterations, the final state of the polar-
ization qubit is |ψn〉p = [|0〉p + f (n)(z)|1〉p]/

√
1 + | f (n)(z)|2,

where f (n)(z) is defined recursively as f (n)(z) = f [ f (n−1)(z)].
The success probabilities of the second and the nth iterations
are, respectively, P (2) = P[ f (z)] and P (n) = P[ f (n−1)(z)] =
1
2 + 2{Re[ f (n−1)(z)]}2/[1 + | f (n−1)(z)|2]2. The success prob-
ability of orthogonalization, or more precisely of reaching
an asymptotic state with a given precision, starting from an
ensemble of qubits in the same initial state, is a product of
the single-iteration success probabilities

∏
n P (n). We note

that our setup is designed in such a way that the projective
measurement on the spatial qubit is automatically realized to-
gether with the postselection whenever the photon is detected
in the lower spatial mode (and not detected in the upper mode)
(see Fig. 2).

The nonlinear transformation f of Eq. (5) is a complex
quadratic rational map [22,23], which has been analyzed
in [8]. It has two superattractive fixed points: z1 = 1 and
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FIG. 2. Experimental setup. Photon pairs at a wavelength of 801.6 nm are generated via type-I SPDC using a 0.5-mm-thick β barium
borate (BBO) nonlinear crystal, pumped by a continuous-wave diode laser with 80 mW of power. The pump is filtered out by an interference
filter which restricts the photon bandwidth to 3 nm. With the detection of the trigger via an avalanche photodiode (APD), the heralded single
photon is injected into the optical network involving three stages: state preparation, measurement-induced nonlinear transformation, and state
tomography. Transformation is realized with combination of BDs and HWPs at certain angles. A projection is applied on the auxiliary qubit
and the target qubit is polarization analyzed using a quantum state tomography system consisting of a HWP and a QWP followed by a PBS in
front of APD. A trigger-herald pair is registered by a coincidence count at APDs with a 3-ns time window. Total coincidence counts are about
12 000 over a collection time of 3 s.

z2 = −1. Superattractiveness, which is related to the fact that
df
dz |zi = 0 (i = 1, 2), ensures that the convergence to the two
fixed points z1 and z2 is fast. There is a set of points which
do not converge to any of the attractive fixed points when
iterating the map f and these form the so-called Julia set of the
complex map (the third fixed point of the map z3 = 0, which
is repelling, is also a member of the Julia set). The Julia set
of the map f is the imaginary axis on the complex plane [see
Fig. 1(b)] or, equivalently, the great circle which intersects the
y axis on the Bloch sphere, while the two superattractive fixed
points correspond to the orthogonal quantum states

|ψz1〉 = |+〉x = |0〉 + |1〉√
2

, |ψz2〉 = |−〉x = |0〉 − |1〉√
2

,

(7)

pointing in the +x and −x directions on the Bloch sphere,
respectively. It can be seen in Fig. 1(b) that initial states which
can be described by a complex number z that has a positive
(negative) real part all converge to the asymptotic state |+〉x

(|−〉x), as represented by the coloring. Initial states which
lie closer to the border of these convergence regions, i.e.,
the Julia set, need more iterations to approach the respective
asymptotic state. It has been shown that by iterating the above
procedure on two ensembles of qubits, the states of which
initially have a large overlap but an x component of opposite
sign, a few iterative steps is enough to approximately or-
thogonalize them, thereby effectively implementing quantum
state discrimination [8]. Moreover, the scheme is applicable to
sort all quantum states, according to which part of the Bloch
sphere they are initially from, without needing to modify the
setup itself. Let us further note that the success probability

of subsequent steps grows and approaches 1 as the states
converge to either of the asymptotic states.

In our experiment, it is always the polarization qubit which
is kept after the postselection and analyzed afterward, while
in every subsequent step the states of both the spatial qubit
and the polarization qubit are prepared again according to the
quantum state tomographic measurements performed on the
polarization qubit in the previous step.

III. EXPERIMENTAL REALIZATION

For experimental demonstration, pairs of photons are gen-
erated via type-I spontaneous parametric down-conversion
(SPDC) [24–30]. With the detection of trigger photons, the
other photons in one pair are heralded and act as a single
photon source in the experimental setup shown in Fig. 2.
Experimentally, this trigger-herald pair is registered by a co-
incidence count at two single-photon avalanche photodiodes
(APDs) with a 3-ns time window. The total coincidence counts
are about 12 000 over a collection time of 3 s.

The heralded single photons pass through a polarizing
beam splitter (PBS) followed by a quarter waveplate (QWP)
and a half waveplate (HWP) with setting angles θP

Q and θP
H ,

respectively. Then a birefringent calcite beam displacer (BD)
splits them into two parallel spatial modes, i.e., upper and
lower modes, depending on their polarizations. The optical
axis of the BD is cut so that vertically polarized photons are
directly transmitted and horizontal photons undergo a lateral
displacement into a neighboring mode. Photons in the upper
mode pass through a HWP at 45◦ to flip their polarizations
from |V 〉 to |H〉. Photons in both spatial modes pass through
a QWP and a HWP with the setting angles θP

Q and θP
H ,

respectively, and then they are prepared in the initial state (1)
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FIG. 3. Overlap between three different pairs of quantum states in every iteration of the nonlinear transformation up to three (or four).
Data obtained experimentally via quantum state tomography are shown in red and theoretical predictions are represented by gray bars. The
initial states for the protocol are described by the complex numbers (a) {z1 = 0.2, z2 = −0.2}, (b) {z1 = 0.2, z2 = −0.2 − 0.1i}, and (c) {z1 =
0.2ei π

4 , z2 = −0.2e−i π
4 }. Error bars indicate the statistical uncertainty, obtained from Monte Carlo simulations assuming Poissonian photon-

counting statistics.

with

z = i sin 2θP
H + sin

(
2θP

H − 2θP
Q

)

i cos 2θP
H + cos

(
2θP

H − 2θP
Q

) . (8)

Note that the matrix form of the operation of a HWP with

setting angle θ reads (cos 2θ sin 2θ

sin 2θ − cos 2θ
) and that of a QWP at ϑ

reads ( cos2 ϑ+i sin2 ϑ (1−i) sin ϑ cos ϑ

(1−i) sin ϑ cos ϑ sin2 ϑ+i cos2 ϑ
).

The unitary operation U of Eq. (2) is implemented as

U = U †
CNOTŨUCNOT, (9)

where

Ũ = UCNOTUU †
CNOT = 1√

2

⎛
⎜⎝

1 0 1 0
0 −1 0 1
1 0 −1 0
0 1 0 1

⎞
⎟⎠,

UCNOT = U †
CNOT =

⎛
⎜⎝

1 0 0 0
0 1 0 0
0 0 0 1
0 0 1 0

⎞
⎟⎠.

Here we use the fact that the operation U can be decomposed
into operations Ũ and controlled-NOT operation UCNOT. Both
of these unitary operations are controlled two-qubit rotations.
Further, Ũ can be realized by two HWPs, one at 67.5◦ inserted
into the upper mode and one at 22.5◦ inserted into the lower
mode; UCNOT can be realized by HWPs at 45◦ and BDs. BDs
are used to split the photons with different polarizations into
different spatial modes and then to combine the two polar-
ization modes into the same spatial mode. Then two-mode
transformations can be implemented via HWPs acting on the
two polarization modes propagating in the same spatial mode.
For UCNOT, HWPs at 45◦ are used to flip polarizations of the
photons.

The postselection of the polarization state can be realized
by projecting the spatial qubit onto the basis state corre-
sponding to the lower spatial mode |0〉s = |D〉, where the
polarization state of the photon is also analyzed. If a photon
is detected in the upper spatial mode, then the nonlinear

transformation of the polarization state does not take place
[see Eq. (3)].

To demonstrate that the nonlinear protocol effectively or-
thogonalizes initially close quantum states [31–36], the step
presented in Fig. 1(a) has to be iterated, i.e., the initial state of
the input qubits of the second step has to be equal to the output
state |ψ1〉 of the first step. In order to implement this, we use
quantum state tomography to determine the output state after
each step via a PBS as well as a QWP and a HWP with the
setting angles θM

Q and θM
H , respectively, projecting the output

state into one of four different basis states {|H〉, |V 〉, (|H〉 +
|V 〉)/

√
2, (|H〉 − i|V 〉)/

√
2} to obtain the density matrix of

the output state via the maximum-likelihood method. The
resulting photons are detected by APDs, in coincidence with
the trigger photons. With the measured density matrices we
reconstruct a pure state |ψ1〉 by the method of minimum
squares, which we prepare as an initial state for both the polar-
ization and the spatial qubit for the next iteration. Subsequent
iterations are realized in the same way.

In our experiment, we choose three pairs of initial states
|ψ0(z1)〉 and |ψ ′

0(z2)〉 to be discriminated by the nonlinear
protocol. In Fig. 3 we show the experimental (red) and the-
oretical (gray) results of the overlaps for each iteration up
to three (or four), starting from three different pairs of initial
states. It can be seen that for the first pair of states [Fig. 3(a)],
the overlap decreases from 0.927 ± 0.003 (the corresponding
theoretical prediction is 0.923) to 0.091 ± 0.006 (the corre-
sponding theoretical prediction is 0.078) after three iterations.
For the second pair of states [Fig. 3(b)], the overlap decreases
from 0.920 ± 0.003 (the corresponding theoretical prediction
is 0.919) to 0.070 ± 0.006 (the corresponding theoretical
prediction is 0.054) after three iterations. For the third pair of
states [Fig. 3(c)], the overlap decreases from 0.969 ± 0.002
(the corresponding theoretical prediction is 0.962) to 0.086 ±
0.019 (the corresponding theoretical prediction is 0.023) after
four iterations. Our experimental results agree well with those
of the theoretical model, and the slight difference between
the experimental data and theoretical values is due to the
imperfections of the experiment. The results prove that the
nonlinear transformation orthogonalizes the states in a few
iterations and can therefore be employed for discriminating
quantum states.
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IV. SUMMARY

We experimentally generated measurement-induced non-
linear transformations by linear optical elements and postse-
lective measurements of qubits represented by single photons.
We demonstrated that such a transformation, experimentally
realized, can be applied for the approximate orthogonalization
of states with high initial overlap. Via the orthogonalization
procedure, we can prepare the qubits in distinguishable states
so that they can be either directly measured or used for further
processing. This measurement-induced nonlinear evolution
can be considered as an implementation of a Schrödinger mi-

croscope [7,37]. In a more general context, a similar protocol
can be applied for quantum state matching [10].
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