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Conversion of Gaussian states to non-Gaussian states using photon-number-resolving detectors
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Generation of high-fidelity photonic non-Gaussian states is a crucial ingredient for universal quantum
computation using continuous-variable platforms, yet it remains a challenge to do this efficiently. We present
a general framework for a probabilistic production of multimode non-Gaussian states by measuring a few modes
of multimode Gaussian states via photon-number-resolving detectors. We use Gaussian elements consisting of
squeezed displaced vacuum states and interferometers, the only non-Gaussian elements consisting of photon-
number-resolving detectors. We derive analytic expressions for the output Wigner function, and the probability
of generating the states in terms of the mean and the covariance matrix of the Gaussian state and the photon
detection pattern. We find that the output states can be written as a Fock-basis superposition state followed
by a Gaussian gate, and we derive explicit expressions for these parameters. These analytic expressions show
exactly what non-Gaussian states can be generated by this probabilistic scheme. Further, it provides a method
to search for the Gaussian circuit and measurement pattern that produce a target non-Gaussian state with
optimal fidelity and success probability. We present specific examples such as the generation of cat states,
ON states, Gottesman-Kitaev-Preskill states, NOON states, and bosonic-code states. The proposed framework
has potentially far-reaching implications for the generation of bosonic error-correction codes that require
non-Gaussian states and resource states for the implementation of non-Gaussian gates needed for universal
quantum computation, among other applications requiring non-Gaussianity. The tools developed here could also
prove useful for the quantum resource theory of non-Gaussianity.
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I. INTRODUCTION

Quantum information processing based on continuous-
variable systems [1,2] can be broadly divided into the Gaus-
sian and the non-Gaussian domains, consisting of the corre-
sponding states and gates. The distribution of quadratures in
phase space of a Gaussian state follows Gaussian statistics.
A Gaussian unitary, or more generally a Gaussian operation,
transforms a Gaussian state into another Gaussian state. In
quantum information architectures based on photonic plat-
forms, the Gaussian states and Gaussian unitaries can be
generated and implemented deterministically and thus are
easily achievable experimentally. However, generating non-
Gaussian states and implementing non-Gaussian gates de-
terministically are extremely challenging due to the weak
nature of interaction Hamiltonians that are polynomials of
quadrature operators with order >2; e.g., the optical Kerr
nonlinearity is far smaller than what would be required to
implement a non-Gaussian gate. Since non-Gaussian states
and gates are essential or advantageous to many applications,
such as quantum optical lithography [3], quantum metrology
[4], entanglement distribution [5], error correction [6], phase
estimation [7], bosonic codes [8–14], quantum communica-
tion and optical nonclassicality [15], cloning [16], and in
particular to universal quantum computation [17,18], a sys-
tematic approach must be found to produce non-Gaussianity.
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One potential scheme is to generate non-Gaussian states
by performing photon-number detection on a subsystem and
postselecting a particular photon-number pattern. The require-
ment of postselection makes this scheme probabilistic, and so
increasing the success probability is crucial. It is well known
that a single-photon state can be generated by detecting a two-
mode squeezed vacuum state via a photon-number-resolving
(PNR) detector with one photon registered [19,20]. More
complicated non-Gaussian states like a superposition of sev-
eral Fock states can be generated by using the quantum scissor
device [21–27], which also uses PNR detectors. However, the
quantum scissor device requires non-Gaussian resource states
as inputs, e.g., single-photon states, making it experimentally
more challenging. In principle, generation of a single-mode
state in the form of a superposition of Fock states up to an
arbitrary photon number is possible [28–30].

An alternative, which is known as photon subtraction [31],
is a commonly used method for the production of non-
Gaussian states. The generation of the Schrödinger’s cat state,
a superposition of two coherent states with opposite phases,
by measuring a Gaussian state with PNR detectors has been
proposed theoretically [31] and implemented experimentally
[31–37]. The generation of other non-Gaussian states, such as
NOON states [3,38] and small superpositions of Fock states,
by photon subtraction has also been investigated [39]. The
photon subtraction can also be used to tailor more complicated
Gaussian states such as the continuous-variable cluster states
[40,41].

Earlier methods lacked a systematic approach to know
whether a certain protocol is optimal to generate a given
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target non-Gaussian state. By “optimal” we mean to gen-
erate a target state with the highest fidelity and success
probability. Recently [42], a machine-learning scheme (also
using Gaussian states and PNR detectors) was proposed to
search for the best input states and interferometers that could
generate a given target non-Gaussian state, in particular, a
superposition of Fock states up to three photons. A very
high fidelity target state can be obtained with a substantially
enhanced success probability over previous methods [42].
Another machine-learning method using a genetic algorithm
and allowing for certain non-Gaussian input states was also
recently investigated [43]. In this paper, we present a thorough
study of the conditional generation of non-Gaussian states
by measuring multimode Gaussian states via PNR detectors.
The main motivation for this is to study the ultimate limit of
generating non-Gaussian states by measuring Gaussian states
using PNR detectors and to maximize the success probability.
This work is also motivated by recent experimental success
in the generation of multiphoton states with PNR detectors
[44,45].

The general setup we consider is schematically shown in
Fig. 2 (single-mode output) and Fig. 12 (multimode output).
We assume that a general multimode Gaussian state (pure
or mixed) has been prepared. Some of the modes of the
multimode Gaussian states are measured by PNR detectors,
resulting in various photon number patterns. If one postse-
lects a particular photon number pattern, the heralded state
in the remaining modes is generally a non-Gaussian state.
There have been many previous universal schemes that use
repeated photon subtraction and photon addition, along with
displacements, for non-Gaussian state generation [22,28,46].
However, our scheme generalizes all of these methods as
shown in Fig. 1, and therefore provides a concrete way to
improve fidelity and success probability.

In this paper, we derive analytic expressions for the Wigner
function and the probability of generating the heralded non-
Gaussian state in terms of the mean and covariance ma-
trix of the multimode Gaussian state, and the measurement
outcomes. The resulting heralded state is a superposition
of a finite number of Fock states, followed by a Gaussian
operation. We provide a procedure to determine the Gaussian
operation and the coefficients of the superposition of Fock
states from the mean and covariance matrix of the multimode
Gaussian states. This then answers the question of the type of
non-Gaussian states that can be generated. More importantly,
we also try to address the inverse problem, namely, to find a
Gaussian circuit and a photon detection pattern to generate a
given target state with the highest fidelity and success prob-
ability. We partially solve the inverse problem by optimizing
the success probability for specific multimode Gaussian states
and measurement patterns under certain constraints. These
constraints are directly related to the given target states. We
demonstrate the proposed formalism by considering example
states that are of interest to the wider quantum information
community.

The rest of the paper is organized as follows. In Sec. II,
we briefly introduce some of the required tools, such as the
covariance matrix and Wigner function, that are important for
the rest of the paper. In Sec. III, we derive general analytic ex-
pressions for the Wigner function and the success probability

FIG. 1. Optical schemes for the generation of non-Gaussian
states. (a) Our method to measure a few modes of a multimode
pure Gaussian state. |ζi, αi〉 is a squeezed displaced vacuum state
in the ith mode, U (θ̄ ) is an interferometer, nj are photon-number-
resolving-detector (PNRD) outcomes. (b) Application of repeated
displacements and photon subtractions to one arm of a two-mode
squeezed vacuum state [46]. (c) Utilization of repeated photon
subtractions and displacements on a squeezed vacuum state [28].
(d) Application of repeated displacements and photon additions
[22]. The dashed regions in methods (b)–(d) can be mapped to a
particular instance of the dashed region in (a). Thus our scheme is
the most general heralding scheme using input pure Gaussian states
and photon-number-resolving (PNR) measurements.

of generating single-mode non-Gaussian states. We then focus
on discussing heralded single-mode non-Gaussian states by
detecting multimode pure Gaussian states in Sec. IV. Illus-
trative and relevant examples of single-mode non-Gaussian
states are discussed in Sec. V. In Sec. VI, we generalize all
single-mode results to the multimode case. We then focus on
discussing heralded multimode non-Gaussian states by detect-
ing multimode pure Gaussian states in Sec. VII. We provide
some examples of generating multimode non-Gaussian states,
such as the W state and NOON states, in Sec. VIII. Finally,
we conclude in Sec. IX.

II. PHASE-SPACE METHODS

We briefly review some background material on
continuous-variable (CV) quantum systems that will be
used in this paper. An N-mode optical field can be described
by either the creation and annihilation operators or the
position and momentum quadratures. We define an operator

vector ξ̂
(c) = (â†, â)� = (â†

1, . . . , â†
N , â1, . . . , âN )�, where

â†
k (âk ) are the creation (annihilation) operators of the kth

optical mode that satisfy the boson commutation relation
[â j, â†

k] = δ jk . We also define another operator vector

ξ̂
(r) = ( p̂, q̂)� = ( p̂1, . . . , p̂N , q̂1, . . . , q̂N )�, where q̂k and

p̂k are the position and momentum quadratures of the kth
optical mode, respectively. In this paper, we set h̄ = 1, so the
position and momentum quadratures satisfy the commutation
relation [q̂ j, p̂k] = iδ jk , and they are related to the creation
and annihilation operators via

p̂k = i√
2

(â†
k − âk ), q̂k = 1√

2
(âk + â†

k ). (1)
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Let us define a 2N × 2N unitary matrix � as

� = 1√
2

(
iIN −iIN

IN IN

)
, (2)

where IN is an N × N identity matrix, and we have(
p̂

q̂

)
= �

(
â†

â

)
⇔ ξ̂

(r) = �ξ̂
(c)

. (3)

Gaussian states are fully characterized by the first and

second moments of the mode operators [1]. In the basis ξ̂
(c)

,

the first moments are the displacements Q(c) = 〈ξ̂(c)〉 and the
second moments are represented by a covariance matrix V(c),
defined as

V (c)
jk = 1

2

〈{
ξ̂

(c)
j , ξ̂

(c)†
k

}〉− 〈
ξ̂

(c)
j

〉〈
ξ̂

(c)†
k

〉
, (4)

where {·, ·} represents the anticommutator. To be a valid
physical covariance matrix, it must satisfy the uncertainty
relation [47]

V(c) + �3

2
� 0, �3 =

(
IN 0
0 −IN

)
. (5)

In terms of {ξ̂(r)}, the first moments are the displacements

Q(r) = 〈ξ̂(r)〉 and the second moments are represented by a
covariance matrix V(r) defined as

V (r)
jk = 1

2

〈{
ξ̂

(r)
j , ξ̂

(r)
k

}〉− 〈
ξ̂

(r)
j

〉〈
ξ̂

(r)
k

〉
. (6)

By using Eq. (3), we have

V(r) = �V(c)�†, Q(r) = �Q(c). (7)

Using Eq. (7), we find that the uncertainty relation in Eq. (5)
transforms to

V(r) + i�

2
� 0, � =

(
0 −IN

IN 0

)
. (8)

The picture is different for non-Gaussian states where the
first and second moments alone are not enough to describe
the non-Gaussian state. The Wigner function is thus a useful
representation to completely characterize all CV quantum
states. In the coherent-state basis, the Wigner function for an
N-mode state is defined as

W (α; ρ) = 1

π2N

∫
d2β e−β�α∗+α�β∗

χ (β; ρ), (9)

where α = (α1, . . . , αN )�, β = (β1, . . . , βN )�, d2βk =
dβR

k dβI
k , with βR

k and βI
k the real and imaginary parts of βk ,

and χ (β; ρ) is the characteristic function,

χ (β; ρ) = Tr[D̂(β)ρ] (10)

with ρ the density matrix and D̂(β) = eβ�â†−β†â the Weyl-
Heisenberg displacement operators. The Wigner function
W (α; ρ) is a real function on the phase space and is normal-
ized to one: ∫

d2αW (α; ρ) = Tr(ρ) = 1. (11)

There are two conventions to obtain the Wigner function
W (α; ρ) in terms of p and q, where p = (p1, . . . , pN )� and
q = (q1, . . . , qN )�. First, analogously to Eq. (1), we define the

relation between the pairs ξ(r) := (p, q)� and ξ(c) := (α∗,α)�
as pk = i(α∗

k − αk )/
√

2, qk = (α∗
k + αk )/

√
2. Using these re-

lations one can write down W (α; ρ) in terms of p and q as
W (p, q; ρ). The second convention is to work in the q-p basis
where the Wigner function for an N-mode state is defined as

W (p, q; ρ) = 1

πN

∫
dy e−2ip�y〈q − y|ρ|q + y〉, (12)

where y = (y1, . . . , yN )� is a real vector. The Wigner function
W (p, q; ρ) is normalized to one in the following way,∫

d p dqW (p, q; ρ) = Tr(ρ) = 1. (13)

However, due to the convention we use, we find by comparing
Eqs. (11) and (13) that

W (p, q; ρ) = 2NW (p, q; ρ). (14)

For Gaussian states the Wigner function is Gaussian and
is fully determined by the displacements and the covariance
matrix. In the coherent-state basis with �ξ1 = [ξ(c) − Q(c)],

W (α; ρ) = 2N

πN
exp

{
−1

2
(�ξ1)†[V(c)]−1(�ξ1)

}
; (15)

in the q-p basis with �ξ2 = [ξ(r) − Q(r)],

W (p, q; ρ) = 1

πN
exp

{
−1

2
(�ξ2)�[V(r)]−1(�ξ2)

}
. (16)

Any Gaussian unitary can be described in the complex
basis through the associated symplectic transformation S(c)

and a displacement d (c). Under the action of this Gaussian uni-
tary operator, the covariance matrix and the Wigner function
transform as

ξ̂
(c) → S(c)ξ̂

(c) + d (c),

V(c) → S(c)V(c)S(c)†,

W (ξ(c); ρ) → W ([S(c)]−1(ξ(c) − d (c) ); ρ). (17)

When the Gaussian transformation is described in real form
through S(r) and d (r), the analogous transformations of the
phase-space properties can be written as

ξ̂
(r) → S(r)ξ̂

(r) + d (r),

V(r) → S(r)V(r)S(r)�,

W (ξ(r); ρ) → W ([S(r)]−1(ξ(r) − d (r) ); ρ). (18)

With this background material, we next move on to the prepa-
ration of single-mode non-Gaussian states using multimode
Gaussian states.

III. GENERAL FORMALISM FOR SINGLE-MODE
OUTPUT STATES

We now discuss the generation of single-mode non-
Gaussian states when all but one of the modes of a multimode
Gaussian state are measured using photon-number-resolving
detectors (PNRDs) as schematically depicted in Fig. 2. This
is the simplest case to begin with and we consider multimode
output states later in Sec. VI. If all the PNRDs register no pho-
tons then the output corresponds to a Gaussian state; otherwise
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FIG. 2. Probabilistic generation of single-mode non-Gaussian
states. Here, we consider a general multimode Gaussian state ρ

(N )
G

of N modes. All but one of the modes are measured using PNRDs
giving values nk (k = 2, 3, . . . , N), resulting in a conditional output
state ρout in the remaining mode.

it is non-Gaussian. This single-mode case includes some very
important non-Gaussian states such as the Schrödinger’s cat
state, the ON state, the cubic-phase state, and the Gottesman-
Kitaev-Preskill (GKP) state.

We are now going to derive the Wigner function of the
single-mode non-Gaussian state in the coherent-state basis.
The derivation is summarized as follows. First, we expand the
density matrix ρ

(N )
G ≡ ρ of the N-mode Gaussian state in the

coherent-state basis. Second, we project the density matrix
ρ onto the Fock state |n̄〉 = |n2, n3, . . . , nN 〉 and obtain the
unnormalized density matrix of the first mode: ρ̃1 = 〈n̄|ρ|n̄〉.
Without loss of generality, we assume that the last (N − 1)
modes were detected and nk is the number of photons reg-
istered at the kth PNRD. Third, by using the transformation
between the coherent-state basis and the Fock-state basis, and
the relation between the density matrix and Wigner function,
we find the unnormalized Wigner function W (α; ρ̃1). Finally,
the measurement probability P(n̄) is obtained from the trace
of the unnormalized density matrix, i.e., P(n̄) = Tr(ρ̃1).

A. Single-mode output Wigner function

Coherent states form an overcomplete basis. We can ex-
pand the density matrix ρ of an N-mode Gaussian state in the
coherent-state basis as

ρ = 1

π2N

∫
d2α

∫
d2β |β〉〈β|ρ|α〉〈α|, (19)

where |α〉 = |α1, α2, . . . , αN 〉 and |β〉 = |β1, β2, . . . , βN 〉. It
can be shown that 〈β|ρ|α〉 can be expressed in terms of the
Wigner function as [48]

〈β|ρ|α〉 = 1

(2π )N

∫
d p dqW (p, q; ρ)Wαβ(p, q; ρ), (20)

where Wαβ(p, q; ρ) is the Wigner-Weyl transformation of the
operator |α〉〈β| given by [49]

Wαβ(p, q; ρ) = 2N exp

{
−|α|2 + |β|2

2
− α�β∗

− p� p − q�q +
√

2 α�(q − ip)

+
√

2 β†(q + ip)

}
.

Using the expression in Eq. (16) and performing a Gaussian
integration in Eq. (20), one obtains [49]

〈β|ρ|α〉 = P0 exp

(
−|γ̃|2

2
+ 1

2
γ̃�R̃γ̃ + γ̃�ỹ

)
, (21)

where γ̃ = (β∗,α)� and

R̃ = ��[2V(r) − I2N ][2V(r) + I2N ]−1�,

ỹ = 2 ��[2V(r) + I2N ]−1Q(r),

P0 = 2N exp
(− 1

2 Q(r)��∗ỹ
)

√
det(2V(r) + I2N )

. (22)

Here, R̃ is a 2N × 2N symmetric complex matrix and ỹ is a
vector with 2N components. By using the relation ��� =
X2N and Eq. (7), we can rewrite the quantities R̃, ỹ, and P0 in
terms of V(c) and Q(c) as

R̃ = X2N [2V(c) − I2N ][2V(c) + I2N ]−1,

ỹ = 2 X2N [2V(c) + I2N ]−1Q(c),

P0 = 2N exp
(− 1

2 Q(c)�ỹ
)

√
det(2V(c) + I2N )

. (23)

Let us measure the last (N − 1) modes using PNRDs
and obtain a photon number pattern n̄ = (n2, n3, . . . , nN );
namely, the projected state in the detected modes is |n̄〉 =
|n2, n3, . . . , nN 〉. By using Eqs. (19) and (21) we find that the
unnormalized density matrix ρ̃1 of the heralded mode is

ρ̃1 = 〈n̄|ρ|n̄〉
= 1

π2N

∫
d2α

∫
d2β 〈n̄|β〉〈α|n̄〉 〈β|ρ|α〉

= 1

π2N

∫
d2α1 d2β1 d2ᾱ d2β̄ |β1〉〈α1| 〈n̄|β̄〉〈ᾱ|n̄〉

×P0 exp

(
−|γ̃|2

2
+ 1

2
γ̃�R̃γ̃ + γ̃�ỹ

)
, (24)

where we have defined |ᾱ〉 = |α2, α3, . . . , αN 〉 and |β̄〉 =
|β2, β3, . . . , βN 〉. The inner product 〈nk|αk〉 represents the
transformation between the Fock-state basis and the coherent-
state basis, and can be calculated using the Fock-state expan-
sion of the coherent state. A coherent state |αk〉 is given by

|αk〉 = e−|αk |2/2
∞∑

nk=0

α
nk
k√
nk!

|nk〉, (25)

so we have

〈n̄|β̄〉〈ᾱ|n̄〉 = 1

n̄!
e−(|ᾱ|2+|β̄|2 )/2

N∏
k=2

(α∗
k βk )nk , (26)

where n̄! ≡ n2!n3! · · · nN !.
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In Eq. (24), the integration variables have been di-
vided into two sets, one of which corresponds to the her-
alded mode α1, β1 and the other corresponds to the de-
tected modes ᾱ, β̄. To perform the integration, we also
need to decompose the exponential term in Eq. (24)
into parts corresponding to the heralded mode, detected
modes, and their overlap. To do that we define a
new vector γ = (β∗

1 , α1, β
∗
2 , β∗

3 , . . . , β∗
N , α2, α3, . . . , αN )� =

(γh, γd )�, where γh and γd are vectors corresponding to the
heralded mode and detected modes, respectively. The vectors
γ and γ̃ are related by a permutation matrix P, namely, γ =
Pγ̃ . The action of P is to permute the (N + 1)th component
of γ̃ to the second component. Correspondingly, we define a
new symmetric matrix R and a new vector y as

R = PR̃P�, y = Pỹ. (27)

The matrix R can be partitioned into

R =
(

Rhh Rhd

Rdh Rdd

)
, (28)

where Rhh is a 2 × 2 symmetric matrix corresponding to
the heralded mode, Rdd is a (2N − 2) × (2N − 2) symmetric
matrix corresponding to the detected modes, and Rhd is a
2 × (2N − 2) matrix that represents the connections between
the detected modes and heralded mode. Since R is sym-
metric, Rdh = R�

hd . Similarly, the vector y is partitioned into
(yh, yd )�, where yh corresponds to the heralded mode and yd
corresponds to the detected modes.

The three terms in the exponential in Eq. (24) become

|γ̃|2 = |γh|2 + |γd |2,
γ̃�ỹ = γ�

h yh + γ�
d yd ,

γ̃�R̃γ̃ = γ�
h Rhhγh + γ�

d Rddγd + 2 γ�
h Rhdγd . (29)

Substituting Eqs. (26) and (29) into Eq. (24), we find that the
unnormalized density matrix ρ̃1 can be written as

ρ̃1 = 1

π2

∫
d2α1

∫
d2β1 |β1〉〈α1|F (α1, β1), (30)

where

F (α1, β1) = P0 exp(L2)

π2N−2n̄!

∫
d2ᾱ d2β̄

N∏
k=2

(
α∗

k βk
)nk exp(L3)

= P0

n̄!
exp(L2)

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp(L3)

∣∣∣∣
γd =0

,

L2 = −1

2
|γh|2 + 1

2
γ�

h Rhhγh + γ�
h yh,

L3 = −|γd |2 + 1

2
γ�

d Rddγd + γ�
d yd + γ�

d Rdhγh. (31)

In the second equality of Eq. (31), we have performed integra-
tion by parts over ᾱ and β̄, the details of which are given in
Eq. (A5) of Appendix A.

From the unnormalized density matrix ρ̃1 we can calculate
the unnormalized characteristic function χ (β; ρ̃1) and the
unnormalized Wigner function W (α; ρ̃1). By substituting ρ̃1

into Eq. (10) we have

χ (β; ρ̃1) = e−|β|2/2Tr(e−β∗âρ̃1eβâ†
)

= 1

π2
e−|β|2/2

∫
d2α1 d2β1 eβα∗

1−β∗β1〈α1|β1〉F (α1, β1),

where we have used the fact that the coherent state is the
eigenstate of the annihilation operator, â|α〉 = α|α〉. Substi-
tuting χ (β; ρ̃1) into Eq. (9) we find the unnormalized Wigner
function as

W (α; ρ̃1) = 1

π4

∫
d2α1

∫
d2β1 〈α1|β1〉F (α1, β1)

×
∫

d2β e−|β|2/2e−β∗(β1−α)+β(α∗
1 −α∗ )

= 2

π3
e−2|α|2

∫
d2α1

∫
d2β1 F (α1, β1)

× exp

[
−|α1|2

2
− |β1|2

2
− α∗

1β1

+ 2 (αα∗
1 + α∗β1)

]
, (32)

where in the last equality we have performed the integration
over β and used the relation 〈α1|β1〉 = e−|α1|2/2−|β1|2/2+α∗

1 β1 .
By substituting the function F (α1, β1) of Eq. (31) into
Eq. (32), interchanging the order of partial derivatives and
integration, and then performing the integration over α1 and
β1 (which is a Gaussian integration), we arrive at the fi-
nal expression for the unnormalized Wigner function (see
Appendix I for more details) as

W (α; ρ̃1) = 2P0

π n̄!

exp
(

1
2 y�

h L4X2yh

)
√

det(I2 + X2Rhh)
exp(−v†L5v)

×
N∏

k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd +z�γd

)∣∣∣∣
γd=0

,

L4 = (I2 − X2Rhh)−1,

L5 = (I2 + X2Rhh)−1(I2 − X2Rhh), (33)

where we have defined

v = (α∗, α)� − (I2 − X2Rhh)−1X2yh,

A = Rdd − Rdh(I2 + X2Rhh)−1X2Rhd ,

z = Y + 2 Rdh(I2 + X2Rhh)−1v,

Y = yd + Rdh(I2 − X2Rhh)−1X2yh. (34)

In the following, we define the vector Y as Y =
(Y ∗

2 ,Y ∗
3 , . . . ,Y ∗

N ,Y2,Y3, . . . ,YN )� for convenience.
The unnormalized Wigner function in Eq. (33) is factorized

into two parts: the first part is a Gaussian function of v; the
second part is the partial derivatives of a Gaussian function
evaluated at γd = 0, which results in a polynomial of v. The
maximum order of the polynomial depends on the detected
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FIG. 3. Scheme to obtain a Gaussian gate applied to a particular state given the circuit parameters to generate said state. The diagram on
the left depicts an N-mode Gaussian state to which the last (N − M ) modes are detected to obtain an M-mode output state. Suppose we want
to obtain the same output state but now followed by an M-mode Gaussian gate U ; all we need to do is update the initial Gaussian gate by the
U † on the first M modes while retaining the same measurement pattern as before. This results in an output state with the unitary gate applied
to it with the same success probability as compared to the case without the gate.

photon number pattern n̄. If nk = 0 for all k, i.e., all PNRDs
register no photons, the polynomial is trivially equal to one.
The unnormalized Wigner function is then a Gaussian distri-
bution, which implies that the heralded state in the first mode
is a Gaussian state. By comparing Eq. (33) with Eq. (15), we
find that the displacement of the heralded state is

d = (I2 − X2Rhh)−1X2yh (35)

and the covariance matrix is

V(c)(n̄ = 0) = 1
2 (I2 + X2Rhh)(I2 − X2Rhh)−1. (36)

To generate a non-Gaussian state, the polynomial that re-
sults from the action of the partial derivatives in Eq. (33)
should be nontrivial. For this, two conditions need to be
satisfied: (1) PNRDs should register photons; (2) the matrix
Rhd �= 0, which means that the heralded mode must have
some connections with the detected modes as viewed through
the R matrix.

B. Measurement probability

We have derived the expression for the unnormalized
Wigner function, but have yet to determine the success prob-
ability of producing the output state. Obtaining the photon
number distribution of a multimode Gaussian state was stud-
ied by Refs. [48,49] and recently became an important topic
known as Gaussian BosonSampling [50]. Here, the measure-
ment probability P(n̄) can be obtained by performing a trace
of the unnormalized density operator ρ̃1, which corresponds to
integrating the unnormalized Wigner function W (α; ρ̃1) over
the arguments α, giving

P(n̄) = Tr(ρ̃1) =
∫

d2α W (α; ρ̃1). (37)

It is evident from Eq. (33) that the integration over α is a
straightforward Gaussian integration. Using the equality∫

d2α exp[−v†L5v] = π

2
[
√

det[L5]]−1,

we obtain the measurement probability

P(n̄) = P0

n̄!
√

det(I2 − X2Rhh)

× exp

{
1

2
y�

h (I2 − X2Rhh)−1X2yh

}

×
N∏

k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Apγd + z�
p γd

)∣∣∣∣
γd =0

,

(38)

where

Ap = Rdd + Rdh(I2 − X2Rhh)−1X2Rhd ,

zp = yd + Rdh(I2 − X2Rhh)−1X2yh. (39)

The general scheme has a particular symmetry that we
could exploit for our purposes. Let us begin with a particular
initial N-mode Gaussian state ρ (N ) and we measure (N − M )
modes to obtain a measurement pattern n̄ and an M-mode
output state ρ (M ). This same setup could be used to obtain
an output state Uρ (M )U †, where U is an M-mode Gaussian
unitary as depicted in Fig. 3. All we need to do is to to update
the initial Gaussian state to ρ̄ (N ) = [U ⊗ 11N−M]ρ (N )[U ⊗
11N−M]† and retain the same measurement pattern as before.
This will then herald a state Uρ (M )U † with the same success
probability as before. We see that obtaining an output state
with additional Gaussian gates applied to it has a straightfor-
ward method. In the next section, we investigate the particular
case when the measured N-mode Gaussian state is pure.

IV. SINGLE-MODE OUTPUT STATES BY MEASURING
PURE GAUSSIAN STATES

Any pure Gaussian state can be prepared by sending
displaced squeezed vacuum states into a multiport interfer-
ometer [51]. In this section we consider the case when all
but one mode of a pure Gaussian state are measured using
PNRDs, as depicted in Fig. 4. Note that when measuring a
pure Gaussian state, the heralded non-Gaussian state is also
pure. This section will clarify the significance of each part in
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FIG. 4. Probabilisitic generation of single-mode non-Gaussian
states. A general pure multimode Gaussian state can be decomposed
into displaced squeezed states, |zi, αi〉 = D̂(αi )Ŝ(zi )|0〉, on the ith
mode with i = 1 to N , followed by an interferometer U(θ̄ ). The last
(N − 1) modes are measured using PNRDs giving values {nk}N

2 ,
resulting in a conditional output state |ψout〉 in the first mode.

the unnormalized Wigner function in Eq. (33). The heralded
non-Gaussian state is a finite superposition of Fock states,
acted on by a single-mode Gaussian unitary (such as a phase
shift, squeezing operator, displacement, or any combination of
these). The relationship between the parameters of the output
state and the parameters of the measured Gaussian state will
be derived. We also study in detail the relationship between
the number of independent coefficients in the output Fock
state superposition and the number of modes of the Gaussian
state, which provides insight into what non-Gaussian states
can be generated using multimode Gaussian states.

A. Output Wigner function

As mentioned above, an arbitrary N-mode pure Gaussian
state can be generated by injecting N single-mode displaced
squeezed vacuum states into a linear interferometer. The
covariance matrix of N independent single-mode displaced
squeezed states is

V(c)
sq = 1

2

(
Dc Ds

Ds Dc

)
, (40)

where we have defined two diagonal matrices Dc =⊕N
j=1 cosh(2r j ) and Ds = ⊕N

j=1 sinh(2r j ) with r j the squeez-
ing parameter of the jth input mode. The symplectic matrix
representing the transformation of a linear interferometer can
be written as a block-diagonal form,

S(c) =
(

U∗ 0
0 U

)
, (41)

where the unitary matrix U satisfies

â j →
N∑

j=1

Ujkâk . (42)

The covariance matrix of a pure Gaussian state can be written
as [50]

V(c) = S(c)V(c)
sq S(c)† = 1

2

(
U∗Dc U� U∗Ds U†

U Ds U� U Dc U†

)
. (43)

By substituting Eq. (43) into Eq. (23) and using the blockwise-
inversion formula, we find that the matrix R̃ is in a block-
diagonal form, i.e., R̃ = B ⊕ B∗, where B (with entries bi j)

is an N × N symmetric matrix. B is completely determined
by the input squeezing and the linear interferometer (not the
input displacements) as [50]

B = U
N⊕

j=1

tanh(r j ) U�. (44)

By applying the permutation P we can obtain the matrix R of
Eq. (28). It is easy to see that Rhh is diagonal and only depends
on b11,

Rhh =
(

b11 0

0 b∗
11

)
. (45)

Similarly, we have

Rhd =
(

b12 b13 · · · b1N 0 0 · · · 0

0 0 · · · 0 b∗
12 b∗

13 · · · b∗
1N

)

= R�
hd ,

Rdd = B1 ⊕ B∗
1, (46)

where B1 is the B matrix with the first row and column
deleted.

Zero photon detection (n̄ = 0). We first consider the Gaus-
sian factor in the unnormalized Wigner function in Eq. (33),
which fully characterizes the heralded Gaussian state when
all PNRDs register no photons. The covariance matrix can be
obtained by substituting Eq. (45) into Eq. (36) as

V(c)
1 (n̄ = 0)= 1

2(1 − |b11|2)

(
1 + |b11|2 2 b∗

11

2 b11 1 + |b11|2
)

. (47)

It is easy to check that the determinant of V(c)
1 (n̄ = 0) is

1/4, indicating that the heralded state is pure. The squeez-
ing parameter of a pure single-mode Gaussian state can be
obtained from the eigenvalues of the covariance matrix. The
eigenvalues of V(c)

1 (n̄ = 0) are λ1
2 and 1

2λ1
, where λ1 = 1+|b11|

1−|b11| .
This implies that the squeezing parameter is

r1 = 1

2
ln

(
1 + |b11|
1 − |b11|

)
. (48)

Other than the squeezing, there is also a rotation (phase shift)
included in the covariance matrix of Eq. (47). If we define
b11 = |b11|eiφ1 , then for the rotation angle we have

ϕ1 = −φ1/2. (49)

This means that the heralded squeezed state has a
squeezing amplitude ζ1 = r1eiϕ1 = r1e−iφ1/2. To determine
the displacement we define yh = (y∗

1, y1)� and yd =
(y∗

2, y∗
3, . . . , y∗

N , y2, y3, . . . , yN )�. Substituting Eq. (45) into
Eq. (35) we obtain the displacement vector as

d = 1

1 − |b11|2
(

1 b∗
11

b11 1

)(
y1

y∗
1

)
≡
(

d∗
1

d1

)
. (50)

It is evident that b11 and yh uniquely determine the heralded
Gaussian state when the PNRDs register no photons.

Nonzero photon detection (n̄ �= 0). When the PNRDs reg-
ister photons, the heralded state is generally a non-Gaussian
state. The non-Gaussianity is dictated by the polynomial
factor in the unnormalized Wigner function in Eq. (33). The
Gaussian factor involving the squeezing and the displacement
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has to be interpreted as Gaussian operations acting on a finite
superposition of Fock states. To transparently demonstrate this
point we define a new vector w = (δ∗, δ)� as

w =
√

1 − |b11|2 (I2 + X2Rhh)−1v. (51)

Then we find

v†(I2 + X2Rhh)−1(I2 − X2Rhh)v = w†w. (52)

The output Wigner function now can be written as

W (α; ρ1) ∝ e−w†w

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

× exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (53)

where

z = Y + 2√
1 − |b11|2

Rdhw. (54)

It is clear from Eq. (53) that the heralded non-Gaussian state
is a superposition of a finite number of Fock states, followed
by a squeezing operation and a displacement. In other words,
the output state is of the form

|ψout〉 = D̂(d1)Ŝ(ζ1)
nmax∑
n=0

cn|n〉. (55)

This can also be understood in the following way: according to
the transformation rule Eq. (17), we first apply a displacement
and then a squeezing operation to the state in Eq. (53), which
transforms the Wigner function back to the one corresponding
to only a finite superposition of Fock states. The explicit
expressions for the coefficients {cn} are dealt with in the
following subsection.

B. Coefficients {cn} in the Fock-basis superposition

The coefficients {cn} of the superposition of Fock states
remain to be determined. Suppose the position-space wave
function of a quantum state |ψ〉 is ψ (q); it can be expanded in
the Fock basis as

ψ (q) =
∞∑

n=0

cnψn(q). (56)

Here, cn is the coefficient, and ψn(q) is the wave function of
the Fock state |n〉 given by

ψn(q) = 1

π1/4
√

2n n!
e−q2/2Hn(q), (57)

with Hn(q) the Hermite polynomials. From Eq. (12), the
single-mode Wigner function is

W (p, q) = 1

π

∫
dy e−2ipy〈q − y|ψ〉〈ψ |q + y〉

= 1

π

∞∑
m,n=0

cmc∗
n Wmn(p, q), (58)

where Wmn(p, q) is defined as

Wmn(p, q) =
∫

dy e−2ipy〈q − y|ψm〉〈ψn|q + y〉

= 1√
n! m!

e−q2−p2
Hmn(2α, 2α∗). (59)

Here, Hmn(2α, 2α∗) is known as Ito’s 2D-Hermite polynomial
[52] (see Appendix F for details).

By using the orthogonality relation of Ito’s 2D-Hermite
polynomials we can find a systematic way to evaluate the co-
efficients of the heralded states. Ito’s 2D-Hermite polynomials
satisfy the following orthogonality relation [52,53]:∫

d2α Hm1n1 (2α, 2α∗)H∗
m2n2

(2α, 2α∗)e−4|α|2

= π

2
m1! n1! δm1,m2δn1,n2 . (60)

The Wigner function of a quantum state can be expressed in
terms of Ito’s 2D-Hermite polynomials, as can be seen from
Eqs. (58) and (59) for a pure state. Therefore, the Fock-state
coefficients of a quantum state can be written as an overlap
integral between the Wigner function and Ito’s 2D-Hermite
polynomials,

cmc∗
n = 1√

m!n!

∫
d2α W (α)H∗

mn(2α, 2α∗)e−2|α|2 , (61)

where we have taken into account the convention that W (α) =
2W (p, q) [Eq. (14)].

If the quantum state |ψ〉 is squeezed and displaced, ac-
cording to the transformation rule of the Wigner function and
from Eq. (58) we see that the coefficients cn are unchanged
while the arguments of the Wigner function are changed. This
change can be taken into account by replacing α with δ, where
δ contains the squeezing and displacement information. Now
by substituting the Wigner function (53) into Eq. (61) and
performing the integration over δ, we find (see Appendix G
for more details)

cmc∗
n = 1√

m!n!

∫
d2δ W (α)H∗

mn(2δ, 2δ∗)e−2|δ|2

= π N1

4
√

m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Cγd + Y �γd

)

×
⎛
⎝ N∑

j=2

κ∗
j α j

⎞
⎠

m(
N∑

i=2

κiβ
∗
i

)n
∣∣∣∣∣∣γd =0 , (62)

where N1 is the normalization factor of the Wigner function
in Eq. (53), whose exact value is irrelevant to the coefficients
cn. Here, we have defined

κ j = b1 j√
1 − |b11|2

, j = 2, 3, . . . , N,

C = A + 1

1 − |b11|2 RdhX2Rhd

= Rdd + 1

1 − |b11|2 Rdh

(
b∗

11 0

0 b11

)
Rhd . (63)
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Equation (62) can also be written in an equivalent form, which
only involves partial derivatives of a Gaussian function. To do
that we first introduce a two-component vector t = (t1, s1)�
and a 2N × 2N matrix M given by

M =
⎛
⎝ 0 1√

1−|b11|2
X2Rhd

1√
1−|b11|2

RdhX2 C

⎞
⎠. (64)

The product of the two coefficients cmc∗
n of Eq. (62) can be

rewritten as

cmc∗
n = π N1

4
√

m!n!

∂m

∂tm
1

∂n

∂sn
1

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

× exp

{
1

2
(t�, γ�

d ) M
(

t
γd

)
+ Y �γd

}∣∣∣∣
γd =0, t1=s1=0

.

(65)

Equations (62) and (65) provide all the information one
needs to evaluate the coefficients {cn} [54]. Although the
product of two coefficients is given and the normalization
factor N1 remains unknown, one can still determine {cn} as
follows. The first step is to determine the maximal n, denoted
by nmax, whose corresponding coefficient is nonzero. From
Eq. (62) it can be shown that nmax � nT , where

nT = n2 + n3 + · · · + nN (66)

is the total number of detected photons. The equality occurs
when κ j �= 0 in Eq. (63) for all j from 2 to N , which indicates
that the heralded mode has full connections with all detected
modes. When κ j is zero, which means the jth mode has no
connection to the heralded mode, the detection of photons
in the jth mode does not help to increase the order of the
polynomial, implying nmax < nT .

There is no upper bound for the total photon number
nT because the detected state is an N-mode Gaussian state,
which implies that there is also no upper bound for nmax. The
value of nT is in fact fixed when we postselect a particu-
lar measurement outcome. However, on the other hand, the
number of independent coefficients should be finite because
these coefficients are determined by an N-mode Gaussian
state which is fully characterized by the finite number of
parameters in the covariance matrix and mean vector. We are
going to derive the relation between the maximal number of
independent coefficients and the size of the detected Gaussian
state. The first step is to assume κ j �= 0 for all j to guarantee
nmax = nT . By setting m = n = nT in Eq. (62), we find that

|cnT |2 = 1
4π N1nT ! |κ2|2|κ3|2 · · · |κN |2 �= 0, (67)

which is consistent with the assumption κ j �= 0. To determine
a state, it is sufficient to fix the ratios between other coeffi-
cients and cnT because taking into account the normalization
condition will uniquely determine the state. The ratio cn/cnT

can be obtained by calculating cnc∗
nT

/|cnT |2, where the numer-
ator is from Eq. (62) and the denominator is from Eq. (67). By

defining new variables ωi = κ∗
i αi, σi = κiβ

∗
i , we find

cn

cnT

=
N∏

k=2

(
∂2

∂ωk∂σ ∗
k

)nk exp(U1)V1W1√
n! (nT !)3

∣∣∣∣
ω=σ=0

,

U1 = 1

2
(σ∗�,ω�) Crn

(
σ∗
ω

)
+ (μ∗�,μ�)

(
σ∗
ω

)
,

V1 =
⎛
⎝ N∑

j=2

ω j

⎞
⎠

n

, W1 =
(

N∑
i=2

σ ∗
i

)nT

, (68)

where μi = Yi/κ
∗
i , Crn = F ⊕ F∗, and F is an (N − 1) × (N −

1) symmetric matrix with entries fi j defined as

fi j = b∗
11 + bi j

κiκ j
, i, j = 2, 3, . . . , N. (69)

As in the earlier case, cn/cnT can be written in an equivalent
form where there are only partial derivatives acting on a
Gaussian function, and we have

cn

cnT

= ∂n

∂t n
1

∂nT

∂snT
1

N∏
k=2

(
∂2

∂ωk∂σ ∗
k

)nk exp(U2)√
n! (nT !)3

∣∣∣∣
ω,σ,t1,s1=0

,

U2 = 1

2
(t�, σ∗�,ω�) Mrn

⎛
⎝ t

σ∗
ω

⎞
⎠+ (μ∗�,μ�)

(
σ∗
ω

)
,

Mrn =
(

0 R(rn)
hd

R(rn)
dh Crn

)
,

R(rn)
hd =

(
0 0 · · · 0 1 1 · · · 1
1 1 · · · 1 0 0 · · · 0

)
. (70)

Equations (68) and (70) provide a systematic way to evaluate
the coefficients of the heralded superposition of Fock states.
By explicitly evaluating the partial derivatives in Eqs. (68)
and (70), we find that the ratios cn/cnT are polynomials of
μi and fi j . Note that F is symmetric, so the total number of
independent parameters is equal to D = (N + 2)(N − 1)/2,
composed of the components of μ and the entries of F.

The problem of determining the number of independent
{cn}’s can be formulated as follows. Let us assume that μ j and
fi j are unknown and have to be solved from nT nonlinear poly-
nomial equations, which come from Eq. (68) or (70) by taking
n = 0, 1, . . . , nT − 1. If nT < D, the nonlinear equations are
underdetermined, which means that for a given set of {cn}
there is an infinite number of solutions. This implies that there
are many initial Gaussian states that can generate the same
non-Gaussian state. If nT > D, the nonlinear equations are
overdetermined and there is no guarantee of the existence of
a solution for an arbitrary given set of {cn}, which means that
they are not independent. The situation is subtle for the case
of nT = D. If there exist solutions, the number of solutions
is finite. It is also possible that there exist no solutions. We
checked cases when N is 2, 3 and found that when nT =
D there always exist a finite number of solutions. We thus
propose the following:

Conjecture 1. Measuring (N − 1) modes of an N-mode
pure Gaussian state using PNRDs outputs a superposition
of Fock states with at most (N + 2)(N − 1)/2 independent
coefficients.
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Algorithm 1 Obtaining single-mode output states by measuring
pure multimode Gaussian states.

Input: V(c), Q(c) of a pure multimode Gaussian state and a
photon detection pattern n̄

1 Compute R̃, ỹ using Eq. (23).
2 Apply permutation P : (R̃, ỹ) → (R, y) in Eq. (27).
3 Obtain final squeezing ζ1 using Eqs. (48) and (49).
4 Compute the final displacement d by Eq. (50).
5 Evaluate coefficients {cn} using Eqs. (62) and (63).
6 Note: If required, the Wigner function W (α; ρ̃1) and the

success probability P(n̄) can be computed using Eqs. (33) and
(38), respectively, directly after step 2.
Output: Heralded state as represented in Eq. (55)

Conjecture 1 demonstrates the extent and power of gen-
erating non-Gaussian states using the method of measuring
multimode Gaussian states with PNRDs. We now summarize
the methods in this subsection for obtaining the output state
given an input pure Gaussian state and a measurement pattern,
in the form of Algorithm 1.

There is one more application of our general formalism.
We can formulate the complementary problem of obtaining
the input pure Gaussian state and measurement pattern such
that one obtains the target single-mode output state with the
highest fidelity and success probability. Note that in general,
the mapping from Gaussian states and measurement patterns
to the output state is in general many-to-one and also involves
both continuous parameters for the Gaussian state and discrete
parameters for the measurement patters. So this problem
of obtaining the optimal Gaussian circuit and measurement
pattern to generate a particular target state is more intricate
and requires careful considerations. We summarize the steps
necessary for the case when we assume that the input Gaus-
sian state is pure as Algorithm 2.

We next present examples for the generation of useful
single-mode non-Gaussian states using our general formal-
ism.

V. EXAMPLES OF GENERATING SINGLE-MODE
NON-GAUSSIAN STATES

We begin with pure Gaussian states in two and three
modes. We then detect all but one of the modes to generate
single-mode non-Gaussian states at the output. A few exam-
ples are considered in each case.

A. Detecting two-mode pure Gaussian states

In this subsection, we are going to use our formalism to
study the generation of single-mode non-Gaussian states via
detecting one mode of a pure two-mode Gaussian state. This is
the simplest nontrivial case which already includes some prac-
tically interesting examples, e.g., Schrödinger cat states. We
will investigate two kinds of problems: (i) to derive the output
non-Gaussian state given the interferometer, the input states,
and the choice of measurement patterns; and (ii) to identify
optimal Gaussian states (in terms of the interferometers and

Algorithm 2 Obtaining the optimal pure Gaussian state and
measurement pattern that generates a given target state.

Input: Target state
∑n0

k=0 c̃k |k〉
1 Approximate the target state in the form of Eq. (55).
2 Use Conjecture 1 to estimate the number of input modes N that

are required from the relation nmax � D.
3 Working principle: choose measurement pattern n̄ = {nj} such

that
∑

j n j = nmax.
4 Assume a generic complex symmetric matrix B with BB† � 11,

and a complex displacement vector Y .
5 Obtain nonlinear constrained equations using Eqs. (62) and

(63) to connect (B,Y ) and {cn}.
6 Maximize the success probability in Eq. (38) subject to

constraints in step 5.
7 Repeat steps 3–6 over various discrete measurement patterns to

obtain the best success probability and the optimal pair (B,Y ).
8 Compute (V(c), Q(c) ) from the optimal (B,Y ).
9 If required, the input squeezed states and the interferometer

corresponding to the pure Gaussian state can be obtained from
B using the Autonne-Takagi normal form.

10 Further, the interferometer in step 9 can be broken down into
beam splitters and phase shifters using, for example, the
triangle [55] or square [56] schemes.

Output: Optimal pure Gaussian state (V(c), Q(c) ) and
measurement pattern n̄

input states) which give the highest success probability and
fidelity, for a particular target non-Gaussian state.

In the two-mode case, κ2 = 0 corresponds to a trivial case
where the two modes are uncorrelated and detecting one of
them cannot generate a non-Gaussian state. So we always
consider the case where κ2 �= 0 in this subsection. We list
explicitly the coefficients of the superposition of Fock states
which are calculated by using either Eq. (68) or Eq. (70).
Note that depending on the number of photons detected in the
PNRD, say n, the heralded state has a Fock-state superposition
up to |n〉, apart from the possible follow-up with a Gaussian
gate.

We now list the relations between the output Fock coef-
ficients {cn} and the parameters of the Gaussian state. For a
single-photon detection we have

c0

c1
= μ2; (71)

for two-photon detection we obtain the relations

c1

c2
=

√
2 μ2,

c0

c2
= 1√

2

(
μ2

2 + f ∗
22

)
; (72)

three-photon detection leads to

c2

c3
=

√
3 μ2,

c1

c3
=
√

3

2

(
μ2

2 + f ∗
22

)
,

c0

c3
= μ2√

6

(
μ2

2 + 3 f ∗
22

)
; (73)
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FIG. 5. Photon subtraction from a squeezed vacuum state. A
squeezed vacuum state |ζ0〉 is mixed with a vacuum via a beam
splitter B(θ ). One of the output modes is detected by a PNRD,
registering n photons. The heralded state in the other mode is ρout.

and finally, the four-photon case gives

c3

c4
= 2 μ2,

c2

c4
=

√
3
(
μ2

2 + f ∗
22

)
,

c1

c4
=
√

2

3
μ2
(
μ2

2 + 3 f ∗
22

)
,

c0

c4
= 1

2
√

6

(
μ4

2 + 6 μ2
2 f ∗

22 + 3 f ∗2
22

)
. (74)

Using these relations, we can solve for the explicit output state
given the initial Gaussian state that is to be measured. We now
look at a concrete and commonly used technique of photon
subtraction.

1. Photon subtraction from a squeezed vacuum state

Generating non-Gaussian states via photon subtraction
from squeezed vacuum states has been studied extensively.
Here, we consider photon subtraction for two purposes: the
first is to show how to use our formalism to solve a specific
problem; the second is to verify known results via this new
method. A setup to generate a photon-subtracted state is
shown in Fig. 5. A single-mode squeezed vacuum state |ζ0〉,
with ζ0 = r0eiϕ0 , is combined with a vacuum on a beam split-
ter, after which a PNRD measures one of the output modes
and registers n photons. Standard single-photon subtraction
uses a high-transmission beam splitter and a single-photon
state is detected postmeasurement; however, here we do not
restrict our beam splitter parameters and the photon detection
outcome.

To simplify the problem, we assume that the phase of
the squeezed vacuum state is ϕ0 = 0; namely, the covariance
matrix is

V(r)
s = 1

2

(
e2r0 0
0 e−2r0

)
, (75)

where we use the basis ( p̂1, q̂1), which implies that the
position quadrature is squeezed if r0 > 0. The symplectic
transformation of a beam splitter (and no additional phase)
is chosen as

S(r)
bs =

⎛
⎜⎝

cos θ − sin θ 0 0
sin θ cos θ 0 0

0 0 cos θ − sin θ

0 0 sin θ cos θ

⎞
⎟⎠, (76)

where we use the basis ( p̂1, p̂2, q̂1, q̂2) and cos2 θ is the trans-
mission coefficient of the beam splitter. The output covariance

matrix before detection is

V(r) = S(r)
bs V(r)

s S(r)�
bs = 1

2

(
V11 0

0 V22

)
,

V11 =
(

e2r0 c2 + s2 (e2r0 − 1)cs

(e2r0 − 1)cs c2 + e2r0 s2

)
,

V22 =
(

e−2r0 c2 + s2 (e−2r0 − 1)cs

(e−2r0 − 1)cs c2 + e−2r0 s2

)
, (77)

where c = cos θ and s = sin θ . From Eq. (22), we obtain the
matrix R̃ = B ⊕ B∗, where B is given by

B = tanh r0

(
cos2 θ cos θ sin θ

cos θ sin θ sin2 θ

)
. (78)

By applying a permutation P on R̃ we get the matrix R
[Eq. (28)], whose block submatrices are(

Rhh Rhd

Rdh Rdd

)
= tanh r0

(
cos2 θ I2 cos θ sin θ I2

cos θ sin θ I2 sin2 θ I2

)
.

Now we have all the information to derive the heralded
states. Since there is no displacement in the input, the heralded
states do not contain any displacement, namely, d = 0. Note
that b11 = tanh r cos2 θ �= 0 for nontrivial cases, which im-
plies that the heralded states contain squeezing. The squeezing
can be read out from the covariance matrix of the heralded
state with zero photons detected (n = 0), which is given by

V(r)
1 (n = 0) = 1

2

(
λ 0
0 1/λ

)
, (79)

where λ = 1+κ
1−κ

with κ = tanh r0 cos2 θ . This implies that the
output state with zero photons detected is a single-mode
squeezed vacuum state. However, the amount of squeezing is
smaller than the input squeezing.

When the PNRD registers photons, the output state is a
superposition of Fock states followed by a squeezing op-
eration with squeezing factor λ. To determine the heralded
state and the detection probability, we first have to calculate
κ2, μ2, f22, zp, and Ap. Since there is no displacement in the
input, μ2 = 0 and zp = 0. From Eqs. (63), (69), and (78),

κ2 = κ tan θ√
1 − κ2

, f22 = 1

κ
,

and from Eq. (39) we have

Ap = κ tan2 θ

1 − κ2

(
1 κ

κ 1

)
.

When the PNRD registers one photon, the heralded state
is of the form Ŝ(rs)(c0|0〉 + c1|1〉), where rs = 1

2 ln λ. From
Eq. (71) we find c0/c1 = μ2 = 0. Therefore, the heralded
state is a squeezed single-photon state,

|ψ (n = 1)〉 = Ŝ(rs)|1〉. (80)

From Eq. (38), the detection probability is found to be

P(1) = κ2 tan2 θ

cosh r0(1 − κ2)3/2
. (81)

When the PNRD detects two photons, the heralded state
is of the form Ŝ(rs)(c0|0〉 + c1|1〉 + c2|2〉). From Eq. (72) we
find that c1/c2 = 0 and c0/c2 = f ∗

22/
√

2. Taking into account
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FIG. 6. Contour plots of the success probabilities of detecting 1, 2, and 3 photons, respectively, in the optical scheme represented in Fig. 5,
as a function of the input squeezing parameter r0 ∈ [0, 1.15], i.e., in the range 0–10 dB and the beam splitter angle θ ∈ [0, π

2 ]. The behavior
of the even photon detection (n = 2) is qualitatively different from that of the odd photon detection (n = 1, 3). The 3 photon detection is an
order of magnitude smaller than the 1 or 2 photon detection cases. The bottom (dark blue) regions of the contour plots correspond to near-zero
success probability in the parameter space.

the normalization condition |c0|2 + |c2|2 = 1, we find the
heralded state to be

|ψ (n = 2)〉 = Ŝ(rs)

[
1√

1 + 2 κ2
|0〉 +

√
2 κ√

1 + 2 κ2
|2〉
]
, (82)

with measurement probability

P(2) = κ2(1 + 2κ2) tan4 θ

2 cosh r0(1 − κ2)5/2
. (83)

When the PNRD registers three photons, the heralded
state is of the form Ŝ(rs)(c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉). From
Eq. (73) we find that c0 = c2 = 0 and c1/c3 = √

3 f ∗
22/

√
2.

Taking into account the normalization condition |c1|2 +
|c3|2 = 1, we find that the heralded state and the success
probability are

|ψ (n = 3)〉 = Ŝ(rs)

[ √
3√

3 + 2 κ2
|1〉 +

√
2 κ√

3 + 2 κ2
|3〉
]
,

P(3) = κ4(3 + 2κ2) tan6 θ

2 cosh r0(1 − κ2)7/2
. (84)

These results are consistent with those derived using a differ-
ent method [31] and we schematically depict the dependence
of the success probability as a function of the input squeezing
parameter r and the beam splitter angle θ in Fig. 6. We next
consider the case of generation of cat states.

2. Target Schrödinger cat state

The goal of this section is complementary to that of
Sec. V A 1: we want to search for a multimode Gaussian state
and a measurement scheme, to generate Schrödinger cat states
with high fidelity and success probability. The same procedure
can be generalized in a straightforward manner to target other
non-Gaussian states, such as GKP states, which we consider
in the next subsection.

A Schrödinger cat state is a superposition of two coherent
states with opposite phases: |α〉 and |−α〉. Two orthogonal cat
states are of particular interest, the even cat state |cate〉 and the

odd cat state |cato〉, given by

|cate〉 = 1√
2(1 + e−2|α|2 )

(|α〉 + |−α〉),

|cato〉 = 1√
2(1 − e−2|α|2 )

(|α〉 − |−α〉). (85)

The even cat state is a superposition of only even Fock states,
while the odd cat state is a superposition of only odd Fock
states.

When α is small, the even cat state can be well approxi-
mated by c0|0〉 + c2|2〉, an example of an ON state [57]. If α

is large then one needs to introduce a higher Fock state support
to approximate the cat state. However, we find that by squeez-
ing c0|0〉 + c2|2〉 one can obtain a very good approximation to
an even cat state with a larger α; namely, Ŝ(ζ1)(c0|0〉 + c2|2〉)
could be a good approximation to |cate〉. This is due to the
squeezing operator pulling apart the two peaks of the cat state.
Table I shows how well Ŝ(ζ1)(c0|0〉 + c2|2〉) approximates an
even cat state. We see that the fidelity drops from perfect
fidelity to 97% as α varies from 0 to 2.

TABLE I. Target an even cat state by detecting a two-mode
Gaussian state with a PNRD. The even cat state is approximated by
Ŝ(ζ1)(c0|0〉 + c2|2〉). Fmax is the highest fidelity between the cat state
and the approximation, Pmax is the optimal success probability, ζ01

and ζ02 are the squeezing parameters of input squeezed vacuum states
of the two modes, and θ is the parameter of the beam splitter defined
as eθ (â1 â†

2−â†
1 â2 ). We observe that the squeezing requirement on the first

arm is substantially more than that of the second arm. The maximum
success probability decreases with increasing cat state parameter α.

α Fmax ζ1 c0/c2 Pmax ζ01 ζ02 θ

0.25 1.0000 0.0115 27.717 18.12% 1.1587 −0.0136 −1.3965
0.50 1.0000 0.0458 6.9428 15.49% 1.1936 −0.0499 1.2351
0.75 0.9999 0.1025 3.1112 12.87% 1.2447 −0.0982 −1.0927
1.00 0.9999 0.1796 1.7885 11.20% 1.3073 −0.1474 −0.9686
1.25 0.9991 0.2730 1.1932 10.55% 1.3780 −0.1898 0.8606
1.50 0.9958 0.3763 0.8841 10.51% 1.4546 −0.2228 −0.7668
1.75 0.9870 0.4832 0.7082 10.73% 1.5346 −0.2464 −0.6859
2.00 0.9709 0.5884 0.6011 11.01% 1.6150 −0.2626 −0.6170
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The state Ŝ(ζ1)(c0|0〉 + c2|2〉) can be generated by detect-
ing a two-mode Gaussian state with two photons registered in
our general scheme. Let us target a state given by a particular
ζ1 and c0/c2. For simplicity, we assume α is real, so ζ1, c0,
and c2 are also real. By using Eq. (48) we can derive b11

from ζ1: b11 = tanh ζ1. From Eq. (72) we find μ2 = 0 and
f22 = √

2 c0/c2. Therefore, the matrix B can be written as

B =
(

tanh ζ1 κ2 sech ζ1

κ2 sech ζ1 κ2
2

(√
2 c02 − tanh ζ1

)), (86)

where we have defined c02 = c0/c2 and κ2 is an unknown
parameter. The parameter κ2 has to be chosen such that B
corresponds to a physical two-mode Gaussian state; namely,
the singular values of B should be smaller than one, a
condition that is easily derived from Eq. (44). Provided we
have a physical state, the success probability of detecting two
photons in the second mode is

P(2) = (
1 + c2

02

)
κ4

2

√
1 − 2 κ2

2 + (
1 − 2 c2

02

)
κ4

2 . (87)

Note that the success probability is independent of ζ1. This can
be understood as follows. Generating Ŝ(ζ1)(c0|0〉 + c2|2〉) can
be performed in two steps: we first target c0|0〉 + c2|2〉 with
success probability given by Eq. (87), and after the photon
number detection we apply a squeezing gate Ŝ(ζ1). Since the
order of performing photon number detection and applying a
local unitary is irrelevant, we can absorb the local unitary gate
into the circuit without changing the detection probability.
Recall that this fact was highlighted for a general case in
Fig. 3.

There is one free parameter, κ2, in the success probability
of Eq. (87), that can be used to optimize. After the opti-
mization, we substitute κ2 back into Eq. (86) to determine
the optimal input squeezed states and the circuit. We target
even cat states with representative values of α, and calculate
the maximal fidelity Fmax, maximal success probability Pmax,
and input squeezing and circuit parameters, as summarized
in Table I, which shows that high fidelity (>97%) and high
success probability (>10%) can be achieved for α � 2. This
is the best one can achieve by detecting two-mode Gaussian
states to generate an even cat state. The requirement for input
squeezing, 1.1587 < r01 < 1.6150, is on the high side, which
corresponds to squeezing in the range ∼10–14 dB. However,
this range of squeezing is within current technology since
15 dB squeezing has been demonstrated experimentally [58].
If the amount of input squeezing is limited to a certain value,
one either obtains a lower fidelity and/or a lower success
probability. One useful application of squeezed cat states
for suppressing decoherence was demonstrated in Ref. [59].
Using our formalism, one can generate squeezed cat states in
a transparent manner using only off-line squeezing, as alluded
to earlier in Fig. 3.

An odd cat state |cato〉 can be well approximated by a
squeezed single-photon state: Ŝ(ζ1)|1〉 [60]. The fidelity is
greater than 99% for α < 1.2, but quickly drops to 87.8%
when α = 2.0. From Eq. (71) we find that μ2 = 0, indicating
that there is no input displacement. The matrix B can be
written as

B =
(

tanh ζ1 κ2 sech ζ1

κ2 sech ζ1 κ2
2 ( f22 − tanh ζ1)

)
, (88)

TABLE II. Target an odd cat state by detecting a two-mode
Gaussian state with a PNRD. The odd cat state is approximated
by Ŝ(ζ1)(c1|1〉 + c3|3〉). Fmax is the highest fidelity between the cat
state and the approximation, Pmax is the optimal success probability,
ζ01 and ζ02 are the squeezing parameters of input squeezed vacuum
states, and θ is the parameter of the beam splitter (as in the even
cat case). As for the even cat generation, we observe that the
squeezing requirement on the first arm is substantially more than
that of the second arm. However, the maximum success probability
has the opposite behavior and increases with increasing cat state
parameter α.

α Fmax ζ1 c1/c3 Pmax ζ01 ζ02 θ

0.25 1.0000 0.0044 49.636 1.11% 1.3288 −0.0197 1.4053
0.50 1.0000 0.0306 15.507 2.97% 1.3538 −0.0444 1.2813
0.75 1.0000 0.0687 6.9179 5.01% 1.3945 −0.0903 1.1554
1.00 0.9999 0.1213 3.9303 6.32% 1.4442 −0.1414 1.0445
1.25 0.9999 0.1870 2.5664 6.95% 1.4998 −0.1907 0.9468
1.50 0.9995 0.2633 1.8435 7.21% 1.5605 −0.2339 0.8603
1.75 0.9979 0.3467 1.4229 7.35% 1.6242 −0.2692 0.7835
2.00 0.9938 0.4336 1.1620 7.47% 1.6900 −0.2967 0.7153

and the success probability of detecting one photon in the
second mode is

P(1) = κ2
2

√
1 − 2 κ2

2 + (
1 − f 2

22

)
κ4

2 . (89)

It is evident that the success probability P(1) is optimized to
be 25% when f22 = 0 and κ2 = 1/

√
2.

To obtain a better approximation for an odd cat state with
a larger α, we can replace the squeezed single-photon state
by Ŝ(ζ1)(c1|1〉 + c3|3〉). Again, we assume α is real, so ζ1, c1,
and c3 are also real. To get a superposition of Fock states up
to |3〉, one needs to detect three photons in the second mode.
From Eq. (73) we find that μ2 = 0 and f22 = √

2/3 c1/c3.
Therefore, the matrix B can be written as

B =
(

tanh ζ1 κ2 sech ζ1

κ2 sech ζ1 κ2
2 (

√
2/3 c13 − tanh ζ1)

)
, (90)

where we have defined c13 = c1/c3. Similarly, the parameter
κ2 has to be chosen to correspond to a physical two-mode
Gaussian state. Provided this is true, the success probability
of detecting three photons in the second mode is

P(3) = (
1 + c2

13

)
κ6

2

√
1 − 2 κ2

2 +
(

1 − 2

3
c2

13

)
κ4

2 . (91)

The free parameter κ2 is further chosen to optimize the success
probability, after which we substitute it back into Eq. (90) to
determine the optimal input squeezed states and the circuit.
The results are summarized in Table II. We can see that
a higher fidelity is obtained for a given α, at the expense
of a reduced success probability. To compare the generation
of even and odd cat states we plot the maximum success
probability as a function of the cat amplitude α for both the
even and odd cat generation in Fig. 7.
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FIG. 7. Comparison of the maximum success probability for
even and odd cat states as a function of the amplitude α. We find
that when using two-mode Gaussian input states, even cat states (e)
are prepared with a higher success probability than the corresponding
(same amplitude) odd cat state (o).

B. Examples of detecting three-mode pure Gaussian states

We now use our formalism to study the generation of
single-mode non-Gaussian states via detecting two modes of
a pure three-mode Gaussian state. Conjecture 1 implies that
increasing the number of modes should allow us to target a
larger region of state space. In particular, measuring a three-
mode Gaussian state can generate an arbitrary superposition
of Fock states up to |5〉, followed by a Gaussian unitary
operation. This means we can improve the fidelity and success
probability for certain target states produced using the two-
mode circuit. We can also target more complex states, such
as the ON states, GKP-code states, and weak-cubic-phase
states. We focus on searching for the best interferometer, input
states, and measurement schemes that give the highest success
probability and fidelity, for a given target non-Gaussian state.

1. GKP states

The GKP-code states were proposed in Ref. [61] to encode
qubits in CV quantum modes, that would also protect against
small quadrature shifts in phase space. It was recently shown
that the GKP codes can also protect against excitation loss
extremely well [10]. Although numerous methods have been
proposed [62–66], generating optical GKP states remains very
challenging. Here, we use our formalism to conditionally gen-
erate the GKP states. The ideal GKP states are superpositions
of infinitely squeezed vacuum states, which are unphysical
because they require infinite energy. In reality, one replaces
the infinitely squeezed states by finitely squeezed states to
construct approximate GKP states. The two code words that
represent the logical basis states |0̃〉 and |1̃〉 can be written in
the position basis as [61]

ψ0̃ (q) = N0

(π�2)1/4

+∞∑
s=−∞

e−2π�2s2−(q−2s
√

π )2/(2�2 ),

ψ1̃(q) = N1

(π�2)1/4

+∞∑
s=−∞

exp

{
−1

2
π�2(2s + 1)2

− [q − (2s + 1)
√

π ]2

2�2

}
, (92)

FIG. 8. The wave functions for the GKP state ψ0̃ (q) (blue solid
line) from Eq. (92) and the approximate four-photon GKP state
from Eq. (93) (red dashed line) with ζ1 = 0.294, c0 = 0.669, c2 =
−0.216, and c4 = 0.711. The fidelity between these two states is
81.8%. The GKP Gaussian envelope is also shown (black dotted
line).

where � is the standard deviation and characterizes the
amount of squeezing of the code words, and N0 and N1 are
normalization factors.

It is evident that the wave functions in Eq. (92) for the code
words |0̃〉 and |1̃〉 are even; therefore they should be expanded
using only even Fock states. As an example, we approximate
|ψ0̃〉 by

Ŝ(ζ1)(c0|0〉 + c2|2〉 + c4|4〉), (93)

which is in the form of Eq. (55). Specifically, we choose
� = 0.35, corresponding to 9.12 dB of squeezing. The high-
est fidelity between |ψ0̃〉 and the state (93) is 81.8% and
is achieved when ζ1 = 0.294, c0 = 0.669, c2 = −0.216, and
c4 = 0.711. The wave functions for the GKP state ψ0̃ (q) from
Eq. (92) and the approximate state in Eq. (93) are shown in
Fig. 8. We generate the state (93) by measuring two modes
of a three-mode Gaussian state with measurement outcome
n̄ = (2, 2). The best success probability we obtained was
approximately 1.1%. The three input squeezing parameters
are (r1, r2, r3) = (1.33803, 0.101223, 0.0994552) and the
unitary corresponding to the interferometer is given by

U =
⎛
⎝ 0 −0.704006i −0.710195

0.707107 u22 u33

−0.707107 u22 u33

⎞
⎠,

u22 = 0.355097 − 0.355098i,

u33 = 0.352003 + 0.352002i. (94)

One can perform a square decomposition [56] of this inter-
ferometer as depicted in Fig. 9 using a PYTHON library [67].
The decomposition is made into two operators; the first is a
beam splitter preceded by a phase rotation in the first mode,
and the second only a phase rotation. The first operator has
two parameters, a transmissivity t = cos2 θ and a rotation
angle φ that together induce the following unitary on the mode
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FIG. 9. Square decomposition of the unitary operator given in
Eq. (94). The first operator depicts a beam splitter of transmission
t preceded by a phase rotation by φ in the first mode alone. The
operator denoted by only a phase angle is the standard phase rotation
gate.

operators:

U (t, φ) =
(

eiφ cos θ − sin θ

eiφ sin θ cos θ

)
. (95)

The operator depicted with only a phase angle φ induces the
transformation â → eiφ â.

2. Weak-cubic-phase states

The cubic-phase state is essential in CV quantum computa-
tion [18]; e.g., it can be used as a resource state to implement
a cubic-phase gate through gate teleportation [61]. A recent
proposal has also extended this notion to a two-mode gate that
is non-Gaussian [68]. A cubic-phase state with a large phase
parameter is usually difficult to generate; however, it can be
generated by concatenating a sequence of weak-cubic-phase
gates. Here, we focus on conditionally generating weak-cubic-
phase states. In the weak-coupling-strength limit, the cubic-
phase states can be well approximated by superpositions of
Fock states up to |3〉 [57]. Specifically, we approximate the
weak-cubic-phase state by [42]

|χa〉 = 1√
1 + 5|a|2/2

[
|0〉 + ia

√
3

2
|1〉 + ia|3〉

]
, (96)

where a ∈ R. A machine-learning method was used to search
for a circuit and input states that can generate |χa〉 with
nearly perfect fidelity and high probability [42] (1%–2%).
We have shown that |χa〉 can be generated with fidelity one
by measuring two modes of a three-mode Gaussian state,
and use our formalism to optimize the success probability as
well. As compared to Ref. [42], we obtained a higher success
probability of 4%–6%, as shown in Fig. 10. We also plot the
maximum required squeezing and the average squeezing per
mode in Fig. 11.

VI. GENERAL FORMALISM FOR MULTIMODE
OUTPUT STATES

We now derive a general formalism for generating multi-
mode non-Gaussian states by detecting subsystems of multi-
mode Gaussian states using PNRDs, as depicted in Fig. 12.
It is a natural generalization of the formalism for generating
single-mode non-Gaussian states. Most derivations carry over
from the single-mode case. The multimode formalism allows

FIG. 10. Graph showing the probability of producing the state
|χa〉 in Eq. (96) with 100% fidelity. A three-mode circuit is used
and the state is conditioned on detecting a photon number pattern
n̄ = (1, 2).

us to produce more complex non-Gaussian states, e.g., NOON
states.

A. Multimode output Wigner function

Suppose we detect the last (N − M ) modes using
PNRDs and obtain a photon number pattern n̄ =
(nM+1, nM+2, . . . , nN ); namely, the projected state in the
detected modes is |n̄〉 = |nM+1, nM+2, . . . , nN 〉. By using
Eqs. (19) and (21) we find the unnormalized density matrix
of the heralded modes to be

ρ̃M = P0

π2N

∫
d2αM

∫
d2βM

∫
d2ᾱ

∫
d2β̄ |βM〉〈αM |

× 〈n̄|β̄〉〈ᾱ|n̄〉 exp

(
−|γ̃|2

2
+ 1

2
γ̃�R̃γ̃ + γ̃�ỹ

)
, (97)

where we have defined two M-component vectors αM =
(α1, . . . , αM )�, βM = (β1, . . . , βM )�, and denoted the co-
herent states as |αM〉 = |α1, . . . , αM〉, |βM〉 = |β1, . . . , βM〉,
|ᾱ〉 = |αM+1, . . . , αN 〉, and |β̄〉 = |βM+1, . . . , βN 〉. By using
the Fock-state expansion of a coherent state from Eq. (25),

FIG. 11. The squeezing required to produce the state |χa〉. The
top curve depicts the maximum squeezing that is required in any
mode and the bottom curve provides the average squeezing per mode
used to prepare the state. We observe that a higher success probability
is achieved as compared to Ref. [42] at the cost of higher squeezing
requirements.
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FIG. 12. Conditional generation of multimode non-Gaussian
states. Here, we consider a general multimode Gaussian state ρ

(N )
G

of N modes. (N − M ) modes are measured using PNRDs, giving
values nk (k = M + 1, . . . , N) and resulting in a conditional output
state ρM

out in the remaining M modes.

it is straightforward to find

〈n̄|β̄〉〈ᾱ|n̄〉 = 1

n̄!
e−(|ᾱ|2+|β̄|2 )/2

N∏
k=M+1

(α∗
k βk )nk . (98)

Similarly to the single-mode output case, we define a
2N-component vector γ by permuting the components of γ̃

such that γ = (β∗
M,αM , β̄

∗
, ᾱ)�. β∗

M and αM are collected to
form a 2M-component vector γh = (β∗

M,αM )�, and β̄
∗

and
ᾱ are collected to form a 2(N − M )-component vector γd =
(β̄

∗
, ᾱ)�. γh and γd correspond to the heralded and detected

modes, respectively. The vectors γ and γ̃ are related by a
permutation matrix P, namely, γ = Pγ̃ . Correspondingly, we
can define R and y as R = PR̃P�, y = Pỹ. The matrix R can
be partitioned as

R =
(

Rhh Rhd

Rdh Rdd

)
, (99)

where Rhh is now a 2M × 2M symmetric matrix correspond-
ing to the heralded modes, Rdd is a (2N − 2M ) × (2N − 2M )
symmetric matrix corresponding to the detected modes, and
Rhd is a 2M × (2N − 2M ) matrix that represents the con-
nections between the heralded modes and detected modes.
Since R is symmetric, Rdh = R�

hd . Similarly, the vector y is
partitioned into (yh, yd )�, where yh has 2M components and
corresponds to the heralded modes, and yd has 2(N − M )
components and corresponds to the detected modes. The three
terms in the exponential in Eq. (97) become

|γ̃|2 = |γh|2 + |γd |2,
γ̃�ỹ = γ�

h yh + γ�
d yd ,

γ̃�R̃γ̃ = γ�
h Rhhγh + γ�

d Rddγd + 2 γ�
h Rhdγd . (100)

Substituting Eqs. (98) and (100) into Eq. (97), we find that the
unnormalized density matrix can be written as

ρ̃M = 1

π2M

∫
d2αM

∫
d2βM |βM〉〈αM |F (αM ,βM ), (101)

where

F (αM,βM ) = P0

π2(N−M )n̄!
exp(L2)

×
∫

d2ᾱ

∫
d2β̄

N∏
k=M+1

(α∗
k βk )nk exp(L3)

= P0

n̄!
exp(L2)

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp(L3)

∣∣∣∣
γd =0

,

(102)

where the expressions for L2 and L3 are in the same forms as
the ones given in Eq. (31). In the second equality of Eq. (102),
we have performed integration by parts over ᾱ and β̄, the
detail of which is given by Eq. (A5) in Appendix A.

From the unnormalized density matrix ρ̃M one can calcu-
late the unnormalized characteristic function χ (β; ρ̃M ) and the
unnormalized Wigner function W (α; ρ̃M ). By substituting ρ̃M

into Eq. (10) we have

χ (β; ρ̃M ) = e−|β|2/2Tr(e−β∗�âρ̃Meβâ†
)

= 1

π2M

∫
d2αM

∫
d2βM e−|β|2/2e−β∗�βM+β�β∗

M

×〈αM |βM〉F (αM,βM ), (103)

where we have used the fact that the coherent state is the
eigenstate of the annihilation operator, â|α〉 = α|α〉. Substi-
tuting χ (β; ρ̃M ) into Eq. (9) we find the unnormalized Wigner
function as

W (α; ρ̃M )

= 1

π4M

∫
d2αM

∫
d2βM 〈αM |βM〉

×F (αM,βM )
∫

d2β e−|β|2/2eiβ∗�(βM−α)+iβ�(α∗
M−α∗ )

= 2M

π3M
e−2|α|2

∫
d2αM

∫
d2βM F (αM,βM )

× e−|αM |2/2−|βM |2/2−α∗�
M βM+2(α�α∗

M+α∗�βM ), (104)

where in the last equality we have performed the
integration over β and used the relation 〈αM |βM〉 =
e−|αM |2/2−|βM |2/2+α∗�

M βM . By substituting the function
F (αM,βM ) of Eq. (102) into Eq. (104), interchanging
the order of partial derivatives and integration, and then
performing the integration over αM and βM (which is a
Gaussian integration), we arrive at the final expression for
the unnormalized Wigner function (see Appendix I for more
details) given by

W (α; ρ̃M ) = 2MP0

πM n̄!
exp(−v†L6v)

× exp
{

1
2 y�

h (I2 − X2MRhh)−1X2Myh

}
√

det(I2M + X2MRhh)

×
N∏

k=M+1

(
∂2

∂αk∂β∗
k

)nk
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× exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

,

L6 = (I2M + X2MRhh)−1(I2M − X2MRhh), (105)

where

v = (α∗,α)� − (I2M − X2MRhh)−1X2Myh,

A = Rdd − Rdh(I2M + X2MRhh)−1X2MRhd ,

z = Y + 2 Rdh(I2M + X2MRhh)−1v,

Y = yd + Rdh(I2M − X2MRhh)−1X2Myh. (106)

Similarly to the single-mode output case, the unnormalized
Wigner function in Eq. (105) is also factorized into two parts:
the first part is a Gaussian function of v; the second part
involving the partial derivatives is a polynomial in v. The
maximal order of the polynomial depends on the detected
photon number {nk}. If nk = 0 for all k, namely, all PNRDs
register no photons, then the polynomial is a constant. The
output state is then a Gaussian state in the first M modes.
By comparing Eq. (105) with Eq. (15), we can identify the
displacement of the heralded Gaussian state as

d = (I2M − X2MRhh)−1X2Myh (107)

and the covariance matrix as

V(c)
M (n̄ = 0) = 1

2 (I2M + X2MRhh)(I2M − X2MRhh)−1. (108)

To generate a non-Gaussian state, the polynomial should be
nontrivial. Two conditions need to be satisfied to guarantee a
non-Gaussian state at the output : (1) the PNRDs must register
photons; (2) the matrix Rhd �= 0, which means the heralded
modes must have some connections with the detected modes
when viewed through the R matrix.

B. Measurement probability

The measurement probability P(n̄) can be obtained by
tracing the unnormalized density operator (101), which cor-
responds to integrating the arguments (α) of the unnormalized
Wigner function in Eq. (105), and we get

P(n̄) = Tr(ρ̃M ) =
∫

d2αW (α; ρ̃M ). (109)

It is evident from Eq. (105) that the integration over α is a
Gaussian integration and can be performed in a direct manner.
Using the relation∫

d2α exp(−v†L6v) = πM

2M
√

det L6

with L6 a 2M × 2M symmetric matrix, we obtain the mea-
surement probability

P(n̄) = P0

n̄!

1√
det(I2M − X2MRhh)

× exp

{
1

2
y�

h (I2M − X2MRhh)−1X2Myh

}

×
N∏

k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Apγd + z�
p γd

)∣∣∣∣
γd =0

,

(110)

FIG. 13. Conditional generation of multimode non-Gaussian
states. Here, we consider a general pure multimode Gaussian state
that can be decomposed into squeezed displaced states, |ζ , α〉 =
Ŝ(ζ )D̂(α)|0〉, followed by an interferometer U(θ̄ ). The last (N − M )
modes are measured using PNRDs, giving values nk (k = M +
1, . . . , N) and resulting in a conditional output state |ψM

out〉 in the
remaining modes.

where

Ap = Rdd + Rdh(I2M − X2MRhh)−1X2MRhd ,

zp = yd + Rdh(I2M − X2MRhh)−1X2Myh. (111)

VII. MULTIMODE OUTPUT STATES BY MEASURING
PURE GAUSSIAN STATES

We consider the case when (N − M ) modes of an N-mode
pure Gaussian state are measured using PNRDs, as depicted
in Fig. 13. The heralded non-Gaussian state is a superposition
of a finite number of Fock states, acted on by a multimode
Gaussian unitary.

A. Output Wigner function

For multimode pure Gaussian states, the matrix R̃ can be
written in a block-diagonal form: R̃ = B ⊕ B∗. It is conve-
nient to partition the matrix B as

B =
(

Bhh Bhd

Bdh Bdd

)
, (112)

where Bhh is an M × M symmetric matrix corresponding to
the heralded modes, Bdd is an (N − M ) × (N − M ) symmet-
ric matrix corresponding to the detected modes, and Bhd is an
M × (N − M ) matrix that represents the connections between
the detected modes and heralded mode. Then the matrices
Rhh, Rhd , and Rdd can be written as Rhh = Bhh ⊕ B∗

hh, Rhd =
Bhd ⊕ B∗

hd , and Rdd = Bdd ⊕ B∗
dd .

If all PNRDs detect no photons, it is evident from Eq. (105)
that the Wigner function is a Gaussian function, so the output
state is an M-mode Gaussian state. The covariance matrix of
the heralded Gaussian state is

V(c)
M (n̄ = 0) = 1

2

(
V11 V12

V∗
12 V22

)
,

V11 = (IM − B∗
hhBhh)−1(IM + B∗

hhBhh),

V12 = 2 (IM − B∗
hhBhh)−1B∗

hh,

V22 = (IM − BhhB∗
hh)−1(IM + BhhB∗

hh). (113)

052301-17



SU, MYERS, AND SABAPATHY PHYSICAL REVIEW A 100, 052301 (2019)

It can be shown that the determinant of the covariance matrix
V(c)

M (n̄ = 0) is one, indicating the output state is pure. Note
that the matrix (IM − B∗

hhBhh) is Hermitian and we further
require that it is positive definite to correspond to a valid
quantum state. If we define a Hermitian matrix T2M as

T2M =
(√

IM − B∗
hhBhh 0

0
√

IM − BhhB∗
hh

)
(114)

and a vector w = (δ∗, δ)� as

w = T2M (I2M + X2MRhh)−1v, (115)

then the Wigner function becomes

W (α; ρM ) ∝ e−w†w

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

× exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (116)

where z = Y + 2 RdhT−1
2Mw and A is given by Eq. (106).

The transformation in Eq. (115) is a symplectic transfor-
mation. To see that we define a matrix S2M as v = S2Mw, and
write it in terms of the matrix Bhh as

S2M = (I2M + X2MRhh)T−1
2M

=
(

(IM − B∗
hhBhh)−1/2 B∗

hh(IM − BhhB∗
hh)−1/2

Bhh(IM − B∗
hhBhh)−1/2 (IM − BhhB∗

hh)−1/2

)
.

(117)

According to the Autonne-Takagi factorization (see Corollary
4.4.4 in [69]), the complex symmetric matrix Bhh can be
decomposed as Bhh = K�K�, where K is a unitary ma-
trix and � is a complex-diagonal matrix defined as � =
diag(λ1, λ2, . . . , λM ). By substituting the decomposition of
Bhh into Eq. (117), we find S2M = K2MSsqK†

2M , where

Ssq =
(

(IM − �∗�)−1/2 �∗(IM − ��∗)−1/2

�(IM − �∗�)−1/2 (IM − ��∗)−1/2

)
,

K2M =
(

K∗ 0
0 K

)
. (118)

It is evident that K2M represents a transformation of a linear
interferometer and Ssq represents M independent single-mode
squeezing transformations. The matrix Ssq transforms the
annihilation operators {âk} as

âk → 1√
1 − |λk|2

âk + λk√
1 − |λk|2

â†
k . (119)

Therefore, the squeezing amplitude of the kth mode is ζk =
rkeiϕk , with rk = tanh−1(|λk|) and ϕk = Arg(λk ) + π . Collect-
ing the above facts together, we have that the multimode
output state can be written in the form

|ψ〉 = ÛM

∞∑
=0

c|〉; (120)

ÛM is an M-mode Gaussian gate and {c} are Fock-basis co-
efficients with  = (�1, �2, . . . , �M )� the Fock-basis elements
of the M-mode system.

B. Coefficients {c} in the Fock-state superposition

The coefficients of the superposition of Fock states remain
to be determined. Let us suppose that the position-space wave
function of an M-mode quantum state |ψ〉 is ψ (q), where q =
(q1, q2, . . . , qM )� is a real vector with M components. The
wave function ψ (q) can be expanded in the Fock basis as

ψ (q) =
∞∑

�1=0

∞∑
�2=0

· · ·
∞∑

�M=0

cψ(q), (121)

where  = (�1, �2, . . . , �M )�, c is the coefficient, and ψ(q)
is the wave function of the Fock state |〉 given by

ψ(q) = 1

πM/4

M∏
k=1

1√
2�k �k!

e−q2
k /2H�k (qk ), (122)

with H�k (qk ) the corresponding Hermite polynomial. From
Eq. (12), the M-mode Wigner function is

W (p, q) = 1

πM

∫
dy e−2ip�y〈q − y|ψ〉〈ψ |q + y〉

= 1

πM

∞∑
=0

∞∑
m=0

cc∗
m Wm(p, q), (123)

where we have introduced the notation
∑∞

=0 =∑∞
�1=0 · · ·∑∞

�M=0 to simplify the expression and Wm(p, q) is
defined as

Wm(p, q) =
∫

dy e−2ip�y〈q − y|ψ〉〈ψm|q + y〉

= e−q�q−p� p
M∏

k=1

1√
�k! mk!

H�kmk (2αk, 2α∗
k ).

By using the orthogonality relation of Ito’s 2D-Hermite poly-
nomials Eq. (60), we can write down the coefficient c as an
overlap integral of the Wigner function and Ito’s 2D-Hermite
polynomials,

c c∗
m =

∫
d2α√
 ! m!

W (α)e−2|α|2
M∏

k=1

H�kmk (2αk, 2α∗
k ), (124)

where  ! = �1! �2! · · · �N !, m ! = m1! m2! · · · mN !, and we
have used the convention that W (p, q) = 2MW (p, q).

If the quantum state |ψ〉 is acted upon by a Gaussian
unitary, according to the transformation rule of the Wigner
function and from Eq. (123) we see that the coefficients {cn}
are unchanged while the arguments of the Wigner function are
changed. This change can be taken into account by replacing
α with δ, where δ contains the information of the Gaussian
unitary. Now by substituting the Wigner function of Eq. (116)
into Eq. (124) and performing the integration over δ, we find
(see Appendix H for more details) that the coefficients {c}
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satisfy

c c∗
m = 1√

 ! m!

∫
d2δW (α)e−2|δ|2

M∏
k=1

H�kmk (2δk, 2δ∗
k )

= NπM

4M
√

 !m!

M∏
k=1

(
∂�k

∂t�k
k

∂mk

∂smk
k

) N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

× exp

[
1

2
(u�, γ�

d ) M
(

u
γd

)
+ Y �γd

]∣∣∣∣
γd =0,u=0

,

(125)

where N is the normalization factor of the Wigner function,
u = t ⊕ s with t = (t1, t2, . . . , tM ) and s = (s1, s2, . . . , sM ),
and the matrix M is defined as

M =

⎛
⎜⎜⎝

0 0 0 C1

0 0 C∗
1 0

0 C†
1 C2 0

C�
1 0 0 C∗

2

⎞
⎟⎟⎠ (126)

with C1 and C2 given by

C1 = (IM − B∗
hhBhh)−1/2B∗

hd ,

C2 = Bdd + Bdh(IM − B∗
hhBhh)−1B∗

hhBhd . (127)

VIII. EXAMPLES OF GENERATING MULTIMODE
NON-GAUSSIAN STATES

We now consider several examples of generating mul-
timode non-Gaussian states via measuring pure multimode
Gaussian states. We focus on the W state and NOON states.

A. W state

Let us measure one mode (the N th mode without loss of
generality) of an N-mode pure Gaussian state and postselect
the measurement outcome with one photon detected. From
Eq. (116) it is clear that the heralded state is a superposition
of Fock states with the total photon number to be at most one,
followed by a Gaussian operation. For simplicity, we choose
Gaussian states such that the Gaussian operation is an identity
in Eq. (120); namely, the heralded state is only a superposition
of Fock states. To simplify the notation, we define |0〉 as the
vacuum state, and |1k〉 as the state with one photon in the kth
mode and zero photons in other modes. The heralded state can
thus be written as

c0|0〉 +
N−1∑
k=1

c1k |1k〉, (128)

where c0 and c1k are coefficients that are determined by
Eq. (125). To guarantee that the heralded state is in the form of
Eq. (128), we choose yh = 0 and Bhh = 0; then C1 = B∗

hd =
(b1N , b2N , . . . , bN−1,N )† is a vector with (N − 1) components
and C2 = Bdd = bNN is a complex number.

It is straightforward to calculate the coefficients from
Eq. (125) and we have

|c0|2 ∝ |yN |2, c0c∗
1k

∝ yN bkN , c1�
c∗

1k
∝ b∗

�N bkN , (129)

where we have used the fact that Y = yd = (y∗
N , yN )�. It is

therefore evident that

c0 ∝ yN , c1k ∝ b∗
kN . (130)

Since yN and bkN are independent free parameters, they can
be chosen arbitrarily, provided that the corresponding de-
tected Gaussian state is physical. This guarantees that one
can generate an arbitrary superposition state of |0〉 and |1k〉.
Of particular interest are the states which do not contain
the vacuum state. They can be obtained by setting yN = 0;
namely, the mean of the detected N-mode Gaussian state is
zero. From Eq. (130), the normalized state can be written as

|ψ〉 = 1√
Nw

N−1∑
k=1

b∗
kN |1k〉, (131)

where Nw = ∑N−1
k=1 |bkN |2.

From the above constraints, the matrix B can be written as

B =
(

0 Bhd

Bdh bNN

)
, (132)

from which we can calculate the matrix Ap by using Eq. (111),

Ap =
(

Bdd BdhB∗
hd

BdhB∗
hd B∗

dd

)
=
(

bNN Nw

Nw b∗
NN

)
. (133)

Substituting Eq. (133) into Eq. (110) and taking into account
the fact that the mean of the detected Gaussian state is zero,
the success probability is

P(1) = Nw

√
(1 − Nw )2 − |bNN |2, (134)

where we have used the result

P0 =
√

det(I2N − X2N R̃) =
√

det(IN − B∗B)

=
√

(1 − Nw )2 − |bNN |2. (135)

It is evident from Eq. (134) that the maximum success proba-
bility is 1/4 when bNN = 0 and Nw = 1/2.

The input squeezed states and the interferometer that are
used to produce the measured Gaussian states can be extracted
from the matrix B. According to Eq. (44) or the Autonne-
Takagi decomposition [69], r j determines the squeezing pa-
rameter of the input squeezed state at the jth mode and
U represents the interferometer transformation. The unitary
matrix U also diagonalizes B∗B with eigenvalues tanh2 r j .
From the matrix B given by Eq. (132), we find that B∗B has
only two nonzero eigenvalues:

Nw + 1

2
|bNN |2 ± 1

2
|bNN |

√
4Nw + |bNN |2.

This implies that there are two input squeezed states and all
other inputs are vacuum states. Note that when determining
the actual value of r j , there might be a negative sign indicating
the phase of the input squeezed states.

In the case where the success probability is optimal, the
two nonzero eigenvalues of B∗B are the same: tanh2 r1 =
tanh2 r2 = 1/2. This corresponds to r1 = −r2 ≈ −0.88, or
about 7.66 dB of input squeezing. In the special case where
all bkN are the same for k < N , the heralded state is an equal
superposition of all |1k〉, known as the W state. The unitary
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TABLE III. Generating NOON states [Eq. (137)] by detect-
ing multimode Gaussian states using PNRDs. In the header row,
“Modes” represents the number of modes of the initial Gaussian
state, followed by the detection pattern, followed by the success
probability of producing the particular NOON state, and the final
column lists the required amount of squeezing in the input modes.

State Modes Detection Probability Req. Sq.

|η2〉 4 (1, 1) 1/16 = 6.25% 7.66 dB
|η3〉 5 (1, 1, 1) 48/3125 ≈ 1.54% 8.96 dB
|η4〉 6 (1, 1, 1, 1) 4/729 ≈ 0.55% 9.96 dB

matrix that diagonalizes B when the success probability is
maximum is given by

U5 = 1

2
√

2

⎛
⎜⎜⎜⎜⎝

−1 1 −2 0 −√
2

−1 1 0 −2
√

2
−1 1 0 2

√
2

−1 1 2 0 −√
2

2 2 0 0 0

⎞
⎟⎟⎟⎟⎠ (136)

for N = 5.

B. Generation of NOON states |ηN〉
An important class of two-mode non-Gaussian states is the

NOON states; this class is defined as

|ηN 〉 = 1√
2

(|N0〉 + |0N〉), (137)

with N a positive integer. It has applications both in quantum
metrology and quantum computation, in particular, the error-
correcting bosonic codes [8,9,11]. The NOON state can be
generated by the method of photon subtraction [70]. Here, we
generate NOON states up to N = 4 using our formalism and
optimize the success probability. The results are summarized
in Table III and Fig. 14. Note that the maximal success proba-
bilities are substantially bigger than those found in Ref. [70].

FIG. 14. Success probability versus input squeezing for NOON
state |η2〉 (orange dashed), |η3〉 (blue dotted), and |η4〉 (black solid).
Here, we consider the case where squeezing parameters of the input
squeezed states are the same.

We discuss in detail how to generate the NOON states in the
following subsections.

1. Generation of |η2〉
To generate |η2〉, the PNRDs should register at least two

photons in total. We find that detecting one mode of a three-
mode Gaussian state cannot generate the desired NOON state.
Specifically, one cannot generate an arbitrary state in the
Hilbert space expanded by two-photon Fock bases: |20〉, |02〉,
and |11〉. This issue can be resolved by detecting two modes
of a four-mode Gaussian state and postselecting the photon
measurement pattern n̄ = (1, 1).

Since the target state is a superposition of a finite number of
Fock states, there should be no final displacement or squeez-
ing operator applied to the heralded state. These conditions
can be satisfied by choosing yh = 0 and Bhh = 0. The vector
Y is thus equal to yd = (y∗

3, y∗
4, y3, y4)� and the matrix B

becomes

B =

⎛
⎜⎝

0 0 b13 b14

0 0 b23 b24

b13 b23 b33 b34

b14 b24 b34 b44

⎞
⎟⎠. (138)

From Eq. (125), we can calculate the coefficients of all Fock
basis states up to two photons: |00〉, |10〉, |01〉, |20〉, |02〉, and
|11〉. These coefficients are explicitly given by Eq. (C1) in
Appendix C. It can be shown that any state in the Hilbert
space expanded by the Fock bases up to two photons can
be generated by appropriately tuning the matrix B and vector
yd . In particular, to obtain |η2〉, one requires that c00 = c10 =
c01 = c11 = 0 and c20 = c02. These constraints result in b23 =
±ib13, b24 = ∓ib14, and b34 = y3 = y4 = 0.

The success probability can be calculated from Eq. (110)
by taking into account the above constraints. We find

P(1, 1) = 4 |b13|2|b14|2
√

[(1 − 2 |b13|2)2 − |b33|2]

×
√

[(1 − 2 |b14|2)2 − |b44|2]. (139)

It is evident that the presence of b33 and b44 reduces the
success probability. To maximize the success probability, we
thus assume that b33 = b44 = 0. Under this condition, the
success probability is optimized when |b13| = |b14| = 1/2,
and the maximal success probability is 1/16 = 6.25%. We
want to emphasize that this is the best success probability one
can achieve by measuring four-mode Gaussian states.

One of the possible options for the matrix B to achieve the
maximal success probability is

Bmax
2002 = 1

2

⎛
⎜⎝

0 0 1 1
0 0 −i i
1 −i 0 0
1 i 0 0

⎞
⎟⎠. (140)

The input states and linear interferometer that produce the
detected four-mode Gaussian state are fully determined by
the matrix in Eq. (140). It is found that the input squeezing
parameters in the input modes are r1 = −r2 = r3 = −r4 =
tanh−1(1/2), corresponding to about 7.66 dB of squeezing.
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FIG. 15. Square decomposition [56] of the unitary in Eq. (141).
The gate denoted by the pair (t, φ) denotes a beam splitter with
transmissivity t = cos2 θ preceded by a phase rotation by angle φ

in the first mode alone. The gate denoted by just φ is a single-mode
phase rotation.

The corresponding unitary is

Umax
2002 = 1

2

⎛
⎜⎜⎝

√
2 −√

2 0 0
0 0

√
2eiπ/4 −√

2eiπ/4

1 1 −eiπ/4 −eiπ/4

1 1 eiπ/4 eiπ/4

⎞
⎟⎟⎠. (141)

We provide the square decomposition of the unitary in
Eq. (141) schematically in Fig. 15.

2. Generation of |η3〉
Similarly, generating |η3〉 requires the PNRDs to detect

at least three photons in total. We find that detecting three
photons in two modes of a four-mode Gaussian state cannot
generate the |η3〉. This can be seen from the coefficients of
the Fock basis states up to three photons given by Eqs. (C2)
and (C3) in Appendix C. The coefficients in the subspace with
three photons are not independent. To resolve this issue, we
have to detect three modes of a 5-mode Gaussian state with a
photon measurement pattern n̄ = (1, 1, 1).

Again, we choose yh = 0 and Bhh = 0. The vector Y is
now equal to yd = (y∗

3, y∗
4, y∗

5, y3, y4, y5)� and the matrix B
becomes

B =

⎛
⎜⎜⎜⎝

0 0 b13 b14 b15

0 0 b23 b24 b25

b13 b23 b33 b34 b35

b14 b24 b34 b44 b45

b15 b25 b35 b45 b55

⎞
⎟⎟⎟⎠. (142)

From Eq. (125), we can calculate the coefficients of all
Fock basis states up to 3 photons, which are given by
Eq. (D1) in Appendix D. To obtain |η3〉, one requires that
c30 = c03 and all other coefficients are zero. The above con-
straints imply that b34 = b35 = b45 = y3 = y4 = y5 = 0 and
(b23, b24, b25) = (τ1b13, τ2b14, τ3b15), where the three param-
eters (τ1, τ2, τ3) have solutions

(1, e2iπ/3, e4iπ/3) (143)

and all possible permutations of these three numbers.
We expect that the maximal probability is obtained when

b33 = b44 = b55 = 0. Under this condition, all solutions in

Eq. (143) lead to the same success probability expression,

P(1, 1, 1)

=12 |b13|2|b14|2|b15|2[1−2 (|b13|2+|b14|2+|b15|2)

+3 |b13|2|b14|2+3 |b13|2|b15|2+3 |b14|2|b15|2]. (144)

The success probability is maximized when |b13|2 = |b14|2 =
|b15|2 = 1/5, and the maximal success probability is 48/55 =
1.536%. A representative matrix B that gives the maximal
success probability is

Bmax
3003 = 1√

5

⎛
⎜⎜⎜⎝

0 0 1 1 1
0 0 1 e2iπ/3 e4iπ/3

1 1 0 0 0
1 e2iπ/3 0 0 0
1 e4iπ/3 0 0 0

⎞
⎟⎟⎟⎠. (145)

The input states and linear interferometer that produce the
detected 5-mode Gaussian state are fully determined by the
matrix in Eq. (145). It is found that one of the inputs is vacuum
and other inputs are squeezed vacuum states with the same
squeezing parameter, tanh2 r = 3/5, corresponding to about
8.96 dB of squeezing.

3. Generation of |η4〉
The NOON state |η4〉 has to be generated by detect-

ing four modes of a 6-mode Gaussian state with a pho-
ton measurement pattern n̄ = (1, 1, 1, 1). Again, we choose
yh = 0 and Bhh = 0. The vector Y is now equal to yd =
(y∗

3, y∗
4, y∗

5, y∗
6, y3, y4, y5, y6)� and the matrix B becomes

B =

⎛
⎜⎜⎜⎜⎜⎝

0 0 b13 b14 b15 b16

0 0 b23 b24 b25 b26

b13 b23 b33 b34 b35 b36

b14 b24 b34 b44 b45 b46

b15 b25 b35 b45 b55 b56

b16 b26 b36 b46 b56 b66

⎞
⎟⎟⎟⎟⎟⎠. (146)

From Eq. (125), we can calculate the coefficients of all Fock
basis states up to four photons, which are given by Eqs. (E1)–
(E4) in Appendix E. To obtain |η4〉, one requires that c40 = c04

and all other coefficients are zero. The above constraints imply
that b34 = b35 = b36 = b45 = b46 = b56 = 0, y3 = y4 = y5 =
y6 = 0, and (b23, b24, b25, b26) = (τ1b13, τ2b14, τ3b15, τ4b16),
where the four parameters (τ1, τ2, τ3, τ4) have solutions

(eiπ/4, e3iπ/4, e5iπ/4, e7iπ/4) (147)

and all possible permutations of these four numbers.
We expect that the maximal probability is obtained when

b33 = b44 = b55 = b6 = 0. Under this condition, all possible
solutions given by Eq. (147) lead to the same success proba-
bility expression,

P(1, 1, 1, 1)

= 64 |b13|2|b14|2|b15|2|b16|2[1 − 2 (|b13|2 + |b15|2)]

× [1 − 2 (|b14|2 + |b16|2)]. (148)
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The success probability is maximized when |b13|2 = |b14|2 =
|b15|2 = |b16|2 = 1/6, and the maximal success probability
is 4/39 ≈ 0.55%. A representative matrix B that gives the
maximal success probability is

Bmax
4004 = 1√

6

⎛
⎜⎜⎜⎜⎜⎝

0 0 1 1 1 1
0 0 eiπ/4 e3iπ/4 e5iπ/4 e7iπ/4

1 eiπ/4 0 0 0 0
1 e3iπ/4 0 0 0 0
1 e5iπ/4 0 0 0 0
1 e7iπ/4 0 0 0 0

⎞
⎟⎟⎟⎟⎟⎠.

(149)

The input states and linear interferometer that produce the
detected 6-mode Gaussian state are fully determined by the
matrix in Eq. (149). It is found that two of the inputs are vac-
uum states and other inputs are squeezed vacuum states with
the same squeezing parameter, tanh2 r = 2/3, corresponding
to about 9.96 dB of squeezing.

IX. CONCLUSION

We develop a detailed analytic framework for the study of
probabilistic generation of non-Gaussian states by measuring
multimode Gaussian states via PNR detectors. We derive
explicit expressions for the output Wigner function and the
measurement success probability, which show clearly the
mapping between the properties of the multimode Gaussian
states whose subsystems are being measured and the mea-
surement outcome, and that of the heralded non-Gaussian
output states. The framework unifies many state preparation
schemes, and more importantly, it provides a procedure to
optimize the fidelity and success probability of the target
state.

We demarcate the analysis into single-mode and multi-
mode mode cases and focus on measuring pure Gaussian
states to obtain pure non-Gaussian outputs. For the single-
mode case we consider the generation of GKP states, cat
states, ON states, and weak-cubic-phase states. For the mul-
timode case we consider illustrative examples such as the W
and NOON states. In all the cases, we find that both the fidelity
and success probability are improved as compared to previous
schemes.

The formalism can also deal with the case when the initial
Gaussian state that is being measured is mixed. This is an im-
portant point when one is dealing with realistic experimental
setups. A common noise model is that of photon loss that is
modeled using lossy channels. The Gaussian state that one
obtains just before the photon detection is then mixed. One
way to look at these mixed states is to purify the resulting
Gaussian state and ignore a few modes to obtain the mixed
state.

It is also expected that increasing the number of modes
and choosing a particular photon detection pattern may not
scale favorably with the number of input modes. One possible
way to get around this could be to coarse-grain the output
detection. In this case we would end up in a scenario where

there is a natural trade-off between the fidelity to a given target
state and its success probability.

Our general framework is closely related to a sampling
algorithm called Gaussian BosonSampling (GBS) [50,71],
which is a variant of the famous BosonSampling problem,
as was briefly mentioned earlier. In GBS, one has the same
state preparation scheme; namely, squeezed displaced vac-
uum states are input to a multimode interferometer. Then all
the output modes of the interferometer are detected using
PNR detectors to generate samples of photon detection on
multimode Gaussian states. It is believed that GBS is one
route to demonstrating quantum advantage, and has received
much attention in the quantum optics community, with various
groups around the world pushing experimental boundaries
of the number of modes GBS is executed in. While much
effort has been dedicated to the statistical behavior and its
implications to computational complexity, very little attention
has been diverted to the study of the non-Gaussian states
that are generated from the GBS device when only a few
modes are detected. Our framework proposes the use of these
GBS device for the purpose of non-Gaussian state preparation,
which has been a challenge from an experimental point of
view.

One final application for our framework that we envisage
is to the quantum resource theory of non-Gaussianity [72–75].
In this language, our Gaussian state preparation would fall
under the class of free operations. The only non-Gaussian
resources that we use are those of PNR measurements. Using
this resource, we convert Gaussian to non-Gaussian states.
It would be fruitful to quantify these conversions from the
resource perspective of non-Gaussianity. For example, can
the non-Gaussianity of the output states be quantified by the
parameters of the Gaussian state that is being measured and
the postselected photon detection pattern?

With steady improvements in the optical technology of
PNR detectors [44,45], our framework would be a promising
candidate to generate non-Gaussianity that is essential in
applications such as quantum metrology and quantum com-
puting, in particular, the generation of fault-tolerant error-
correcting codes.
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APPENDIX A: FROM INTEGRATION TO DERIVATIVE

Suppose f (z) is an analytic function in the complex z plane
and e−zz∗

f (z) → 0 when z → ∞. We want to evaluate the
following integral,

In =
∫

dz (z∗)ne−zz∗
f (z). (A1)
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We start from the simplest case where n = 1 and assume that z = x + iy with x and y real numbers. We find

I1 =
∫

dz z∗e−zz∗
f (z) =

∫
dx
∫

dy (x − iy)e−x2−y2
f (z) = −

∫
dx
∫

dy

[(
1

2

∂

∂x
− i

2

∂

∂y

)
e−x2−y2

]
f (z)

= −1

2

∫
dy e−y2

[
e−x2

f (z)

∣∣∣∣
+∞

−∞
−
∫

dx e−x2 ∂

∂x
f (z)

]
+ i

2

∫
dx e−x2

[
e−y2

f (z)

∣∣∣∣
+∞

−∞
−
∫

dy e−y2 ∂

∂y
f (z)

]

=
∫

dx
∫

dy e−x2−y2

[(
1

2

∂

∂x
− i

2

∂

∂y

)
f (z)

]
=
∫

dz e−zz∗ ∂

∂z
f (z). (A2)

By using the relation ∫
dz zme−zz∗ = 0 (A3)

for any positive integer m, we have

I1 =
∫

dz e−zz∗ ∂

∂z
f (z) = ∂

∂z
f (z)

∣∣∣∣
z=0

×
∫

dz e−zz∗ = π
∂

∂z
f (z)

∣∣∣∣
z=0

. (A4)

By repeatedly performing the integration in part, we find

In = π
∂n

∂zn
f (z)

∣∣∣∣
z=0

. (A5)

APPENDIX B: MEASURING SUBSYSTEMS OF THREE-MODE GAUSSIAN STATES

In this Appendix, we explicitly derive the coefficients of the superposition of Fock states when detecting two modes of a
three-mode Gaussian state. Here, we assume that κ2 �= 0 and κ3 �= 0, implying that nmax = nT . When nT = 0, the heralded state
is a Gaussian state, which is not interesting in the perspective of non-Gaussian state generation. So in the following, we will
consider cases where PNRDs register photons.

Detecting one photon. When the total number of detected photons is nT = 1, there are two possible photon number patterns:
(n2, n3) = (1, 0) and (n2, n3) = (0, 1). The heralded state is in the form

D̂(α1)Ŝ(ζ1)(c0|0〉 + c1|1〉), (B1)

where α1 and ζ1 are the displacement and squeezing amplitudes, respectively. For the photon number pattern (n2, n3) = (1, 0),
c0 and c1 satisfy

c0

c1
= μ2; (B2)

for the photon number pattern (n2, n3) = (0, 1), c0 and c1 satisfy

c0

c1
= μ3. (B3)

Detecting two photons. When the total number of detected photons is nT = 2, there are three possible photon number patterns:
(n2, n3) = (1, 1), (n2, n3) = (2, 0), and (n2, n3) = (0, 2). The heralded state is in the form

D̂(α1)Ŝ(ζ1)(c0|0〉 + c1|1〉 + c2|2〉). (B4)

For the photon number pattern (n2, n3) = (1, 1), the coefficients satisfy

c1

c2
= 1√

2
(μ2 + μ3),

c0

c2
= 1√

2
(μ2μ3 + f ∗

23). (B5)

For the photon number pattern (n2, n3) = (2, 0), the coefficients satisfy

c1

c2
=

√
2 μ2,

c0

c2
= 1√

2
(μ2

2 + f ∗
22). (B6)

For the photon number pattern (n2, n3) = (0, 2), the coefficients satisfy

c1

c2
=

√
2 μ3,

c0

c2
= 1√

2

(
μ2

3 + f ∗
33

)
. (B7)
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Detecting three photons. When the total number of detected photons is nT = 3, there are four possible photon number patterns:
(n2, n3) = (2, 1), (n2, n3) = (1, 2), (n2, n3) = (3, 0), and (n2, n3) = (0, 3). The heralded state is in the form

D̂(α1)Ŝ(ζ1)(c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉). (B8)

For the photon number pattern (n2, n3) = (2, 1), the coefficients satisfy

c2

c3
= 1√

3
(2μ2 + μ3),

c1

c3
= 1√

6
[μ2(μ2 + 2μ3) + f ∗

22 + 2 f ∗
23],

c0

c3
= 1√

6
[μ2

2 μ3 + μ3 f ∗
22 + 2 μ2 f ∗

23]. (B9)

For the photon number pattern (n2, n3) = (1, 2), the coefficients satisfy

c2

c3
= 1√

3
(μ2 + 2μ3),

c1

c3
= 1√

6
[μ3(2μ2 + μ3) + f ∗

33 + 2 f ∗
23],

c0

c3
= 1√

6
[μ2 μ2

3 + μ2 f ∗
33 + 2 μ3 f ∗

23]. (B10)

For the photon number pattern (n2, n3) = (3, 0), the coefficients satisfy

c2

c3
=

√
3 μ2,

c1

c3
=
√

3

2

(
μ2

2 + f ∗
22

)
,

c0

c3
= 1√

6
μ2
(
μ2

2 + 3 f ∗
22

)
. (B11)

For the photon number pattern (n2, n3) = (0, 3), the coefficients satisfy

c2

c3
=

√
3 μ3,

c1

c3
=
√

3

2

(
μ2

3 + f ∗
33

)
,

c0

c3
= 1√

6
μ3
(
μ2

3 + 3 f ∗
33

)
. (B12)

Detecting four photons. When the total number of detected photons is nT = 4, there are five possible photon number patterns:
(n2, n3) = (2, 2), (n2, n3) = (3, 1), (n2, n3) = (1, 3), (n2, n3) = (4, 0), and (n2, n3) = (0, 4). The heralded state is in the form

D̂(α1)Ŝ(ζ1)(c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉 + c4|4〉). (B13)

For the photon number pattern (n2, n3) = (2, 2), the coefficients satisfy

c3

c4
= μ2 + μ3,

c2

c4
= 1

2
√

3

(
μ2

2 + 4μ2μ3 + μ2
3 + f ∗

22 + 4 f ∗
23 + f ∗

33

)
,

c1

c4
= 1√

6

[
μ2

2μ3 + μ2μ
2
3 + μ3 f ∗

22 + 2(μ2 + μ3) f ∗
23 + μ2 f ∗

33

]
,

c0

c4
= 1

2
√

6

(
μ2

2μ
2
3 + μ2

3 f ∗
22 + 4μ2μ3 f ∗

23 + μ2
2 f ∗

33 + f ∗
22 f ∗

33 + 2 f ∗2
23

)
. (B14)

For the photon number pattern (n2, n3) = (3, 1), the coefficients satisfy

c3

c4
= 1

2
(3μ2 + μ3),

c2

c4
=

√
3

2

(
μ2

2 + μ2μ3 + f ∗
22 + f ∗

23

)
,

c1

c4
= 1

2
√

6

[
μ3

2 + 3μ2
2μ3 + 3(μ2 + μ3) f ∗

22 + 6μ2 f ∗
23

]
,

c0

c4
= 1

2
√

6

(
μ3

2μ3 + 3μ2μ3 f ∗
22 + 3μ2

2 f ∗
23 + 3 f ∗

22 f ∗
23

)
. (B15)

For the photon number pattern (n2, n3) = (1, 3), the coefficients satisfy

c3

c4
= 1

2
(μ2 + 3μ3),

c2

c4
=

√
3

2

(
μ2μ3 + μ2

3 + f ∗
23 + f ∗

33

)
,

c1

c4
= 1

2
√

6

[
3μ2μ

2
3 + μ3

3 + 3(μ2 + μ3) f ∗
33 + 6μ3 f ∗

23

]
,

c0

c4
= 1

2
√

6

(
μ2μ

3
3 + 3μ2μ3 f ∗

33 + 3μ2
3 f ∗

23 + 3 f ∗
23 f ∗

33

)
. (B16)

For the photon number pattern (n2, n3) = (4, 0), the coefficients satisfy

c3

c4
= 2μ2,

c2

c4
=

√
3
(
μ2

2 + f ∗
22

)
,

c1

c4
=
√

2

3
μ2
(
μ2

2 + 3 f ∗
22

)
,

c0

c4
= 1

2
√

6

(
μ4

2 + 6μ2
2 f ∗

22 + 3 f ∗2
22

)
. (B17)

For the photon number pattern (n2, n3) = (0, 4), the coefficients satisfy

c3

c4
= 2μ3,

c2

c4
=

√
3
(
μ2

3 + f ∗
33

)
,

c1

c4
=
√

2

3
μ3
(
μ2

3 + 3 f ∗
33

)
,

c0

c4
= 1

2
√

6

(
μ4

3 + 6μ2
3 f ∗

33 + 3 f ∗2
33

)
. (B18)
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Detecting five photons. When the total number of detected photons is nT = 5, there are six possible photon number patterns:
(n2, n3) = (3, 2), (n2, n3) = (2, 3), (n2, n3) = (4, 1), (n2, n3) = (1, 4), (n2, n3) = (5, 0), and (n2, n3) = (0, 5). The heralded
state is in the form

D̂(α1)Ŝ(ζ1)(c0|0〉 + c1|1〉 + c2|2〉 + c3|3〉 + c4|4〉 + c5|5〉). (B19)

For the photon number pattern (n2, n3) = (3, 2), the coefficients satisfy

c4

c5
= 1√

5
(3μ2 + 2μ3),

c3

c5
= 1

2
√

5

[(
3μ2

2 + 6μ2μ3 + μ2
3

)+ 3 f ∗
22 + f ∗

33 + 6 f ∗
23

]
,

c2

c5
= 1

2
√

15

[(
μ3

2 + 6μ2
2μ3 + 3μ2μ

2
3

)+ 3
(
μ2 + 2μ3

)
f ∗
22 + 3μ2 f ∗

33 + 6
(
2μ2 + μ3

)
f ∗
23

]
,

c1

c5
= 1

2
√

30

[(
2μ3

2 μ3 + 3μ2
2 μ2

3

)+ 3
(
2μ2μ3 + μ2

3

)
f ∗
22 + 3μ2

2 f ∗
33 + 6

(
μ2

2 + 2μ2μ3
)

f ∗
23 + 6 f ∗

22 f ∗
23 + 3

(
f ∗
22 f ∗

33 + 2 f ∗2
23

)]
,

c0

c5
= 1

2
√

30

[
μ3

2 μ2
3 + 3μ2μ

2
3 f ∗

22 + μ3
2 f ∗

33 + 6μ2
2μ3 f ∗

23 + 6μ3 f ∗
22 f ∗

23 + 3μ2
(

f ∗
22 f ∗

33 + 2 f ∗2
23

)]
. (B20)

APPENDIX C: MEASURING SUBSYSTEMS OF FOUR-MODE GAUSSIAN STATES

In this Appendix, we list the coefficients of a two-mode non-Gaussian state by detecting two modes of a four-mode Gaussian
state.

When the detection event is n̄ = (1, 1), we find

c00 ∝ b∗
34 + y3y4, c10 ∝ b∗

14y3 + b∗
13y4, c01 ∝ b∗

24y3 + b∗
23y4,

c20 ∝
√

2 b∗
13b∗

14, c02 ∝
√

2 b∗
23b∗

24, c11 ∝ b∗
13b∗

24 + b∗
23b∗

14. (C1)

When the detection event is n̄ = (1, 2), we find

c00 ∝ b∗
44y3 + y4(2b∗

34 + y3y4), c10 ∝ 2 b∗
14(b∗

34 + y3y4) + b∗
13

(
b∗

44 + y2
4

)
, c01 ∝ 2 b∗

24(b∗
34 + y3y4) + b∗

23

(
b∗

44 + y2
4

)
,

c20 ∝
√

2 b∗
14(b∗

14y3 + 2 b∗
13y4), c02 ∝

√
2 b∗

24(b∗
24y3 + 2 b∗

23y4), c11 ∝ 2 b∗
14b∗

24y3 + 2(b∗
13b∗

24 + b∗
23b∗

14)y4,

c30 ∝
√

6 b∗
13b∗2

14, c03 ∝
√

6 b∗
23b∗2

24, c21 ∝
√

2 b∗
14(2 b∗

13b∗
24 + b∗

23b∗
14), c12 ∝

√
2 b∗

24(2 b∗
23b∗

14 + b∗
13b∗

24). (C2)

When the detection event is n̄ = (2, 1), we find

c00 ∝ b∗
33y4 + y3(2 b∗

34 + y3y4), c10 ∝ 2 b∗
13(b∗

34 + y3y4) + b∗
14

(
b∗

33 + y2
3

)
, c01 ∝ 2 b∗

23(b∗
34 + y3y4) + b∗

24

(
b∗

33 + y2
3

)
,

c20 ∝
√

2 b∗
13(b∗

13y4 + 2 b∗
14y3), c02 ∝

√
2 b∗

23(b∗
23y4 + 2 b∗

24y3), c11 ∝ 2 b∗
13b∗

23y4 + 2(b∗
23b∗

14 + b∗
13b∗

24)y3,

c30 ∝
√

6 b∗2
13b∗

14, c03 ∝
√

6 b∗2
23b∗

24, c21 ∝
√

2 b∗
13(2 b∗

23b∗
14 + b∗

13b∗
24), c12 ∝

√
2 b∗

23(2 b∗
13b∗

24 + b∗
23b∗

14). (C3)

APPENDIX D: MEASURING SUBSYSTEMS OF FIVE-MODE GAUSSIAN STATES

In this Appendix, we list the coefficients of a two-mode non-Gaussian state by detecting three modes of a five-mode Gaussian
state.

When the detection event is n̄ = (1, 1, 1), we find

c00 ∝ b∗
34y5 + b∗

35y4 + b∗
45y3 + y3y4y5, c10 ∝ (b∗

13b∗
45 + b∗

14b∗
35 + b∗

15b∗
34) + (b∗

13y4y5 + b∗
14y3y5 + b∗

15y3y4),

c01 ∝ (b∗
23b∗

45 + b∗
24b∗

35 + b∗
25b∗

34) + (b∗
23y4y5 + b∗

24y3y5 + b∗
25y3y4), c20 ∝

√
2 (b∗

13b∗
14y5 + b∗

13b∗
15y4 + b∗

14b∗
15y3),

c02 ∝
√

2 (b∗
23b∗

24y5 + b∗
23b∗

25y4 + b∗
24b∗

25y3), c11 ∝ (b∗
13b∗

24 + b∗
23b∗

14)y5 + (b∗
13b∗

25 + b∗
23b∗

15)y4 + (b∗
14b∗

25 + b∗
24b∗

15)y3,

c30 ∝
√

6 b∗
13b∗

14b∗
15, c03 ∝

√
6 b∗

23b∗
24b∗

25, c21 ∝
√

2 (b∗
13b∗

14b∗
25 + b∗

13b∗
15b∗

24 + b∗
14b∗

15b∗
23),

c12 ∝
√

2 (b∗
13b∗

24b∗
25 + b∗

14b∗
23b∗

25 + b∗
15b∗

23b∗
24). (D1)

When the detection event is n̄ = (1, 1, 2), we find that in the zero- and one-photon subspace,

c00 ∝ b∗
34b∗

55 + 2 b∗
35b∗

45 + b∗
34y2

5 + 2 b∗
35y4y5 + 2 b∗

45y3y5 + b∗
55y3y4 + y3y4y2

5,

c10 ∝ (2 b∗
15b∗

45 + b∗
14b∗

55)y3 + (2 b∗
15b∗

35 + b∗
13b∗

55)y4 + 2(b∗
15b∗

34 + b∗
14b∗

35 + b∗
13b∗

45)y5 + 2 b∗
15y3y4y5 + b∗

14y3y2
5 + b∗

13y4y2
5,

c01 ∝ (2 b∗
25b∗

45 + b∗
24b∗

55)y3 + (2 b∗
25b∗

35 + b∗
23b∗

55)y4 + 2(b∗
25b∗

34 + b∗
24b∗

35 + b∗
23b∗

45)y5 + 2 b∗
25y3y4y5 + b∗

24y3y2
5 + b∗

23y4y2
5;

(D2)
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in the two-photon subspace,

c20 ∝
√

2 b∗2
15b∗

34 + b∗
13b∗

14b∗
55 + 2 b∗

15b∗
14b∗

35 + 2 b∗
15b∗

13b∗
45 + b∗2

15y3y4 + b∗
13b∗

14y2
5 + 2 b∗

15b∗
14y3y5 + 2 b∗

15b∗
13y4y5,

c02 ∝
√

2 b∗2
25b∗

34 + b∗
23b∗

24b∗
55 + 2 b∗

25b∗
24b∗

35 + 2 b∗
25b∗

23b∗
45 + b∗2

25y3y4 + b∗
23b∗

24y2
5 + 2 b∗

25b∗
24y3y5 + 2 b∗

25b∗
23y4y5,

c11 ∝ b∗
13(2 b∗

25b∗
45 + b∗

24b∗
55) + b∗

14(2 b∗
25b∗

35 + b∗
23b∗

55) + 2 b∗
15(b∗

24b∗
35 + b∗

23b∗
45 + b∗

25b∗
34) + 2 b∗

15b∗
25y3y4

+ 2(b∗
14b∗

25 + b∗
15b∗

24)y3y5 + 2(b∗
13b∗

25 + b∗
15b∗

23)y4y5 + (b∗
14b∗

23 + b∗
13b∗

24)y2
5; (D3)

in the three photon subspace,

c30 ∝
√

6 b∗
15(2 b∗

13b∗
14y5 + b∗

13b∗
15y4 + b∗

14b∗
15y3), c03 ∝

√
6 b∗

25(2 b∗
23b∗

24y5 + b∗
23b∗

25y4 + b∗
24b∗

25y3),

c21 ∝
√

2 b∗
15(b∗

15b∗
24 + 2 b∗

14b∗
25)y3 + b∗

15(b∗
15b∗

23 + 2 b∗
13b∗

25)y4 + 2(b∗
13b∗

14b∗
25 + b∗

14b∗
15b∗

23 + b∗
13b∗

15b∗
24)y5,

c12 ∝
√

2 b∗
25(b∗

14b∗
25 + 2 b∗

15b∗
24)y3 + b∗

25(b∗
13b∗

25 + 2 b∗
15b∗

23)y4 + 2(b∗
13b∗

24b∗
25 + b∗

14b∗
23b∗

25 + b∗
15b∗

23b∗
24)y5; (D4)

and in the four photon subspace,

c40 ∝ 2
√

6 b∗
13b∗

14b∗2
15, c04 ∝ 2

√
6 b∗

23b∗
24b∗2

25, c31 ∝
√

6 b∗
15(2 b∗

13b∗
14b∗

25 + b∗
13b∗

15b∗
24 + b∗

14b∗
15b∗

23),

c13 ∝
√

6 b∗
25(2 b∗

15b∗
23b∗

24 + b∗
14b∗

23b∗
25 + b∗

13b∗
24b∗

25), c22 ∝ 2
(
b∗

13b∗
14b∗2

25 + 2 b∗
13b∗

15b∗
24b∗

25 + 2 b∗
14b∗

15b∗
23b∗

25 + b∗2
15b∗

23b∗
24

)
.

(D5)

APPENDIX E: MEASURING SUBSYSTEMS OF SIX-MODE GAUSSIAN STATES

In this Appendix, we list the coefficients of a two-mode non-Gaussian state by detecting four modes of a six-mode Gaussian
state.

When the detection event is n̄ = (1, 1, 1, 1), we find that in the zero- and one-photon subspace,

c00 ∝ (b∗
34b∗

56 + b∗
35b∗

46 + b∗
36b∗

45) + b∗
34y5y6 + b∗

35y4y6 + b∗
36y4y5 + b∗

45y3y6 + b∗
46y3y5 + b∗

56y3y4 + y3y4y5y6,

c10 ∝ (b∗
14b∗

56 + b∗
15b∗

46 + b∗
16b∗

45)y3 + (b∗
13b∗

56 + b∗
15b∗

36 + b∗
16b∗

35)y4 + (b∗
13b∗

46 + b∗
14b∗

36 + b∗
16b∗

34)y5

+ (b∗
13b∗

45 + b∗
14b∗

35 + b∗
15b∗

34)y6 + b∗
13y4y5y6 + b∗

14y3y5y6 + b∗
15y3y4y6 + b∗

16y3y4y5,

c01 ∝ (b∗
24b∗

56 + b∗
25b∗

46 + b∗
26b∗

45)y3 + (b∗
23b∗

56 + b∗
25b∗

36 + b∗
26b∗

35)y4 + (b∗
23b∗

46 + b∗
24b∗

36 + b∗
26b∗

34)y5

+ (b∗
23b∗

45 + b∗
24b∗

35 + b∗
25b∗

34)y6 + b∗
23y4y5y6 + b∗

24y3y5y6 + b∗
25y3y4y6 + b∗

26y3y4y5; (E1)

in the two-photon subspace,

c20 ∝
√

2 [(b∗
13b∗

14b∗
56 + b∗

13b∗
15b∗

46 + b∗
13b∗

16b∗
45 + b∗

14b∗
15b∗

36 + b∗
14b∗

16b∗
35 + b∗

15b∗
16b∗

34)

+ (b∗
13b∗

14y5y6 + b∗
13b∗

15y4y6 + b∗
13b∗

16y4y5 + b∗
14b∗

15y3y6 + b∗
14b∗

16y3y5 + b∗
15b∗

16y3y4)],

c02 ∝
√

2 [(b∗
23b∗

24b∗
56 + b∗

23b∗
25b∗

46 + b∗
23b∗

26b∗
45 + b∗

24b∗
25b∗

36 + b∗
24b∗

26b∗
35 + b∗

25b∗
26b∗

34)

+ (b∗
23b∗

24y5y6 + b∗
23b∗

25y4y6 + b∗
23b∗

26y4y5 + b∗
24b∗

25y3y6 + b∗
24b∗

26y3y5 + b∗
25b∗

26y3y4)],

c11 ∝ b∗
13(b∗

24b∗
56 + b∗

25b∗
46 + b∗

26b∗
45) + b∗

14(b∗
23b∗

56 + b∗
25b∗

36 + b∗
26b∗

35) + b∗
15(b∗

23b∗
46 + b∗

24b∗
36 + b∗

26b∗
34)

+ b∗
16(b∗

23b∗
45 + b∗

24b∗
35 + b∗

25b∗
34) + b∗

13(b∗
24y5y6 + b∗

25y4y6 + b∗
26y4y5) + b∗

14(b∗
23y5y6 + b∗

25y3y6 + b∗
26y3y5)

+ b∗
15(b∗

23y4y6 + b∗
24y3y6 + b∗

26y3y4) + b∗
16(b∗

23y4y5 + b∗
24y3y5 + b∗

25y3y4); (E2)

in the three-photon subspace,

c30 ∝
√

6 (b∗
14b∗

15b∗
16y3 + b∗

13b∗
15b∗

16y4 + b∗
13b∗

14b∗
16y5 + b∗

13b∗
14b∗

15y6),

c03 ∝
√

6 (b∗
24b∗

25b∗
26y3 + b∗

23b∗
25b∗

26y4 + b∗
23b∗

24b∗
26y5 + b∗

23b∗
24b∗

25y6),

c21 ∝
√

2 [(b∗
14b∗

15b∗
26 + b∗

14b∗
16b∗

25 + b∗
15b∗

16b∗
24)y3 + (b∗

13b∗
15b∗

26 + b∗
13b∗

16b∗
25 + b∗

15b∗
16b∗

23)y4

+ (b∗
13b∗

14b∗
26 + b∗

13b∗
16b∗

24 + b∗
14b∗

16b∗
23)y5 + (b∗

13b∗
14b∗

25 + b∗
13b∗

15b∗
24 + b∗

14b∗
15b∗

23)y6],

c12 ∝
√

2 [(b∗
14b∗

25b∗
26 + +b∗

15b∗
24b∗

26 + b∗
16b∗

24b∗
25)y3 + (b∗

13b∗
25b∗

26 + b∗
15b∗

23b∗
26 + b∗

16b∗
23b∗

25)y4

+ (b∗
13b∗

24b∗
26 + b∗

14b∗
23b∗

26 + b∗
16b∗

23b∗
24)y5 + (b∗

13b∗
24b∗

25 + b∗
14b∗

23b∗
25 + b∗

15b∗
23b∗

24)y6]; (E3)

and in the four-photon subspace,

c40 ∝ 2
√

6 b∗
13b∗

14b∗
15b∗

16, c04 ∝ 2
√

6 b∗
23b∗

24b∗
25b∗

26,

c31 ∝
√

6 (b∗
13b∗

14b∗
15b∗

26 + b∗
13b∗

14b∗
16b∗

25 + b∗
13b∗

15b∗
16b∗

24 + b∗
14b∗

15b∗
16b∗

23),
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c13 ∝
√

6 (b∗
13b∗

24b∗
25b∗

26 + b∗
14b∗

23b∗
25b∗

26 + b∗
15b∗

23b∗
24b∗

26 + b∗
16b∗

23b∗
24b∗

25),

c22 ∝ 2 (b∗
13b∗

14b∗
25b∗

26 + b∗
13b∗

15b∗
24b∗

26 + b∗
13b∗

16b∗
24b∗

25 + b∗
14b∗

15b∗
23b∗

26 + b∗
14b∗

16b∗
23b∗

25 + b∗
15b∗

16b∗
23b∗

24). (E4)

APPENDIX F: DERIVATION OF EQ. (59)

In this Appendix, we explain how to express the Wigner function in terms of the Ito’s 2D-Hermite polynomials; in particular,
we derive Eq. (59) in detail. The 2D-Hermite polynomials are defined as [52]

Hmn(z, z∗) = ∂m

∂tm
1

∂n

∂t n
2

e−t1t2+zt1+z∗t2

∣∣∣∣
t1=t2=0

, (F1)

where z is a complex number.
Equation (57) shows that the wave function of a Fock state |n〉 is related to the Hermite polynomial Hn(q). The generating

function of Hermite polynomials is

∞∑
n=0

Hn(q)

n!
t n = e−t2+2qt , (F2)

so we have

Hn(q) = dn

dtn
e−t2+2qt

∣∣∣∣
t=0

. (F3)

Therefore, the wave function of the Fock state |n〉 can be written as

ψn(q) = 1

π1/4
√

2n n!
e−q2/2 dn

dtn
e−t2+2qt

∣∣∣∣
t=0

. (F4)

By substituting Eqs. (57) and (F4) into Eq. (59), we can calculate Wmn(p, q) straightforwardly:

Wmn(p, q) = 1√
π

√
2n+m n! m!

∫
dy e−2ipy exp

{
− 1

2
[(q − y)2 + (q + y)2]

}
Hm(q − y)Hn(q + y)

= 1√
π

√
2n+m n! m!

∂m

∂tm
1

∂n

∂t n
2

e−t2
1 −t2

2

∫
dy e−2ipye−q2−y2+2(q−y)t1+2(q+y)t2

∣∣∣∣
t1=t2=0

= 1√
π

√
2n+m n! m!

∂m

∂tm
1

∂n

∂t n
2

e−t2
1 −t2

2 +2(t1+t2 )q−q2
∫

dy e−y2−2(t1−t2 )y−2ipy

∣∣∣∣
t1=t2=0

= 1√
2n+m n! m!

e−q2−p2 ∂m

∂tm
1

∂n

∂t n
2

e−2t1t2+2(t1+t2 )q+2i(t1−t2 )p

∣∣∣∣
t1=t2=0

= 1√
n! m!

e−q2−p2 ∂m

∂tm
1

∂n

∂t n
2

e−t1t2+
√

2(q+ip)t1+
√

2(q−ip)t2

∣∣∣∣
t1=t2=0

= 1√
n! m!

e−q2−p2 ∂m

∂tm
1

∂n

∂t n
2

e−t1t2+2αt1+2α∗t2

∣∣∣∣
t1=t2=0

= 1√
n! m!

e−q2−p2
Hmn(2α, 2α∗), (F5)

where we have defined α = (q + ip)/
√

2.

APPENDIX G: DERIVATION OF EQ. (62)

To clarify the calculation, we rewrite the Wigner function (53) as

W (α; ρ1) = N1 e−2|δ|2
N∏

k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (G1)

where N1 is a normalization factor and

z = Y + 2√
1 − |b11|2

Rdhw, w =
(

δ∗
δ

)
=
√

1 − |b11|2 (I2 + X2Rhh)−1

[(
α∗
α

)
− (I2 − X2Rhh)−1X2yh

]
. (G2)
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The Fock-state coefficients now can be written as

cmc∗
n = 1√

m!n!

∫
d2δ W (α; ρ1)H∗

mn(2δ, 2δ∗)e−2|δ|2

= N1√
m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)∫
d2δ exp

(
2√

1 − |b11|2
w�Rhdγd

)
H∗

mn(2δ, 2δ∗)e−4|δ|2
∣∣∣∣
γd =0

= N1√
m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)
∂m

∂tm
1

∂n

∂sn
1

e−t1s1

×
∫

d2δ exp

(
2√

1 − |b11|2
w�Rhdγd + 2 δ∗t1 + 2 δs1

)
e−4|δ|2

∣∣∣∣
γd =0, t1=s1=0

= N1√
m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)
∂m

∂tm
1

∂n

∂sn
1

e−t1s1

×
∫

d2δ exp

[
2 w�

(
t + 1√

1 − |b11|2
Rhdγd

)]
e−2 w�X2w

∣∣∣∣
γd =0, t1=s1=0

, (G3)

where in the last equality we have defined a vector t = (t1, s1)�. The integration over δ is a Gaussian integration and can be
integrated straightforwardly. We have

cmc∗
n = π N1

4
√

m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)
∂m

∂tm
1

∂n

∂sn
1

e−t1s1

× exp

[
1

2

(
t� + 1√

1 − |b11|2
γ�

d Rdh

)
X2

(
t + 1√

1 − |b11|2
Rhdγd

)]∣∣∣∣
γd =0, t1=s1=0

= π N1

4
√

m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)

× ∂m

∂tm
1

∂n

∂sn
1

exp

[
1

2(1 − |b11|2)
γ�

d RdhX2Rhdγd + 1√
1 − |b11|2

γ�
d RdhX2t

]∣∣∣∣
γd =0, t1=s1=0

= π N1

4
√

m!n!

N∏
k=2

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Cγd + Y �γd

)⎛⎝ N∑
j=2

κ∗
j α j

⎞
⎠

m(
N∑

i=2

κiβ
∗
i

)n∣∣∣∣
γd =0

, (G4)

where in the last equality we have used the relation

1√
1 − |b11|2

γ�
d Rdh =

⎛
⎝ N∑

i=2

κiβ
∗
i ,

N∑
j=2

κ∗
j α j

⎞
⎠

�

(G5)

and defined a matrix C as

C = A + 1

(1 − |b11|2)
RdhX2Rhd = Rdd + 1

(1 − |b11|2)
RdhX2Rhd − Rdh(I2 + X2Rhh)−1X2Rhd

= Rdd + 1

(1 − |b11|2)
Rdh

(
b∗

11 0
0 b11

)
Rhd . (G6)

APPENDIX H: DERIVATION OF EQ. (125)

We rewrite the Wigner function (116) as

W (α; ρM ) = N e−2|δ|2
N∏

k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (H1)

where N is a normalization factor and

z = Y + 2 RdhT−1
2Mw, w =

(
δ∗

δ

)
= T2M (I2M + X2MRhh)−1

[(
α∗
α

)
− (I2M − X2MRhh)−1X2Myh

]
. (H2)
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The Fock-state coefficients now can be written as

c c∗
m = 1√

 ! m!

∫
d2δW (α; ρM )e−2|δ|2

M∏
k=1

H�kmk (2δk, 2δ∗
k )

= N√
!m!

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)∫
d2δ exp

(
2 w�T−�

2M Rhdγd

) M∏
k=1

H�kmk (2δk, 2δ∗
k )e−4|δ|2

∣∣∣∣
γd =0

= N√
!m!

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)( M∏
k=1

∂�k

∂t�k
k

∂mk

∂smk
k

)
e−t�s

×
∫

d2δ exp

[
2 w�

(
u + T−�

2M Rhdγd

)]
e−2 w�X2Mw

∣∣∣∣
γd =0, u=0

, (H3)

where in the last equality we have defined a vector u = (t1, . . . , tM , s1, . . . , sM )�. The integration over δ is a Gaussian integration
and can be integrated straightforwardly. We have

c c∗
m = πM N

4M
√

!m!

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)( M∏
k=1

∂�k

∂t�k
k

∂mk

∂smk
k

)
e−t�s

× exp

[
1

2

(
u� + γ�

d RdhT−1
2M

)
X2M

(
u + T−�

2M Rhdγd

)]∣∣∣∣
γd =0, u=0

= πM N
4M

√
!m!

N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + Y �γd

)

×
(

M∏
k=1

∂�k

∂t�k
k

∂mk

∂smk
k

)
exp

(
u�X2MT−�

2M Rhdγd + 1

2
γ�

d RdhT−1
2MX2MT−�

2M Rhdγd

)∣∣∣∣
γd =0, u=0

= πMN
4M

√
 !m!

M∏
k=1

(
∂�k

∂t�k
k

∂mk

∂smk
k

) N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

[
1

2

(
u�, γ�

d

)
M
(

u
γd

)
+ Y �γd

]∣∣∣∣
γd =0,u=0

, (H4)

where we have defined a matrix M as

M =
⎛
⎝ 0 X2MT−�

2M Rhd

RdhT−1
2MX2M A + 1

2 RdhT−1
2MX2MT−�

2M Rhd

⎞
⎠ ≡

⎛
⎜⎜⎝

0 0 0 C1

0 0 C∗
1 0

0 C†
1 C2 0

C�
1 0 0 C∗

2

⎞
⎟⎟⎠, (H5)

with C1 and C2 given by

C1 = (IM − B∗
hhBhh)−1/2B∗

hd , C2 = Bdd + Bdh(IM − B∗
hhBhh)−1B∗

hhBhd . (H6)

APPENDIX I: DERIVATION OF WIGNER FUNCTION

In this Appendix, we provide details of deriving the Wigner function for the multimode output case, namely, to derive
Eq. (105) from Eq. (104). The single-mode output case can be obtained by setting M = 1. To perform the integration over
αM and βM , we extract the part that is only relevant to αM and βM in Eq. (104), which is basically a Gaussian function. If we
define v1 = yh + Rhdγd and v2 = 2(α∗,α)�, the exponential of the integrand becomes

−|γh|2 + 1

2
γ�

h Rhhγh − α∗�
M βM + 2 (α�α∗

M + α∗�βM ) + γ�
h yh + γ�

h Rhdγd

= −1

2

(
γ�

h , γ†
h

)(−Rhh I2M

I2M X2M

)(
γh
γ∗

h

)
+ (

γ�
h , γ†

h

)(v1

v2

)

= −1

2
��

h

(−Rhh I2M

I2M X2M

)
�h + 1

2

(
v�

1 , v�
2

)(−Rhh I2M

I2M X2M

)−1(
v1

v2

)

= −1

2
��

h

(−Rhh I2M

I2M X2M

)
�h + 1

2

(
v�

1 , v�
2

)( −(Rhh + X2M )−1 (I2M + X2MRhh)−1

(I2M + RhhX2M )−1 X2M − X2M (I2M + X2MRhh)−1

)(
v1

v2

)
, (I1)
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where we have introduced

�h =
(

γh
γ∗

h

)
−
(−Rhh I2M

I2M X2M

)−1(
v1

v2

)
. (I2)

According to the Gaussian integration formula, the integration over αM and βM gives

π2M

[
det

(−Rhh I2M

I2M X2M

)]−1/2

exp

{
1

2

(
v�

1 , v�
2

)( −(Rhh + X2M )−1 (I2M + X2MRhh)−1

(I2M + RhhX2M )−1 X2M − X2M (I2M + X2MRhh)−1

)(
v1

v2

)}
. (I3)

1

2

(
v�

1 , v�
2

)( −(Rhh + X2M )−1 (I2M + X2MRhh)−1

(I2M + RhhX2M )−1 X2M − X2M (I2M + X2MRhh)−1

)(
v1

v2

)

= −1

2
v�

1 (Rhh + X2M )−1v1 + 1

2
v�

1 (I2M + X2MRhh)−1v2 + 1

2
v�

2 (I2M + RhhX2M )−1v1

+ 1

2
v�

2 [X2M − X2M (I2M + X2MRhh)−1]v2

= −1

2
γ�

d Rdh(Rhh + X2M )−1Rhdγd − γ�
d Rdh[(Rhh + X2M )−1yh − (I2M + X2MRhh)−1v2]

− 1

2
v�

2 [X2M (I2M + XRhh)−1 − X2M]v2 + v�
2 (I2M + RhhX2M )−1yh − 1

2
y�

h (Rhh + X2M )−1yh.

= −1

2
γ�

d Rdh(I2M + X2MRhh)−1X2MRhdγd + γ�
d Rdh(I2M + X2MRhh)−1

(
v2 − X2Myh

)
− 1

2
v�

2 [X2M (I2M + X2MRhh)−1 − X2M]v2 + v�
2 (I2M + RhhX2M )−1yh − 1

2
y�

h (I2M + X2MRhh)−1X2Myh. (I4)

Now the unnormalized Wigner function can be written as

W (α; ρ̃M ) = 2MP0

πM n̄!

[
det

(−Rhh I2M

I2M X2M

)]−1/2

exp

{
− 1

2
y�

h (I2M + X2MRhh)−1X2Myh

}

× exp

{
− 1

2
v�

2

[
X2M (I2M + X2MRhh)−1 − X2M/2

]
v2 + v�

2 (I2M + RhhX2M )−1yh

}

×
N∏

k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (I5)

where we have defined

A = Rdd − Rdh(I2M + X2MRhh)−1X2MRhd , z = yd − Rdh(I2M + X2MRhh)−1X2Myh + Rdh(I2M + X2MRhh)−1v2.

The Wigner function can be further simplified. It is observed that

(I2M + X2MRhh)−1 − I2M/2 = 1
2 (I2M + X2MRhh)−1(I2M − X2MRhh), (I6)

and therefore

− 1
2v�

2 [X2M (I2M + X2MRhh)−1 − X2M/2]v2 + v�
2 (I2M + RhhX2M )−1yh

= − 1
4v�

2 X2M (I2M + X2MRhh)−1(I2M − X2MRhh)v2 + 1
2v�

2 (I2M + RhhX2M )−1yh + 1
2 y�

h (I2M + X2MRhh)−1v2

= − 1
4 [v2 − 2(I2M − X2MRhh)−1X2Myh]�X2M (I2M + X2MRhh)−1(I2M − X2MRhh)[v2 − 2(I2M − X2MRhh)−1X2Myh]

+ y�
h (I2M − X2MRhh)−1(I2M + X2MRhh)−1X2Myh

= −v�X2M (I2M + X2MRhh)−1(I2M − X2MRhh)v + y�
h (I2M − X2MRhh)−1(I2M + X2MRhh)−1Xyh, (I7)

where we have defined

v = 1

2
v2 − (I2M − X2MRhh)−1X2Myh =

(
α∗
α

)
− (I2M − X2MRhh)−1X2Myh. (I8)

By using the Schur’s determinant identity, we find

det

(−Rhh I2M

I2M X2M

)
= det(X2M ) det(−Rhh − X2M ) = det(I2M + X2MRhh). (I9)

052301-30



CONVERSION OF GAUSSIAN STATES TO NON-GAUSSIAN … PHYSICAL REVIEW A 100, 052301 (2019)

Therefore, the unnormalized Wigner function can now be simplified as

W (α; ρ̃M ) = 2MP0

πM n̄!
[det(I2M + X2MRhh)]−1/2 exp

{
1

2
y�

h (I2 − X2MRhh)−1X2Myh

}

× exp
{−v�X2M (I2M + X2MRhh)−1(I2M − X2MRhh)v

} N∏
k=M+1

(
∂2

∂αk∂β∗
k

)nk

exp

(
1

2
γ�

d Aγd + z�γd

)∣∣∣∣
γd =0

, (I10)

where

A = Rdd − Rdh(I2M + X2MRhh)−1X2MRhd ,

z = yd + Rdh(I2M − X2MRhh)−1X2Myh + 2 Rdh(I2M + X2MRhh)−1v,

v =
(

α∗
α

)
− (I2M − X2MRhh)−1X2Myh. (I11)
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