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Dual to the anomalous weak-value effect of photon-polarization separation
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The quantum Cheshire cat (QCC) thought experiment proposes that a quantum object’s property (e.g.,
polarization, spin, etc.) can be separated from its physical body. This conclusion arose from an argument that
interprets a zero weak value (WV) of polarization as no polarization. We show that this argument is incomplete
in the sense that a zero WV reading could equally be interpreted as linear polarization. Nevertheless, through a
generalization of the QCC, we complete their argument by excluding the possibility of linear polarization as a
consistent interpretation. We go further and introduce the dual of the generalized QCC. The dual QCC exhibits
an intriguing effect, where a horizontally polarized interferometer with just one arm can give rise to interference
which is vertically polarized. The interference appears to arise as the result of the phase difference between
the physical arm and a phantom arm. This peculiar effect arises from the interplay between the preselected
and postselected states, which characterize WVs. The QCC has not yet been unambiguously experimentally
demonstrated. The QCC dual offers an alternative pathway to experimental realization.
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I. INTRODUCTION

The conventional view of measurement in quantum me-
chanics is that it is a destructive process that irrevocably
projects the system into an eigenstate of the observed variable.
Weak measurements provide a formal nondestructive measure-
ment scheme by weakly coupling the system to an ancilla
and performing a measurement (projection) on the ancilla
in some appropriate basis [1–5]. Operationally, the ancilla is
a measurement device with a pointer; the interaction of the
system and the ancilla shifts the pointer state proportional
to the magnitude of the observed variable. As the ancilla
interacts only very weakly with the system, the state can
evolve without appreciable disturbance.

Weak values seek to represent the observables of interme-
diate states, as the system evolves from a preselection to a
postselection state. It is a unique consequence of quantum
mechanics that one may choose both preselection and postse-
lection states, which distinguishes it from classical mechanics,
where the choice of the initial state defines the final state,
or vice versa. This idea is more generally explored in the
two-state vector formalism [6]. By judicious postselection,
weak values (WVs) have been used to amplify small signals
[7–24], provide direct determination of quantum states and
geometric phases via the complex nature of WVs [25–32],
and give conditioned averages associated with observables
[33–35]. In an intriguing proposal Aharonov et al. [1] showed
that WVs can give rise to a situation where the position of
a photon exists in one arm of an interferometer while its
polarization exists in the other arm. The effect was given the
name quantum Cheshire cat, which alludes to Lewis Carroll’s
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Cheshire cat, whose grin (polarization) could exist without its
body (photon).

The search for dualities has been a fruitful path to insights
and novel phenomena in physics, e.g., the wave-particle dual-
ity, electromagnetic duality, the Aharonov-Casher effect [36]
and its dual [37,38], and many more. Here we first generalize
the quantum Cheshire cat (QCC) with elliptical polarizations,
and then we introduce the dual of the QCC and discuss its
behavior. There has been a discussion on the physical interpre-
tation of WVs since its inception (see [39–43] and references
therein). We take the approach that a WV represents a physical
property of the quantum system being measured, in the same
spirit as the original QCC.

II. WEAK VALUES

If we precisely know the position of a quantum particle, we
have no information about its speed. However, we may place
weak detectors all around the particle to deduce its average
speed by measuring the time it took to reach the detectors.
We may also ask, What is the speed of the particle to reach
a subset of locations as detected by a subensemble of the
detectors? The answer to this question is a WV.

Prior to measurement the preselected state |ψi〉 and pointer
state |mi〉 are uncoupled. In the weak measurement scheme,
the interaction Hamiltonian between the system and pointer is

Ĥint = g(t )ÔP̂, (1)

which couples the system’s observable Ô to the pointer mo-
mentum P̂. The interaction with the pointer occurs for a
short time, outside of which the coupling constant g is zero,
so that the evolutionary operator is Û = exp(− i

h̄

∫
Ĥintdt ) =

exp(− i
h̄ gÔP̂). After the interaction with the pointer, the sys-

tem undergoes a projective measurement where only a subset
of the measured states are chosen. Labeling this postselected
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state |ψ f 〉, the final pointer state is (h̄ = 1)

|m f 〉 = 〈ψ f | exp(−igÔP̂)|ψi〉|mi〉

≈ 〈ψ f |ψi〉
(

1 − ig
〈ψ f |Ô|ψi〉
〈ψ f |ψi〉 P̂

)
|mi〉

≈ 〈ψ f |ψi〉 exp(−ig〈Ô〉wP̂)|mi〉, (2)

where

〈Ô〉w ≡ 〈ψ f |Ô|ψi〉
〈ψ f |ψi〉 (3)

is known as the WV of Ô.
The pointer momentum P̂ is conjugate to the pointer

position X̂ . Let us now write the initial pointer state in the
position basis, |mi〉 = ∫

dx|x〉ϕ(x), where ϕ(x) ≡ 〈x|mi〉 and
is assumed to be real. The final pointer state in the position
basis then is

|m f 〉 ≈ 〈ψ f |ψi〉 exp(−ig〈Ô〉wP̂)
∫

dx|x〉ϕ(x)

= 〈ψ f |ψi〉
∫

dx|x〉ϕ(x − g〈Ô〉w ), (4)

where we have used the fact that P̂ acts as a translation
operator that shifts the pointer state in the conjugate x basis by
g〈Ô〉w. If the pointer states were the positions of a needle on a
measuring device, the interaction of the measurement device
with the system will shift the position of the needle by a dis-
tance proportional to 〈Ô〉w, thereby giving us a measurement
of observable Ô.

III. GENERALIZED QUANTUM CHESHIRE CAT

The QCC is an interferometer experiment with preselec-
tion, postselection, and weak detectors. We generalize the pre-
selection state of the QCC with a phase differential between
the arms of the interferometer,

|�i〉 = (eiθ |A〉 + |B〉)|H〉/
√

2, (5)

where |A〉(|B〉) represents a state located in arm A (B) of
the interferometer, and |H〉(|V 〉) is horizontal (vertical) po-
larization. The phase differential can be implemented with a
phase shifter (PS1) in one of the arms as shown in Fig. 1. The
original QCC preselection state is a special case of Eq. (5),
where θ = π/2.

The QCC postselection state is

|� f 〉 = (|A〉|H〉 + |B〉|V 〉)/
√

2. (6)

The projectors in the QCC experiment measure the presence
of photons in arms A and B,

Â = |A〉〈A|(|L〉〈L| + |R〉〈R|), (7)

B̂ = |B〉〈B|(|L〉〈L| + |R〉〈R|), (8)

and the polarization in arms A and B,

σ̂A = |A〉〈A|(|L〉〈L| − |R〉〈R|), (9)

σ̂B = |B〉〈B|(|L〉〈L| − |R〉〈R|), (10)

FIG. 1. A schematic of the generalized QCC, where a phase
shifter (PS1) introduces a controllable phase difference eiθ between
the two arms. A half-wave plate (HWP), phase shifter (PS2), beam
splitter (BS2), and polarizing beam splitter (PBS) are used for
postselection. To project the pointer onto the momentum basis, a
Fourier lens (FL) is used to Fourier transform the light beam so that
each pixel on the camera corresponds to a transverse momentum. To
project the pointer onto the position basis, remove the FL, and each
pixel corresponds to a transverse displacement. Detectors σ̂A and Â
are placed at location D1, and σ̂B and B̂ at location D2.

where

|L〉 ≡ (|H〉 + eiφ |V 〉)/
√

2, (11)

|R〉 ≡ (|H〉 − eiφ |V 〉)/
√

2 (12)

are left-elliptical and right-elliptical polarization states. In
comparison to the original QCC experiment, we have gen-
eralized the basis states to elliptical polarization states with
the phase parameter φ. The original QCC circular-polarization
basis is a special case of Eqs. (11) and (12), where φ = π/2.

Â (B̂) detects whether there is a photon in arm A (B). σ̂A de-
tects the polarization of the photon in arm A. The eigenvalues
1 and–1 correspond to eigenstates |L〉|A〉 ≡ |L, A〉 and |R, A〉,
which are states of left-elliptical and right-elliptical polarized
photons in arm A, respectively, whereas the eigenvalue 0 cor-
responds to the degenerate subspace spanned by eigenstates
|L, B〉 and |R, B〉, which are states of photons in arm B. σ̂B is
similarly defined.

Using Eq. (3), the WVs measured by these operators are

〈Â〉w = 〈ÂL̂〉w + 〈ÂR̂〉w = 1, (13)

〈B̂〉w = 〈B̂L̂〉w + 〈B̂R̂〉w = 0, (14)

and

〈σ̂A〉w = 〈ÂL̂〉w − 〈ÂR̂〉w = 0, (15)

〈σ̂B〉w = 〈B̂L̂〉w − 〈B̂R̂〉w = ei(φ−θ ), (16)
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where

L̂ = |L〉〈L|(|A〉〈A| + |B〉〈B|), (17)

R̂ = |R〉〈R|(|A〉〈A| + |B〉〈B|). (18)

Note that 〈ÂL̂〉w = 〈ÂR̂〉w = 1/2 and 〈B̂L̂〉w = −〈B̂R̂〉w =
ei(φ−θ )/2. For θ = φ = π/2 we retrieve the original QCC
result, which the QCC authors interpret as the photon existing
in arm A while its left-circular polarization is detected in arm
B. The generalized QCC generalizes this to the detection of
elliptical polarization in arm B. It shows that the polarization
is determined by the phase difference between the interferom-
eter arms. Specifically, let us rotate the polarization basis of
σ̂B so that φ = θ . In this basis 〈σ̂B〉w = 1. Generalizing the
QCC, we interpret this to mean that arm B has an elliptical
polarization that is dependent on the phase difference between
the interferometer arms.

A. Interpretation

The WV, defined relative to a given observable and a pair
of pre- and postselected states [Eq. (3)], is formally unam-
biguous as it lies within the standard quantum-mechanical
framework. It is the interpretation of the WV that is con-
troversial. The reason for this is that traditionally quantum
mechanics assigns properties to systems only upon projective
measurements. Projective measurements, however, necessar-
ily alter the quantum system’s state; weak measurements seek
to understand system properties in a nondestructive way.

Currently, interpretations of the WV can be categorized
into three camps:

(1) WVs are numbers stemming from perturbation theory
that have no relation to system properties [44].

(2) WVs are pre- and postselected ensemble averages
(conditional expectation values) but do not represent genuine
system properties [42].

(3) WVs partially represent local properties of the system
for a given pair pre- and postselected in a retrodictive manner
[45].

The QCC argument would fall in the third interpretative
category. As such, we will adopt the interpretation that WVs
do represent, at least partially, local properties of the system.

In the QCC it is implicitly assumed that 〈σ̂A〉w = 0 corre-
sponds to no polarization detected in arm A, which was not
completely justified in the original paper. Let us review what
occurs in a weak measurement. In a weak measurement, a
measurement device weakly couples to the degree of freedom
that one wishes to measure, e.g., a particle’s polarization.
After the interaction with the weak measurement device, one
destructively measures the state of the system. If the final state
of the system corresponds to some predefined postselected
state, then one records the reading on the weak measurement
device; otherwise, one ignores the reading.

Now if one wishes to interpret a reading on the measure-
ment device as a measure of a property of the system, the
interpretation of this value should be independent of the pre-
and postselected states. Most notably, if one chooses the post-
selected state to be the same as the preselected state, then the
WV is simply the expectation value, i.e., expectation values
are a subset of weak values. The interpretation of the reading

on the measurement device should be consistent with the
interpretation of the reading for the expectation value. Specif-
ically, suppose we have a circular-polarization and a linear-
polarization detector, σ̂C

A and σ̂ L
A . If 〈σ̂C

A 〉w = 〈ψi|σ̂C
A |ψi〉w =

1 and –1, this should be interpreted to mean that the particle
is left- and right-circular polarized, respectively. Similarly,
〈σ L

A 〉w = 〈ψi|σ̂ L
A |ψi〉w = 1 and –1 should be interpreted to

mean that the particle is horizontally and vertically polarized,
respectively. Now, when 〈σ̂C

A 〉w = 0 this should be interpreted
as no circular polarization, not necessarily no polarization,
as claimed in the original QCC paper. The reason for this is
illustrated when |ψi〉 = (|H〉 + i|V 〉)|A〉/√2: here 〈σ̂C

A 〉w = 0
but 〈σ̂ L

A 〉w = 1. In this case, the only consistent interpretation
is that the particle is horizontally polarized. Building on this
insight, we use the generalized QCC to complete the original
QCC argument in a consistent manner.

Consider the case when φ − θ = π/2: 〈σ̂A〉w = 0 and
〈σ̂B〉w = i. For both operators, the WV is zero, as read by the
expected value of the pointer, i.e., Re〈σ̂A〉w = Re〈σ̂B〉w = 0 (it
is only the real component of WVs that shifts the pointer state
[5]). Let us now rotate the basis of the polarization detector
so that φ = θ : 〈σ̂A〉w = 0 and 〈σ̂B〉w = 1. Now in arm B,
the measured WV is no longer 0; in comparison, the WV
of polarization in arm A is still 0. In fact, it does not matter
how we rotate the basis of the polarization operator, Re〈σ̂A〉w
will always be 0, whereas Re〈σ̂B〉w = cos(φ − θ ) is in general
nonzero.

Let us compare this with reading for the expectation value
for a known polarized particle in arm B: |ψi〉 = (|H〉 +
eiθ ′ |V 〉)|B〉/√2. The average reading on the measurement
device is 〈σ̂B〉 = cos(φ − θ ′), which exactly corresponds to
the weak-value reading Re〈σ̂B〉w. In other words, a zero WV
reading in the polarization pointer for arm B is polarization
basis dependent, whereas for arm A the zero WV is basis
independent. As 〈σ̂A〉w always vanishes no matter which po-
larization basis we measure, the generalized QCC supports the
idea that 〈σ̂A〉w = 0 should be interpreted as no polarization.
This interpretation is also consistent with the expectation
value, where there is no polarization only if 〈ψi|σ̂A|ψi〉w =
0 ∀φ; otherwise there is polarization.

There is another degree of freedom that we have not
discussed, which is the choice of the spatial coordinate axes.
Including this degree of freedom, the detector polarization
basis is

|L〉 ≡ (cos χ |H〉 + eiφ sin χ |V 〉)/
√

2, (19)

|R〉 ≡ (sin χ |H〉 − eiφ cos χ |V 〉)/
√

2, (20)

where χ is the coordinate axes angle of rotation. This leads to

〈σ̂A〉w = 0, (21)

〈σ̂B〉w = 2 cos χ sin χei(φ−θ ). (22)

For χ = 0 or π/2, 〈σ̂B〉w = 0. To determine whether this
zero value is an artefact of the coordinate choice, one should
rotate the coordinate axes of the polarization detectors. Note
that to vary χ one can simply rotate the birefringent crystal
that implements the polarization detector, whereas to vary φ

one would need a different crystal with different refractive
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properties (Sec. III C). If 〈σ̂B〉w is no longer zero after rotating
the polarization detector, then one should attribute the zero
reading to the choice of coordinate. This is consistent with
the expectation value, which in arbitrary coordinate rotation
is 〈ψi|σ̂B|ψi〉w = 2 cos χ sin χ cos(φ − θ ′). For the rest of this
paper, we will use coordinates where χ = π/4.

B. Probability of detection

If there is no polarization in arm A, then a polarization
detector should not interact with the system and therefore
does not disturb it in any way. In contrast, the detection of
polarization would necessarily disturb the system, affecting
the probability of detection. Without interaction the proba-
bility of detection is the overlap between the preselected and
postselected states; projected onto pointer basis q this is

P = |〈ψ f |ψi〉|2|〈q|mi〉|2. (23)

In general, the probability of detection after interaction with
the detector is

Pε = |〈q|〈ψ f |Û |mi〉|ψi〉|2, (24)

where Û = exp(− i
h̄ gÔP̂).

To first order in g this gives [46]

Pε

P − 1 = 2g

h̄
(Re〈Ô〉wIm〈P̂〉w + Im〈Ô〉wRe〈P̂〉w ), (25)

where

〈P̂〉w = 〈q|P̂|mi〉
〈q|mi〉 . (26)

〈P̂〉w is the momentum WV of the pointer, which is dependent
on the choice of basis. In Sec. III C we give specific examples.

Consider again the case 〈σ̂A〉w = 0 and 〈σ̂B〉w = i. From
Eq. (25), we see no disturbance in the probability of detection
in 〈σ̂A〉w = 0, Pε = P , whereas for 〈σ̂B〉w = i, there is a
change in the probability of detection given by

Pε

P − 1 = 2g

h̄
Re〈P̂〉w. (27)

In other words, the σ̂B operator disturbs the probability of
detection by an amount proportional to the momentum WV
of the pointer.

In fact, this is true no matter what elliptical basis we
choose to measure the polarization in. As 〈σ̂A〉w = 0 always
vanishes, the probability of detection is indistinguishable from
no measurement, whereas 〈σ̂B〉w = ei(φ−θ ) will always disturb
the probability of detection (for 〈P̂〉w 	= 0). As σ̂A does not
disturb the probability of detection and does not shift the
polarization pointer, we identify 〈σ̂A〉w = 0 as corresponding
to no polarization.

The interpretation that 〈σ̂A〉w = 0 corresponds to no polar-
ization rests on the epistemic assumptions that WVs corre-
spond to physical properties of a system and that these values
are consistent with standard expectation values. Therefore,
our interpretation is only as valid as the strength of these
assumptions, which belong to the wider interpretive issue of
WVs in general. However, adopting these assumptions has
allowed us to extend the analysis of the QCC in a consistent
manner.

C. Implementation

As a gedanken experiment, the authors of the QCC con-
sidered an interferometer setup with a series of optical ele-
ments and detectors for postselection, as laid out in Fig. 1.
Postselection is achieved with a half-wave plate (HWP), phase
shifter (PS2), beam splitter (BS2), and polarizing beam split-
ter (PBS). The HWP flips polarization |H〉 ↔ |V 〉. PS2 shifts
the phase by i. The PBS transmits horizontal polarization and
reflects vertical polarization. Under this construction, states
orthogonal to |� f 〉 will not trigger detector C1 (they will
trigger C2 or C3), and |� f 〉 will trigger C1 with certainty.
Postselection means that we will consider only measurements
that coincide with the triggering of C1.

The Â detector could be implemented with a sheet of glass
placed in arm A [position D1 in Fig. 1(a)], slightly tilted up
to produce a small vertical displacement of the beam. The C1
detector could be a CCD camera to record the beam deflection.
Detection of the deflection would indicate the photon went via
arm A. Similarly, the B̂ detector could be implemented with
a sheet of glass placed in arm B [position D2 in Fig. 1(a)],
slightly tilted down to produce a small vertical displacement
of the beam.

σ̂A and σ̂B could be implemented with a birefringent crystal
producing a small polarization-dependent horizontal beam
displacement [46]. The eigenstates of σ̂A and σ̂B are left-
elliptical |L〉 and right-elliptical |R〉 states; so for these po-
larizations, the refractive properties of the birefringent crystal
should be so that the beam deflects left and right, respectively.
For other polarization, a linear superposition of these basis
states, the birefringent crystal would deflect left and right with
polarization-dependent probability.

For weak measurements, the system state should be mini-
mally disturbed; this means that the deflections should be less
than the characteristic cross-section width of the beam, so that
it is uncertain whether an individual photon has been deflected
or not. Because of this, the experiment needs run to over a
large ensemble to get the average of a single property.

As a specific implementation example, let us consider
when the interferometer beam is a Gaussian so that

〈x|mi〉 =
( 1

2πσ 2

)1/4
exp

(
− x2

4σ 2

)
. (28)

For real WVs, from Eq. (4) the final pointer state projected
onto the position basis is

〈x|m f 〉 ≈ eiθ

2

( 1

2πσ 2

)1/4
exp

[
− (x − g〈Ô〉w )2

4σ 2

]
. (29)

In other words, the Gaussian beam maintains its profile, but
the interaction with the projectors deflects it by an amount
proportional to the WV.

For 〈σ̂A〉w = 0 and 〈σ̂B〉w = i we see no deflection in
the beam on average; however there will be a difference in
the total probability of detection between the two cases. In the
position basis

〈P̂〉w = 〈x|P̂|mi〉
〈x|mi〉 = −ih̄

∂xmi(x)

mi(x)
= ih̄

x

2σ 2
. (30)

This means that Re〈P̂〉w = 0, and from Eq. (25) we do not
observe any disturbance in the probability of detection for
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〈σ̂A〉w = 0 and 〈σ̂B〉w = i. However, if we measure in the
momentum basis, then

〈P̂〉w = 〈P|P̂|mi〉
〈P|mi〉 = pmi(p)

mi(p)
= p. (31)

This can be implemented with a Fourier lens, so that each
pixel on the CCD corresponds to a transverse momentum
(Fig. 1). Using Eq. (31) in Eq. (25), we see no disturbance
in the probability of detection for 〈σ̂A〉w = 0, but there is a
disturbance in the probability of detection proportional to the
transverse momentum of the Gaussian beam for 〈σ̂B〉w = i,
thereby further distinguishing between no polarization and
polarization.

Two actual attempts of realizing the QCC have been
conducted with neutron [2] and photonic [3] interferometry.
Although these experiments claimed to have produced the
results of the gedanken experiment, they have been criticized
for not actually implementing the QCC, as they do not make
weak measurements [4].

IV. DUAL OF THE QUANTUM CHESHIRE CAT

Let us consider what would happen if the role of polariza-
tion and location were reversed in the QCC, i.e., under the
transformation

|A〉 ↔ |H〉, |B〉 ↔ |V 〉. (32)

For consistency with Sec. III, we will also use θ to indicate
the phase difference between the arms and φ the polarization
phase. The postselection state is invariant under this transfor-
mation, but the preselection state changes to

|�i〉 = (eiφ|H〉 + |V 〉)|A〉/
√

2. (33)

The projectors corresponding to the transformation are

Ĥ = |H〉〈H |(|+〉〈+| + |−〉〈−|), (34)

V̂ = |V 〉〈V |(|+〉〈+| + |−〉〈−|), (35)

and

σ̂H = |H〉〈H |(|+〉〈+| − |−〉〈−|), (36)

σ̂V = |V 〉〈V |(|+〉〈+| − |−〉〈−|), (37)

where

|+〉 ≡ (|A〉 + eiθ |B〉)/
√

2, (38)

|−〉 ≡ (|A〉 − eiθ |B〉)/
√

2. (39)

Ĥ and V̂ detect whether the photon is horizontally or
vertically polarized. σ̂H detects the phase difference between
the arms for horizontal polarization. The eigenvalues 1 and–1
correspond to eigenstates |+, H〉 and |−, H〉, respectively,
whereas the eigenvalue 0 corresponds to the degenerate sub-
space spanned by eigenstates |+,V 〉 and |−,V 〉. σ̂V is simi-
larly defined.

Using Eq. (3), the WVs measured are

〈Ĥ〉w = 〈Ĥ p̂〉w + 〈Ĥm̂〉w = 1, (40)

〈V̂ 〉w = 〈V̂ p̂〉w + 〈V̂ m̂〉w = 0 (41)

and

〈σ̂H 〉w = 〈Ĥ p̂〉w − 〈Ĥm̂〉w = 0, (42)

〈σ̂V 〉w = 〈V̂ p̂〉w − 〈V̂ m̂〉w = ei(φ−θ ), (43)

where

p̂ = |+〉〈+|(|H〉〈H | + |V 〉〈V |), (44)

m̂ = |−〉〈−|(|H〉〈H | + |V 〉〈V |). (45)

Note that 〈Ĥ p̂〉w = 〈Ĥm̂〉w = 1/2 and 〈V̂ p̂〉w = −〈V̂ m̂〉w =
ei(φ−θ )/2. In this dual to the QCC, the photons are detected to
be horizontally polarized, but the phase difference between
the two arms is vertically polarized. What is even more
remarkable is that in the preselection state, there is no arm B.
In other words, it is as if the detector is detecting interference
between arm A and a phantom arm B! The detected phase
difference between arm A and B is determined by the photon’s
polarization in the preselected state. Specifically, by rotating
the basis of the phase operators so that θ = φ in Eqs. (38) and
(39), one gets 〈σ̂V 〉w = 1. Analogous to the QCC, this is inter-
preted to mean that we have detected a phase difference, in the
vertically polarized component, between arm A and arm B.

Rewriting

σ̂V = |V 〉〈V |(e−iθ |A〉〈B| + eiθ |B〉〈A|), (46)

we see that σ̂V has the property of flipping |A〉 and |B〉 (sim-
ilarly for σ̂H ). It is this property that underlies the apparent
paradoxical phantom arm effect. This is exactly analogous to
the central role that

σ̂B = |B〉〈B|(e−iφ |H〉〈V | + eiφ |V 〉〈H |) (47)

(and similarly for σ̂A) plays in the QCC.

A. Implementation

Underpinning the QCC were the circular-polarization σ̂A

and σ̂B detectors. They were proposed to be implemented as
optical elements which slightly deflect the beam left (right)
for left- (right-) circular polarization from the axis of arm
A or B. This slight deflection provides the means to read
the weak values on the CCD camera. Upon interaction, the
detectors turn horizontal polarization vertical and vice versa,
as described by Eq. (47). However, for weak interactions, this
occurs only for a small subset of photons. Likewise, σ̂H and σ̂V

should cause a slight left (right) deflection when the beams are
in (out-of) phase. For a small subset of photons, arm A turns
into arm B, as described by Eq. (46). This can be achieved
by placing a PBS at position D1 in Fig. 4. The unitary
transformation for the σ̂V detector (similarly for σ̂H ) is [47]

Û = eiγ σ̂V . (48)

The PBS is transparent to horizontal polarization but partially
reflects vertical polarization, with reflectivity rV = sin2 γ and
transmissivity tV = 1 − rV .
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FIG. 2. σ̂H (σ̂V ) could be implemented with a wedged PBS. This
figure illustrates Eqs. (55) and (56) for γ = π/4. The eigenstates of
σ̂H and σ̂V are the |+〉 and |−〉 states; for such states the detector
deflects the beam (a) left and (b) right, respectively. (c) For states
composed of just one arm, the detector deflects left and right. The
PBS is wedged so the deflection is slightly off the axis of the beam
A or B (dotted lines). This small deflection δ provides the means to
read the weak values on the CCD camera. For weak measurements,
δ should not be greater than the cross-sectional width of the beam.

Considering just the vertical polarization component, we
write |A〉 and |B〉 in terms of creation operators on the vacuum
state |0〉:

|A〉 = â†
A|0〉, |B〉 = â†

B|0〉. (49)

In the Heisenberg picture, these operators transform under the
PBSs as

Û †

(
âA

âB

)
Û ≡

(
âA′

âB′

)
. (50)

Using the Baker-Hausdorff lemma,

âA′ = âA cos γ + âBe−iθ sin γ , (51)

âB′ = −âAeiθ sin γ + âB cos γ . (52)

From Eqs. (51) and (52) we get

âA = âA′ cos γ − âB′e−iθ sin γ , (53)

âA ± e−iθ âB = âA′ (cos γ ± sin γ ) ± âB′e−iθ (cos γ ∓ sin γ ).
(54)

Applying the conjugates of the operators in Eqs. (53) and (54)
to the vacuum state, we see that the PBS transforms

|A〉 → cos γ |A′〉 − e−iθ sin γ |B′〉, (55)

|±〉 → [(cos γ ± sin γ )|A′〉 ± e−iθ (cos γ ∓ sin γ )|B′〉]/
√

2.

(56)

Equations (53)–(56) equally apply to the horizontal-
polarization component for σ̂H .

Figure 2 illustrates Eqs. (55) and (56) for γ = π/4. The
eigenstates of σ̂H and σ̂V are the |+〉 and |−〉 states, so
for such states the detector deflects the beam left and right,
respectively. For states composed of just one arm, the detector
deflects left and right. The deflection should be slightly off
the axis of beam A or B; as such the PBS should be slightly
wedged. θ = 2πd/λ is the phase difference between the
reflected and transmitted beams; it is determined by the path
difference d due to the width of the PBS and wavelength λ.
For weak interactions, γ should be small so that only a small
subset of photons are deflected. Furthermore, the deflection
δ should not be greater than the cross-sectional width of the
beam.

FIG. 3. A plot of reflectivity rV and rH for incident angle νi =
arctan(1.5) ≈ 56◦, for refractive indices between 1 and 2. For n =
1.5, νi = arctan(1.5) is the Brewster angle with rH = 0 and rV ≈
0.15. This satisfies the requirement that σ̂V transmits horizontal
polarization but reflects vertical polarization with small probability.

The PBS can simply implemented as a piece of glass. The
Fresnel reflections are different for the polarization compo-
nent in the plane of incidence and the orthogonal component.
We can define coordinates so that horizontal polarization is in
the plane of incidence so that the reflectivities are

rH =
[ tan(νi − νt )

tan(νi + νt )

]2
, rV =

[ sin(νi − νt )

sin(νi + νt )

]2
, (57)

where νi (νt ) is the angle of incidence (transmission).
rH = 0 at the Brewster angle νi = arctan(n), where n ≈

1.5 is the refractive index of glass. Figure 3 plots reflectivity as
function of n, for νi = arctan(1.5) ≈ 56◦. At the Brewster an-
gle rV ≈ 0.15. This satisfies the requirement that σ̂V transmits
horizontal polarization but reflects vertical polarization with
small probability. For σ̂H one would orient the piece of glass
(and experiment) so that the vertical-polarization component
is in the plane of incidence.

Ĥ and V̂ could be a birefringent crystal producing a small
polarization-dependent horizontal beam displacement, placed
at position D2 in Fig. 4. As with the QCC, the detectors only
minimally disturb the beam and therefore can be measured
simultaneously. In particular, measuring 〈σ̂V 〉w and 〈Ĥ〉w si-
multaneously will show that the phase difference is vertically
polarized, but the photon is horizontally polarized. Note that
to measure σ̂V and σ̂H simultaneously, one needs to duplicate
the setup depicted in Fig. 4 for the two beams reflected by the
detectors.

B. Temporal interference

At the heart of the QCC and its dual is the interplay be-
tween the preselected and postselected states; this gives rise to
the concept of temporal interference in the QCC dual. To un-
derstand this idea, we compare it with a conventional notion of
interference. In the double-slit experiment, every point on the
detection screen can be considered as the interference between
two light rays emanating from the slits. As rays from the two
slits must travel different distances to different points on the
screen, a phase differential arises. If we label the state of a
photon emanating from slit α (β) as |α〉 (|β〉), the interference
is the result of the phase differential that arises from the spatial
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FIG. 4. A schematic of the phantom arm, where a wave plate
(WP) introduces a controllable phase eiφ . A half-wave plate (HWP),
phase shifter (PS), beam splitter (BS), and polarizing beam splitter
(PBS) are used for postselection. To project the pointer onto the
momentum basis, a Fourier lens (FL) is used to Fourier transform
the light beam so that each pixel on the camera corresponds to
a transverse momentum. To project the pointer onto the position
basis, remove the FL, and each pixel corresponds to a transverse
displacement. Detectors σ̂H (σ̂V ) are placed at location D1 and Ĥ
(V̂ ) at location D2. The solid line represents the axes of the main
beam, and the dashed line represents the axes of the weak beam after
interaction with the detector at position D1.

separation of |α〉 and |β〉. |α〉 is spatially separated from |β〉
in the sense that one is the spatial translation of the other.

The spatial separation of the slits is implemented in an
interferometer with a controllable phase shift in one of the
arms, as in |�i〉, where |A〉 and |B〉 would represent states of
photons that went through slits α and β. In comparison, in
|�i〉 there are no spatially separated states as there is just one
arm of the interferometer (or equivalently, just one slit). In this
case, the detected interference pattern arises from the phase
differential between the preselected and postselected states;
in other words, it is a temporal interference between past and
future quantum states.

Reinforcing this notion, the preselection and postselec-
tion states themselves do not exhibit interference (σ̂ =
σ̂H or σ̂V ): 〈�i|σ̂ |�i〉 = 〈� f |σ̂ |� f 〉 = 0, whereas, in compar-
ison 〈� f |σ̂ |�i〉 is in general nonzero. This is analogous to the
fact that the |α〉 and |β〉 do not exhibit interference on their
own but rather arise from the phase difference between them.

The notion of WV temporal interference has been demon-
strated with a driven superconducting qubit [48]. In this exper-

iment the fluorescence of qubits prepared in the ground and
excited states were each measured. Then the fluorescence of
the preselected excited state, postselected to be in the ground
state was measured, and it showed a pattern which appeared to
be the interference between the fluorescence of the previously
measured ground- and excited-state patterns. The effect we
propose here goes beyond this, as we propose that the inter-
ference is carried by horizontally polarized photons, yet the
photons are detected to be vertically polarized.

We also point out that temporal uncertainty can give
rise to frequency domain interference in systems with time-
dependent amplitude modulation [49]. The dual of the QCC
is distinctly different from this type of temporal interference,
as the interference we describe is in the position domain and
is the result of interference between past and future quantum
states.

V. OUTLOOK

By generalizing the QCC with elliptical polarization, we
showed that the WV of the polarization for the pre- and
postselected states of the generalized QCC is determined by
the phase difference in the interferometer. We also showed
that the generalization provides a consistent way to interpret
the zero WV of this polarization.

We explored the behavior of the position-polarization dual-
ity in the QCC. We have shown in the QCC dual that while the
photons are horizontally polarized, their phases are vertically
polarized. The QCC dual gives rise to temporal interference.
The past and future states are particlelike, while the interme-
diate states are wavelike in that they exhibit interference.

In an experiment that directly addresses the question of the
physical reality of observables before wave-function collapse,
Kocsis et al. [35] used WVs to observe the individual trajec-
tories of photons as they formed the interference pattern in
the double-slit experiment. More recently, individual quantum
trajectories of a superconducting circuit were also recon-
structed using weak measurements [50]. As the interferometer
setup in this work can map to the double-slit experiment, it
would be interesting in future work to map the trajectories
of individual photons along the lines of the Kocsis et al.
experiment to see how the interference pattern arises as the
photon evolves from the preselected to postselected state in
the QCC dual. In addition, as the QCC has not been satisfac-
torily realized in experiments, the dual-QCC setup offers an
alternative pathway to realization.
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