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In this article, we reconstruct the Frauchiger and Renner argument, taking into account that the assertions
of the argument are made at different times. To do this, we use a formalism of quantum histories, namely the
Theory of Consistent Histories. We show that the supposedly contradictory conclusion of the argument requires
computing probabilities in a family of histories that does not satisfy the consistency condition, i.e., an invalid
family of histories for the theory.
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I. INTRODUCTION

In April 2016, Frauchiger and Renner published an article
online in which they introduced a Gedankenexperiment that
led them to conclude that “no single-world interpretation can
be logically consistent” [1]. In a new version of the paper,
the authors moderated their original claim, concluding “that
quantum theory cannot be extrapolated to complex systems,
at least not in a straightforward manner” [2].

Since its first online publication, the Frauchiger and Renner
(FR) argument was extensively commented upon in the field
of quantum foundations, since it was considered as a new
no-go result for quantum mechanics whose strength relies on
the fact that it is neutral regarding interpretation: on the basis
of three seemingly reasonable assumptions that do not include
interpretive premises, the argument leads to a contradiction.
This fact has been conceived as pointing to a deep shortcom-
ing of quantum mechanics itself, which contrasts with the
extraordinary success of the theory.

In a previous article [3] a careful reconstruction of the FR
argument has been offered, which shows that the contradiction
resulting from the FR argument is inferred by making classical
conjunctions between different and incompatible contexts,
and, as a consequence, it is the result of a theoretically
illegitimate inference. However, recently it has been suggested
that the criticism does not take into account the fact that
the inferences in the FR argument are all carefully timed,
and that this fact would circumvent the objection based on
the contextuality of quantum mechanics. The purpose of this
article is to analyze such a defense of the FR argument.

If timing really matters in the FR argument, it seems
natural to reconstruct the argument using a formalism of quan-
tum histories, which allows us to define logical operations
between quantum properties at different times. The idea of
quantum histories was mainly motivated by this limitation of

quantum mechanics. In 1984, Robert Griffiths presented the
first version of his Theory of Consistent Histories [4]; some
years later, he introduced some modifications to that original
version [5,6]. Roland Omnès [7–11] also published a series
of articles that contributed to the development of this theory.
Simultaneously, Murray Gell-Mann and James Hartle devel-
oped a similar formalism [12–14]. The Theory of Consistent
Histories extends the formalism of quantum mechanics. It
introduces the notion of history, which generalizes the notion
of event: an elemental history is defined as a sequence of
events at different times, where an event is the occurrence of
a property. But since it is not possible to assign probabilities
to the set of all histories, it is necessary to select a subset of
histories that satisfies additional conditions.

To analyze the defense of the FR argument on the basis
of the fact that the assertions are made at different times,
we will carefully reconstruct the argument in the framework
of the Theory of Consistent Histories. This task will allow
us to prove that the supposedly contradictory conclusion of
the argument requires computing probabilities in a family
of histories that is not consistent, i.e., an invalid family of
histories for the theory.

II. THE FR ARGUMENT

The Gedankenexperiment proposed in Frauchiger and
Renner’s article is a sophisticated reformulation of Wigner’s
friend experiment [15]. In that original thought experiment,
Wigner considers the superposition state of a particle in a
closed laboratory where his friend is confined. When Wigner’s
friend measures the particle, the state collapses to one of its
components. However, from the outside of the laboratory,
Wigner still assigns a superposition state to the whole com-
posite system: Particle + Friend + Laboratory.
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FIG. 1. Illustration of the Gedankenexperiment. Friend F1 tosses a coin and measures its result. Depending on the outcome, she sends a
qubit in a particular state. Then, friend F2 measures the spin of the qubit in the z direction, obtaining z = + 1

2 or − 1
2 . Finally, observers W1 and

W2 measure the entire laboratories L1 and L2 obtaining outcomes failX or okX and failY or okY , respectively.

The FR argument relies on duplicating Wigner’s setup
(Fig. 1). Let us consider two friends F1 and F2 located in
separate and isolated laboratories L1 and L2.1 F1 measures
the observable C of a biased “quantum coin” in the state

|φ〉 = 1√
3
|h〉 +

√
2
3 |t〉, where |h〉 and |t〉 are the eigenstates

of C, and h and t are its respective eigenvalues. F1 prepares
a qubit in the state |↓〉 if the outcome is h, or in the state
| →〉 = |↑〉+|↓〉√

2
if the outcome is t , and sends it to F2. When F2

receives the qubit, she measures its observable Sz. After these
two measurements, the state of the whole system composed of
the two laboratories is

|�〉 = 1√
3
|H〉|⇓〉 +

√
2

3
|T 〉| ⇒〉, (1)

where we have the following:
(i) |H〉 and |T 〉, eigenstates of an observable A with eigen-

values H and T , are the states of the entire laboratory L1 when
the outcome of F1’s measurement is h and t , respectively.

(ii) |⇑〉 and |⇓〉, eigenstates of an observable B with
eigenvalues ⇑ and ⇓, are the states of the entire laboratory L2

when the outcome of F2’s measurement is +1/2 and −1/2,
respectively.

(iii) | ⇒〉 = 1√
2
|⇑〉 + 1√

2
|⇓〉.

The Gedankenexperiment continues by considering two
“Wigner” observers, W1 and W2, located outside the laborato-
ries, who will measure the observables X and Y of laboratories
L1 and L2, respectively:

1We modify the original terminology slightly for clarity.

(i) X has the eigenvectors |failX 〉 and |okX 〉, such that

|failX 〉 = 1√
2
|H〉 + 1√

2
|T 〉, |okX 〉 = 1√

2
|H〉 − 1√

2
|T 〉.

(2)

(ii) Y has the eigenvectors |failY 〉 and |okY 〉, such that

|failY 〉 = 1√
2
|⇓〉 + 1√

2
|⇑〉, |okY 〉 = 1√

2
|⇓〉 − 1√

2
|⇑〉.

(3)

Before analyzing the consequences of the experiment,
Frauchiger and Renner point out that their argument can
be conceived as a no-go theorem [2] that proves that three
“natural-sounding” assumptions, (Q), (C), and (S), cannot all
be valid simultaneously:2

(Q) Compliance with quantum theory: Quantum mechanics
is universally valid, that is, it applies to systems of any
complexity, including observers. Moreover, an agent knows

2In their 2016 paper, Frauchiger and Renner implicitly consider
(Q) and (C) as unavoidable: as a consequence, they claim that their
argument shows that “no single-world interpretation can be logically
consistent” and, therefore, “we are forced to give up the view that
there is one single reality” [1]. In contrast, in their 2018 paper, they
stress that “the theorem itself is neutral in the sense that it does
not tell us which of these three assumptions is wrong” [2]; as a
consequence, they admit the possibility of different theoretical and
interpretive viewpoints regarding their result, and they include a table
that shows which of the three assumptions each interpretation of
quantum theory violates.
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that a given proposition is true whenever the Born rule assigns
probability 1 to it.

(C) Self-consistency: Different agents’ predictions are not
contradictory.

(S) Single-world: From the viewpoint of an agent who
carries out a particular measurement, this measurement has
one single outcome.

On the basis of the above considerations—experimental
setup and assumptions—the FR argument proceeds as fol-
lows. First, in order to compute the probability that the
measurements of X and Y yield the results |okX 〉 and |okY 〉,
respectively, the state described by Eq. (1) must be expressed
as

|�〉 = 1√
12

|okX 〉|okY 〉 − 1√
12

|okX 〉|failY 〉

+ 1√
12

|failX 〉|okY 〉 +
√

3

4
|failX 〉|failY 〉. (4)

From this equation, it is clear that the probability of obtaining
okX and okY is 1/12.

The second part of the argument consists in showing
that the observers involved in the experiment can draw a
conclusion different from the above one on the basis of the
following reasoning. Let us consider the probability that F2

obtains −1/2 in her Sz measurement and W1 obtains |okX 〉 in
her X measurement; in order to compute this probability, the
state described by Eq. (1) must be expressed as

|�〉 =
√

2

3
|failX 〉|⇓〉 + 1√

6
|failX 〉|⇑〉 − 1√

6
|okX 〉|⇑〉. (5)

From this equation, it can be inferred that such a probability
is zero. Then, if W1 obtains |okX 〉 in her X measurement on
laboratory L1, she can infer with certainty that the outcome
of F2’s Sz measurement on the qubit was +1/2. In turn, if
F2 obtains +1/2 in her Sz measurement on the qubit, she can
infer that the outcome of F1’s C measurement on the quantum
coin was t , because otherwise F1 would send F2 the qubit in
state |↓〉, see Eq. (1). And if F1 obtains t in her C measurement
on the quantum coin, she can infer that the outcome of W2’s
Y measurement on laboratory L2 will be |failY 〉, because
the outcome t is perfectly correlated with the state | ⇒〉 of
laboratory L2, and | ⇒〉 = |failY 〉; see Eq. (3). Therefore, from
a nested reasoning it can be concluded that, when W1 gets
|okX 〉, she can infer that W2 certainly gets |failY 〉. But this
conclusion contradicts what was inferred from Eq. (4), that
is, that there is a nonzero probability that W1 gets |okX 〉 and
W2 gets |okY 〉.

The reactions to the FR argument have been multiple and
varied (see, for example, [16–22], just to mention some of
them). However, since the argument from which the con-
tradiction is obtained involves quantum properties at differ-
ent times, it seems natural to consider a description of the
Gedankenexperiment using the theory of quantum histories.
This theory extends the formalism of quantum mechanics in-
troducing the notion of quantum history: an elemental history
is defined as a sequence of quantum properties at different
times (see Sec. IV). As far as we know, there has not been
a detailed reconstruction of the argument in terms of the
Theory of Consistent Histories. In Sec. IV we will offer

such a description and we will draw the conclusions that this
formalism offers for this case.

Moreover, the vectors |H〉 and |T 〉 of the previous discus-
sion are states of the measurement instrument in laboratory
L1, while the vectors |⇑〉 and |⇓〉 are states of the measure-
ment instrument in laboratory L2. However, the states of the
measurement instruments of observers W1 and W2 are not
included. In the next section, we give a complete description
of the process including the Hilbert spaces corresponding to
all measurement instruments.

III. THE DIACHRONIC DEVELOPMENT
OF THE ARGUMENT

Let us recall that in laboratory L1 there is a quantum coin
in the initial state

|φ〉 = 1√
3
|h〉 +

√
2

3
|t〉 ∈ HC, (6)

where HC is the Hilbert space of the coin. The initial state of
the rest of the laboratory L1 (including observer F1) is |a0〉 ∈
HF1 . Therefore, the Hilbert space of the entire laboratory L1 is
HL1 = HC ⊗ HF1 . In turn, in the laboratory L2 there is a qubit,
which initially is in state |q0〉 ∈ Hq, where Hq is the Hilbert
space of the qubit. The initial state of the rest of laboratory L2

(including observer F2) is |b0〉 ∈ HF2 . Therefore, the Hilbert
space of the entire laboratory L2 is HL2 = Hq ⊗ HF2 .

Observer W1 measures the observable X of the laboratory
L1 with an apparatus, which is initially in a state |w10〉 ∈ HW1 ,
where HW1 is the Hilbert space of the apparatus. In turn,
observer W2 measures the observable Y of laboratory L2 with
an apparatus initially in a state |w20〉 ∈ HW2 , where HW2 is the
Hilbert space of the corresponding apparatus.

Summing up, the Hilbert space of the entire process is H =
HL1 ⊗ HL2 ⊗ HW1 ⊗ HW2 , and the initial state at time t0 is

|�0〉 = |φ〉 ⊗ |a0〉 ⊗ |q0〉 ⊗ |b0〉 ⊗ |w10〉 ⊗ |w20〉 ∈ H. (7)

In what follows, we describe the consecutive processes.
(i) Time interval (t0, t1): Observer F1 measures the quan-

tum coin. This process is represented by a unitary evolution
U10 in the Hilbert space HL1 = HC ⊗ HF1 , satisfying

U10(|h〉 ⊗ |a0〉) = |h〉 ⊗ |ah〉 ≡ |H〉,
U10(|t〉 ⊗ |a0〉) = |t〉 ⊗ |at 〉 ≡ |T 〉. (8)

(ii) Time interval (t1, t2): Observer F1 prepares the qubit.
This process is represented by a unitary evolution U21 in the
Hilbert space HF1 ⊗ Hq, satisfying

U21(|ah〉 ⊗ |q0〉) = |ah〉 ⊗ | ↓〉,
U21(|at 〉 ⊗ |q0〉) = |at 〉 ⊗ | →〉. (9)

(iii) Time interval (t2, t3): Observer F2 measures the qubit.
This process is represented by a unitary evolution U32 in the
Hilbert space HL2 = Hq ⊗ HF2 , satisfying

U32(|↓〉 ⊗ |b0〉) = |↓〉 ⊗ |b↓〉 ≡ | ⇓〉,
U32(|↑〉 ⊗ |b0〉) = |↑〉 ⊗ |b↑〉 ≡ | ⇑〉. (10)

(iv) Time interval (t3, t4): Observer W1 measures laboratory
L1. This process is represented by a unitary evolution U43 in
the Hilbert space HL1 ⊗ HW1 , satisfying

U43(|failX 〉 ⊗ |w10〉) = | failX 〉 ⊗ |w1 fail〉,
U43(| okX 〉 ⊗ |w10〉) = |okX 〉 ⊗ |w1 ok〉.
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(v) Time interval (t4, t5): Observer W2 measures laboratory
L2. This process is represented by a unitary evolution U54 in
the Hilbert space HL2 ⊗ HW2 , satisfying

U54(|okY 〉 ⊗ |w20〉) = |okY 〉 ⊗ |w2 ok〉,
U54(|failY 〉 ⊗ |w20〉) = |failY 〉 ⊗ |w2 fail〉.

Once the steps for the time evolution are established, the
argument leading to the contradictory result, reviewed in
Sec. II, should be written in terms of probabilities involving
properties at different times. For example, in Sec. II the value
1/12 was obtained for the probability for obtaining okX and
okY . Considering the description of the time evolution given
in this section, we should write

Pr({w2 ok at t5} ∧ {w1 ok at t4}) = 1
12 , (11)

where ∧ represents the logical conjunction. This expression
represents the probability for the measurement instrument of
observer W1 to indicate w1 ok at time t4 and for the measure-
ment instrument of observer W2 to indicate w2 ok at the later
time t5.

The second part of the argument is based on the following
conditional probabilities:

Pr({b↑ at t3} | {w1 ok at t4}) = 1, (12)

Pr({at at t1} | {b↑ at t3}) = 1, (13)

Pr({w2 fail at t5} | {at at t1}
) = 1. (14)

If the last three conditional probabilities could be considered
simultaneously, then we could infer the following conditional
probability:

Pr({w2 fail at t5} | {w1 ok at t4}) = 1. (15)

Hence, Pr ({w2 ok at t5} ∧ {w1 ok at t4}) = 0, which is in con-
tradiction with Eq. (11).

Since the previous argument involves logical operations
between quantum properties at different times, it seems nat-
ural to analyze it using a formalism of quantum histories. To
search for the possibility of obtaining Eqs. (11), (12), (13),
and (14) simultaneously, in the next section we will apply the
Theory of Consistent Histories.

IV. THE FR ARGUMENT IN TERMS
OF QUANTUM HISTORIES

In what follows, we present a brief summary of the Theory
of Consistent Histories (TQH) [4–14]. In quantum mechanics,
the properties of a system are represented by orthogonal pro-
jectors. Since an elementary history is a sequence of proper-
ties at consecutive times, the TQH represents each elementary
history with a tensor product of orthogonal projectors. For
example, a history of n times �̆ = �1 ⊗ · · · ⊗ �n represents
a sequence of properties �1, . . . ,�n at times t1, . . . , tn.

To define probabilities for quantum histories, it is neces-
sary to define a family of histories. For this purpose, first we
have to choose a context of properties at each time ti, i.e., a set
of projectors that sum the identity of H and that are mutually
orthogonal:

�ki�k′
i
=δkik′

i
�ki ,

∑
ki
�ki = IH,

ki, k′
i ∈ σi, i = 1, . . . , n,

where IH is the identity of the Hilbert space H, and each σi is
an index set.

Second, we define the atomic histories �̆k1,...,kn , choosing
one projector �ki at each time ti:

�̆k1,...,kn = �k1 ⊗ · · · ⊗ �kn , (k1, . . . , kn) ∈ σ̆ ,

σ̆ = σ1 × · · · × σn.

Then, we define the histories �̆� summing the his-
tories �̆k1,...,kn with (k1, . . . , kn) ∈ � ⊆ σ̆ , i.e., �̆� =∑

(k1,...,kn )∈��̆k1,...,kn . These histories represent disjunctions of
the histories �̆k1,...,kn . Finally, the family of histories is the
set obtained by making arbitrary disjunctions between product
histories.

If ρ0 is the initial state at time t0, the probability of a general
history �̆� is defined in the following way:

Prρ0 (�̆�) = Tr[C†(�̆�)ρ0C(�̆�)], (16)

where we have introduced the chain operator C(�̆�) =∑
(k1,...,kn )∈�C(�̆k1,...,kn ), in which

C(�̆k1,...,kn ) = U (t0, t1)�k1U (t1, t2)�k2 · · ·U (tn−1, tn)

× �knU (tn, t0)

with U (ti, t j ) = e−iH (ti−t j )/h̄.
In general, the probability definition given in Eq. (16)

does not satisfy the axiom of additivity. Therefore, to have
a well-defined probability, the atomic histories of a family
of histories must satisfy an additional condition, called the
consistency condition,

Tr[C†(�̆k1,...,kn )ρ0C(�̆k′
1,...,k

′
n
)] = 0,

∀ (k1, . . . , kn) �= (k′
1, . . . , k′

n). (17)

Intuitively, the consistency condition measures the amount
of interference between pairs of histories. When n = 1, this
condition is automatically satisfied, and the probability ex-
pression of Eq. (16) reduces to the Born rule. However, in
the general case, the consistency condition is not trivial, and
when it is satisfied the probability expression provides a
generalization of the Born rule.

To describe the FR argument in terms of quantum histories,
we first obtain the probability for the measurement instrument
of the observer W1 to indicate w1 ok at time t4 and for the
measurement instrument of the observer W2 to indicate w2 ok

at a later time t5.
A suitable context of properties for time t4 should include

the properties w1 ok, w1 fail, and it has to be completed with the
property ¬(w1 ok ∨ w1 fail ) (where ∨ is the disjunction and ¬
is the negation) in order to include all the degrees of freedom
of the measurement instrument, for example the initial state
|w10〉 given in Eq. (7). These properties are represented by the
following projectors:

�w1 ok = IL1 ⊗ IL2 ⊗ |w1 ok〉〈w1 ok| ⊗ IW2 ,

�w1 fail = IL1 ⊗ IL2 ⊗ |w1 fail〉〈w1 fail| ⊗ IW2 ,

�¬(w1 ok∨w1 fail ) = IH − �w1 fail − �w1 ok , (18)

where each IK is the identity of the corresponding Hilbert
space HK . These three projectors provide a context of proper-
ties of the Hilbert space H.
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For time t5, a suitable context of properties should include
the properties of the measurement instrument of observer
W2, i.e., w1 ok, w1 fail, and it has to be completed with the
property ¬(w1 ok ∨ w1 fail ). These properties are represented
by the following projectors:

�w2 ok = IL1 ⊗ IL2 ⊗ IW1 ⊗ |w2 ok〉〈w2 ok|,
�w2 fail = IL1 ⊗ IL2 ⊗ IW1 ⊗ |w2 fail〉〈w2 fail|,

�¬(w2 ok∨w2 fail ) = IH − �w2 fail − �w2 ok . (19)

These three projectors also provide a context of properties of
the Hilbert space H.

From the contexts of properties for times t4 and t5, we can
generate a family of two-time histories, whose atomic histo-
ries are �̆k4,k5 = �k4 ⊗ �k5 , with �k4 one of the projectors
of Eqs. (18) and �k5 one of the projectors of Eqs. (19). It
is easy to verify that the family generated by these atomic
histories satisfies the consistency conditions given in Eq. (17).
Therefore, Eq. (16) can be used to compute the probability of
quantum history �̆w1 ok,w2 ok = �w1 ok ⊗ �w2 ok ,

Pr(�̆w1 ok,w2 ok ) = 1
12 . (20)

This shows that using the Theory of Consistent Histories,
and explicitly considering the measurement instruments as
quantum systems, we obtain the same result given in Sec. III
for the first part of the argument.

In the same way, different consistent families of two-time
histories can be defined to express Eqs. (12), (13), and (14).
However, if the three equations are going to be used together
in the same argument, it is necessary to have a consistent
family of four-time histories including the possible results of
the instrument of the observer F1 at time t1, of the instrument
of the observer F2 at time t3, of the instrument of observer W1

at time t4, and of the instrument of observer W2 at time t5.
For times t4 and t5, the contexts of properties given in

Eqs. (18) and (19) are adequate. For time t1, a suitable context
of properties should include the properties ah, at , and it has to
be completed with the property ¬(ah ∨ at ). These properties
are represented by the following projectors:

�ah = IC ⊗ |ah〉〈ah| ⊗ IL2 ⊗ IW1 ⊗ IW2 ,

�at = IC ⊗ |at 〉〈at | ⊗ IL2 ⊗ IW1 ⊗ IW2 ,

�¬(ah∨at ) = IH − �ah − �at . (21)

For time t3, a suitable context of properties should include
the properties of the measurement instrument of observer F2,
i.e., b↓, b↑, and it has to be completed with the property
¬(b↓ ∨ b↑). These properties are represented by the following
projectors:

�b↓ = IL1 ⊗ Iq ⊗ |b↓〉〈b↓| ⊗ IW1 ⊗ IW2 ,

�b↑ = IL1 ⊗ Iq ⊗ |b↑〉〈b↑| ⊗ IW1 ⊗ IW2 ,

�¬(b↓∨b↑) = IH − �b↓ − �b↑ . (22)

From the contexts of properties for times t1, t3, t4, and t5
we can generate a family of four-time histories, whose atomic
histories are

�̆k1,k3,k4,k5 = �k1 ⊗ �k3 ⊗ �k4 ⊗ �k5 , (23)

with �k1 , �k3 , �k4 , and �k5 projectors chosen from Eqs. (21),
(22), (18), and (19), respectively.

The nonatomic histories that are involved in the FR argu-
ment are the following:

�̆1 t = �at ⊗ IH ⊗ IH ⊗ IH, (24)

�̆3 ↑ = IH ⊗ �b↑ ⊗ IH ⊗ IH, (25)

�̆4 ok = IH ⊗ IH ⊗ �w1 ok ⊗ IH, (26)

�̆5 fail = IH ⊗ IH ⊗ IH ⊗ �w2 fail . (27)

In terms of quantum histories, the FR argument can be formu-
lated as follows:

First part:

Pr(�̆5 ok ∧ �̆4 ok) = 1
12 . (28)

Second part:

Pr(�̆3 ↑|�̆4 ok) = 1, Pr(�̆1 t |�̆3 ↑) = 1,

and Pr(�̆5 fail|�̆1 t ) = 1. (29)

This implies Pr(�̆5 fail|�̆4 ok) = 1 and then Pr(�̆5 ok|�̆4 ok) =
0. Therefore,

Pr(�̆5 ok ∧ �̆4 ok) = 0. (30)

The contradiction is obtained from Eqs. (28) and (30).
To infer Eq. (30) from Eqs. (29), the quantum histories

must belong to a single consistent family of histories, gen-
erated by the atomic histories of Eqs. (23). But such a family
of histories does not satisfy the consistency conditions given
in Eq. (17).

To prove this statement, let us consider two atomic histo-
ries �̆at ,b↑,w1 ok,w2 ok and �̆ah,b↓,w1 ok,w2 ok , representing different
results for the four measurements,

�̆at ,b↑,w1 ok,w2 ok = �at ⊗ �b↑ ⊗ �w1 ok ⊗ �w2 ok , (31)

�̆ah,b↓,w1 ok,w2 ok = �ah ⊗ �b↓ ⊗ �w1 ok ⊗ �w2 ok , (32)

and with the following chain operators:

C(�̆at ,b↑,w1 ok,w2 ok ) = U (t0, t1)�at U (t1, t3)�b↑U (t3, t4)

× �w1 okU (t4, t5)�w2 okU (t5, t0), (33)

C(�̆ah,b↓,w1 ok,w2 ok ) = U (t0, t1)�ahU (t1, t3)�b↓U (t3, t4)

× �w1 okU (t4, t5)�w2 okU (t5, t0). (34)

Considering the unitary time evolution of the complete
quantum system and the initial state defined in Eq. (7), we
obtain

C†(�̆at ,b↑,w1 ok,w2 ok )|�0〉
= C†(�̆ah,b↓,w1 ok,w2 ok )|�0〉

= 1√
12

U (t0, t5)(|okX 〉 ⊗ |okY 〉 ⊗ |w1 ok〉 ⊗ |w2 ok〉),

(35)
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and therefore, according to Eq. (17), the consistency condition
gives

Tr[C†(�̆at ,b↑,w1 ok,w2 ok )|�0〉〈�0|C(�̆ah,b↓,w1 ok,w2 ok )]

= 〈�0|C(�̆ah,b↓,w1 ok,w2 ok )C†(�̆at ,b↑,w1 ok,w2 ok )|�0〉
= 1

12 �= 0. (36)

This proves that the atomic histories �̆at ,b↑,w1 ok,w2 ok and
�̆ah,b↓,w1 ok,w2 ok do not satisfy the consistency condition and,
therefore, there is no family of consistent histories to describe
the results of the four measurement instruments of the FR
experiment. For this reason, the conclusion of the second part
of the FR argument cannot be asserted.

Summing up, since the conclusion of the second part of
the FR argument is based on an illegitimate inference, the
supposed contradiction of the FR argument does not hold.

V. CONCLUSIONS

In a previous article [3], one of us argued that the con-
tradiction resulting from the FR argument is inferred by
making classical conjunctions between different and incom-

patible contexts, and, as a consequence, it is the result of
a theoretically illegitimate inference. However, it has been
suggested that the criticism does not take into account the
fact that the inferences in the FR argument are all carefully
timed, and this fact would circumvent the objection based on
the contextuality of quantum mechanics.

If timing really matters in the FR argument, it seems
natural to reconstruct it using a theory of quantum histories,
a formalism that allows us to deal with quantum properties
at different times. We applied the Theory of Consistent His-
tories, and we showed that the contradiction resulting from
the FR argument is inferred by computing probabilities in a
family of histories that is not consistent, i.e., an invalid family
of histories for the theory.
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