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Collision model for non-Markovian quantum trajectories
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We present an algorithm to simulate genuine, measurement-conditioned quantum trajectories for a class of
non-Markovian systems, using a collision model for the environment. We derive two versions of the algorithm:
the first corresponding to photodetection and the second to homodyne detection with a finite local oscillator
amplitude. We use the algorithm to simulate trajectories for a system with delayed coherent feedback, as well as
a system with a continuous memory.
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I. INTRODUCTION

A quantum trajectory is a sequence of states of an open
quantum system, conditioned on a sequence of measurements
of the system’s output. Markovian quantum trajectory the-
ory describes “unravelings” of a Lindblad master equation:
each unraveling is a decomposition of the system density
matrix corresponding to a specific measurement setup [1].
This approach leads to a family of efficient Monte Carlo
algorithms that can be used to solve the dynamics of Marko-
vian open quantum systems. It has been shown that pure-
state quantum trajectories for non-Markovian systems do not
exist in general [2], but this does not preclude the existence
of mixed-state trajectories for such systems. While various
Monte Carlo methods for analyzing non-Markovian systems
have been proposed [3–9], there remains—in contrast to the
Markovian case—no generally applicable computational tool
that produces genuine measurement-conditioned trajectories
for systems with environmental memories. One way around
this is to model part of the environment along with the system,
as any non-Markovian system can be rendered Markovian by
simply enlarging the system. This is the approach we follow
in this paper.

Collision models, in which the dynamics of open quantum
systems are modeled through repeated unitary interactions
between the system and constituent subsystems of the envi-
ronment [10], are emerging as a general tool for the under-
standing of non-Markovian systems [11,12]. In recent years,
models of this kind have been applied to the problem of
coherent feedback—a signature example of an environmental
memory—by Grimsmo [13] and separately by Pichler and
Zoller [14]. Collision models are particularly convenient as
a computational tool: by simulating a portion of the environ-
ment along with the system, these models are able to treat
memory effects while avoiding some of the challenges associ-
ated with analytical approaches. A connection between mod-
els of this kind and quantum trajectory theory was pointed out
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by Brun [15], who used a collision model (although this ter-
minology was not in use at the time) as a simple illustration of
the essential physics of Markovian, pure-state quantum trajec-
tories. Quantum trajectory theory has also been used in con-
junction with collision models by Cresser to analyze the mi-
cromaser [16,17], and by Dąbrowska and coauthors to model
systems where non-Markovianity arises due to correlations in
the input field [18–20]. In this paper we show how to use a
collision model to simulate quantum trajectories of a class of
non-Markovian open systems with environmental memories.
The algorithm we derive provides a fairly efficient and general
method of simulating the dynamics of these systems.

In Sec. II we introduce a collision model for an open
quantum system, which in general can be non-Markovian. In
Sec. III we describe a quantum trajectory algorithm within
this model, focusing on trajectories for two different detection
schemes: photodetection (Sec. III A) and homodyne detection
(Sec. III B). In Sec. IV we apply this algorithm to a specific
example of a non-Markovian quantum system, namely a sys-
tem with delayed coherent feedback, and also illustrate how
the approach can be generalized to systems with continuous
memories. We conclude in Sec. V. Natural units in which
h̄ = c = 1 are used throughout.

II. MODEL

Our starting point is a simple, prototypical open quantum
system that interacts with a one-dimensional, freely prop-
agating electromagnetic field. This setup has been studied
elsewhere [13,14], but we recapitulate the basic model here.
The system is allowed to couple to the environment at multiple
spatial locations, which in general can make the system’s
dynamics non-Markovian, as we discuss in detail in Sec. IV.
Sampling the environment at discrete intervals leads to a
collision model that approximately describes the evolution of
the combined system.

We model the environment on an interval [−L, 0]. We
denote the frequency domain annihilation operators for an en-
vironment mode by bk , while the corresponding time-domain
operators are denoted by Bn. We sample the time domain at
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equal intervals �t = L/N , so that these operators are related
by the discrete Fourier transform:

bk = 1√
N

N−1∑
n=0

Bne−iωkn�t ,

⇐⇒ Bn = 1√
N

N−1∑
k=0

bkeiωkn�t , (1)

where ωk = 2πk/L. Because we are using natural units, the
time domain operator Bn can also be thought of as repre-
senting the environment field between positions −n�t and
−(n + 1)�t .

We now introduce a system with creation and annihilation
operators a† and a. The Hamiltonian for the combined system
can be split up as

H = HS + HE + HI . (2)

Here HS describes the internal dynamics of the system, while

HE =
N−1∑
k=0

ωkb†
kbk (3)

generates the free evolution of the environment. The inter-
action between system and environment is described, in the
rotating-wave approximation, by

HI =
N−1∑
k=0

(κka†bk + κ∗
k b†

ka), (4)

where

κk = 1√
L

N−1∑
n=0

γneiωkn�t , (5)

with γn being a position-dependent coupling strength. Substi-
tuting κk from Eq. (5) into Eq. (4) and reexpressing in terms
of the time-domain operators Bn gives

HI = 1√
�t

N−1∑
n=0

(γna†Bn + γ ∗
n B†

na). (6)

We use this form of the interaction Hamiltonian in what
follows.

The evolution of the system is described by the unitary
operator U (t ) = e−iHt . For small �t we can make the approx-
imation

U (�t ) ≈ �UE�USI , (7)

where �UE = e−iHE �t and �USI = e−i(HS+HI )�t . Equation (7)
leads to an algorithm for approximating the evolution of
the system and environment. First, the state is evolved with
HS + HI through a time �t , which is equivalent to applying
�USI . The free evolution of the environment is then accounted
for by applying �UE . Using eiHE t bke−iHE t = bke−iωkt , we can
see that

�U †
E Bn�UE = 1√

N

N−1∑
k=0

bkeiωk (n−1)�t = Bn−1, (8)

showing that excitations in the environment propagate in the
direction of decreasing n.

En+4 En+3 En+2 En+1 En

S

En+4 En+3 En+2 En+1 En

S

FIG. 1. Two time steps of the unitary collision model described
in Sec. II. In the first step (top) the system interacts with the nth
environment subsystem for a time �t . Between the first and second
steps, the unitary �UE is applied, which as indicated by Eq. (10) can
be thought of as translating the environment to the right. As such,
in the second step (bottom) the system interacts with the (n + 1)st
subsystem. The open-system dynamics depicted in this diagram are
Markovian, because the system S couples to the environment at a
single location.

To make the effect of �UE more explicit, we fix a basis for
the environment by defining the number states

|kM−1, . . . , k0〉 = |kM−1〉 · · · |k0〉 , (9)

where 0 < M � N , and where |kn〉 is a number state of a
single environment oscillator. We can express any state of the
environment, which we recall comprises N oscillators, as a
linear combination of the states |kN−1, . . . , k0〉. Equation (8)
then leads to

�UE |kN−1, . . . , k1, k0〉 = |k0, kN−1, . . . , k1〉 . (10)

We thus arrive at a collision model describing our system.
In this picture, the system interacts stroboscopically with
an environment comprising a chain of harmonic oscillators
whose annihilation operators are Bn. In the first stage of
the evolution, the system interacts with these environment
oscillators according to the Hamiltonian HS + HI for a time
interval �t . In the second stage, the unitary operator �UE is
applied; as Eq. (10) shows, this shifts any excitations in the
nth oscillator into the (n − 1)st for n > 0, while excitations
in the zeroth oscillator end up in the (N − 1)st. These stages
are iterated to produce �t-periodic samples of the system
state. Two time steps of this evolution are illustrated, for a
Markovian system, in Fig. 1.

III. TRAJECTORY ALGORITHM

Due to the periodic boundary condition implicit in Eq. (1),
the model presented in the previous section will eventually
begin to display unphysical behavior, as excitations in the
zeroth oscillator “loop around” to the (N − 1)st. We can avoid
this by simulating a measurement of the zeroth environment
oscillator to disentangle this oscillator from the system and
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FIG. 2. Schematic illustration of the trajectory algorithm described in Sec. III, for a Markovian open system. From left to right: first, the
system interacts with the environment, represented by a collision model, for a time �t ; second, a simulated measurement is performed on the
zeroth environment oscillator, disentangling it from the rest of the combined system; third, the environment oscillators are shifted along by one
step, and interaction with the system resumes.

the rest of the environment. The state of the zeroth oscillator
can then be ignored in future time steps, thereby creating
an absorbing boundary condition at the zeroth oscillator and
allowing the simulation to continue indefinitely.

There are two ways in which this measurement can be
represented. We can take the partial trace over the zeroth sub-
system, representing a probability-weighted sum over the pos-
sible measurement outcomes, which would yield a density-
matrix representation of the state of the system and environ-
ment. Alternatively, we can perform a Monte Carlo simulation
of the application of the Born rule. Here we focus on the latter
approach, which leads to a quantum trajectory unraveling of
the system-environment combined state. Trajectories for the
system alone can then be obtained by tracing out the environ-
ment, which will in general be a mixed-state trajectory. These
trajectories for the system alone provide an unraveling of the
system density matrix, in the same sense as the conventional
algorithm does for Markovian systems, and are contextual:
the specific decomposition of the density matrix obtained
from the algorithm depends on the measurement setup being
simulated.

Our algorithm, illustrated in Fig. 2, involves three steps,
which are iterated to obtain a discrete-time quantum trajectory
for the combined system:

(1) Apply �USI by evolving the state of the combined
system with the Hamiltonian (HS + HI ) through a time �t .

(2) Make a simulated measurement of some observable of
the zeroth environment oscillator.

(3) Apply a truncated form of �UE to the postmeasure-
ment state.

Step 1 is easily performed by using any standard differ-
ential equation solver. We used ZVODE from ODEPACK [21],
interfaced through SCIPY [22]. We consider steps 2 and 3 in
more detail below.

Step 2 of our algorithm is to make a simulated measure-
ment of some observable of the zeroth environment oscillator
using the Born rule. The specific observable to be measured
determines what kind of quantum trajectory we obtain. Two
examples are considered in Secs. III A and III B, but for
the time being we keep things generic. Consider an observ-
able of the zeroth oscillator with discrete eigenstates {|q j〉},
corresponding to eigenvalues {qj}. The probability of each
measurement result is easily calculated as P(qj ) = | 〈q j |ψ〉 |2,
where |ψ〉 is the state of the system and environment. A stan-
dard weighted pseudorandom choice is used to determine the
measurement outcome at each step, and the zeroth oscillator is
then projected into some fiducial state |ϕ〉: |ψ〉 → |ϕ〉 〈qj |ψ〉.

The choice of fiducial state is influenced by our chosen basis,
which we discuss below.

Step 3 of our algorithm is to apply a truncated form of
�UE , denoted �̃U E , which is defined analogously to Eq. (10).
The states |kN−1, . . . , k1〉 |ϕ〉 form a basis for the system
after it has undergone the simulated measurement process
described above, with the zeroth oscillator projected into the
fiducial state |ϕ〉. We therefore define �̃U E by its action on
these basis states:

�̃U E |kN−1, . . . , k1〉 |ϕ〉 = |0, kN−1, . . . , k1〉 . (11)

The effect of applying �̃U E is therefore to shift excitations in
the nth oscillator into the (n − 1)st, while “resetting” the (N −
1)st to its vacuum state. We can easily construct a suitable
�̃U E :

�̃U E =
∑

kN−1,...,k1

|0, kN−1, . . . , k1〉 〈kN−1, . . . , k1| 〈ϕ| . (12)

Alternatively, if |ϕ〉 is chosen to be the vacuum state, the
unitary �UE in fact already satisfies Eq. (11).

Finally, we need to consider the truncation of the environ-
ment Hilbert space. Our environment comprises N harmonic
oscillators, and we have chosen to represent these in a number-
state basis. Our chosen truncation is to constrain the values of
kn that appear in Eq. (9). In particular, we choose kn � 1, so
that each environment oscillator effectively becomes a qubit,
and require the total number of excitations in the environment
not to exceed some number:

∑
n kn � Kmax. As such, the

basis states of the environment are all the combinations of
0, 1, . . . , Kmax excitations. The simulations presented in this
paper were performed with Kmax = 2 except where otherwise
specified.

We have yet to specify exactly what is measured in step 2 of
our algorithm. In the following two subsections, we consider
two different measurement schemes and show in each case
that our collision model reduces to the corresponding Marko-
vian quantum trajectory algorithm in the appropriate limit.

A. Photodetection trajectories

Perhaps the simplest measurement scheme is to simulate
detection of the excitation number in the zeroth oscilla-
tor. We show here that for a Markovian system this corre-
sponds to the well-known quantum trajectory theory of direct
photodetection.

For a Markovian system it is sufficient to consider a sin-
gle environment oscillator, which means that the interaction
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Hamiltonian (6) simplifies to

HI = 1√
�t

(γ a†B + γ ∗B†a). (13)

As we have chosen to truncate the environment Hilbert space
such that each oscillator contains at most one excitation, B is
the lowering operator for a qubit. Coherent evolution through
�t followed by a measurement performed on the environment
qubit represents a single time step of our collision model.
Suppose the initial state of the combined system is |ψ (0)〉 =
|ψS〉 |0〉. For small �t , we can make the approximation

|ψ (�t )〉 ≈
(

1 − �t

2
|γ |2a†a

)
|ψS〉 |0〉 − i

√
�tγ ∗a |ψS〉 |1〉 ,

(14)

where we have neglected any internal dynamics of the system
for simplicity. The excitation of the environment qubit B†B
is then measured: the result 1 is identified with a “click”
in a photodetector, while the result 0 is identified with no
detection. From Eq. (14), we can immediately see that the
probability of such a click is |γ |2 〈ψS|a†a|ψS〉�t , and that
the normalized system state after such a detection will be
a |ψS〉 /

√
〈ψS|a†a|ψS〉, up to a phase factor. The state con-

ditioned on no detection is (1 − �t
2 |γ |2a†a) |ψS〉, ensuring

conservation of probability to first order in �t . These are
exactly the results of the conventional quantum trajectory
theory of direct photodetection [1,23].

B. Homodyne trajectories

We now wish to extend our trajectory treatment to ho-
modyne detection. In this case, the system and environment
are augmented with an ancillary system, the local oscillator.
This is a harmonic oscillator prepared, at each time step,
in a coherent state |α√

�t〉. The Hamiltonian describing the
coherent evolution of the combined system, in the Markovian
case, is again Eq. (13). Note that the local oscillator does not
evolve under this Hamiltonian because it is already prepared
in the desired state. Coherent evolution through �t , followed
by a joint measurement on the zeroth environment qubit and
local oscillator, represents a single step of the stroboscopic
evolution of a collision model.

Balanced homodyne detection consists in simultaneously
measuring two environment observables, N+ and N−, where

N± = 1
2 (B ± C)†(B ± C), (15)

and where B and C are annihilation operators for the ze-
roth environment qubit and the local oscillator, respec-
tively. The eigenstates of these operators are |n±〉 = (|0, n〉 ±
|1, n − 1〉)/

√
2 with n � 1, as well as the vacuum. We find

N+ |n±〉 = λn± |n±〉 and N− |n±〉 = λn∓ |n±〉 , (16)

where λ± = (n ± √
n)/2. If |α〉 is a coherent state and |ϕ〉 is

some generic state of the qubit, we have the inner product
〈n ± |ϕ, α〉 = e−|α|2/2αn−1(α 〈0|ϕ〉 ± √

n 〈1|ϕ〉)/
√

2n!.
We now aim to show that this measurement scheme is

equivalent to homodyne detection, in the relevant parameter
regime. The argument proceeds much as it did for photode-
tection. The initial state is now |ψ (0)〉 = |ψS〉 |0, α

√
�t〉,

meaning that Eq. (14) becomes

|ψ (�t )〉 ≈
(

1 − �t

2
|γ |2a†a

)
|ψS〉 |0, α

√
�t〉

− i
√

�tγ ∗a |ψS〉 |1, α
√

�t〉 . (17)

Homodyne detection corresponds to a measurement in the
|n±〉 basis, and provided �t is small enough the probability
of observing states with n > 1 will be negligible. We note that
N± |1±〉 = |1±〉, while N± |1∓〉 = 0. As such, we have three
eigenstates to consider: |0, 0〉, the vacuum state of the environ-
ment, corresponding to no detection; |1+〉, corresponding to a
click in the N+ detector; and |1−〉, corresponding to a click in
the N− detector. To first order in �t , the corresponding inner
products are

〈0, 0|ψ (�t )〉 =
[

1 − �t

2
(|α|2 + |γ |2a†a)

]
|ψS〉 , (18)

〈1±|ψ (�t )〉 = J± |ψS〉
√

�t , (19)

where we have defined

J± = α ∓ iγ ∗a√
2

. (20)

These operators are, up to a phase convention, the jump
operators that appear in the conventional trajectory algorithm
for homodyne detection with finite local oscillator amplitude
[24]. Finally, we arrive at the probabilities

P0 = 1 − (|α|2 + |γ |2a†a)�t , (21)

P± = 〈ψS|J†
±J±|ψS〉�t . (22)

We note in particular that Eq. (22) is exactly what we would
expect from the conventional trajectory algorithm. From this,
we can conclude that the measurement scheme described
above does indeed correspond to a trajectory simulation of
homodyne detection, in the limit of small �t .

A further simplification is possible: in a balanced homo-
dyne detection scheme, the results of the N− measurement are
subtracted from the results of the N+ measurement. As such
we can, equivalently, measure the operator Q = N+ − N− =
C†B + B†C. We can see that Q |n±〉 = ±√

n |n±〉, along with,
of course, Q |0, 0〉 = 0 |0, 0〉. Provided we only see eigen-
values with n � 1 we can interpret this in the same way as
the conventional homodyne algorithm: we have three possible
measurement outcomes (±1 or 0) representing a click in each
of the two detectors, or neither. This way of expressing the
problem is computationally convenient because we only need
to simulate measurement in a single output channel, where
previously we had two.

For the equivalence between our collision model and a
conventional trajectory simulation of homodyne detection
to hold, we need to choose a small enough time step that
there is at most one click in each interval. For this to be
the case, we must decrease �t quadratically as we increase
α, such that α

√
�t remains below some threshold. This is

not computationally feasible, so for larger values of α we
inevitably end up performing simulations with large enough
�t that we observe the eigenvalues corresponding to n � 2,
which will in general not be integers. Nonetheless, numerical
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FIG. 3. Comparison of “counting” distributions for the homo-
dyne detection of squeezed light. The system is a harmonic oscillator
with Hamiltonian HS = iζ (a†2 − a2), and the local oscillator field
has amplitude αeiθ . Orange lines (front) show results from the con-
ventional trajectory algorithm with jump operators given by Eq. (20);
with this phase convention, θ = 0 corresponds to detection of the
squeezed Y quadrature and θ = π/2 corresponds to the unsqueezed
X quadrature. Blue lines (back) correspond to an analogous collision
model simulation, with γ�t = 0.01 and up to 249 excitations in the
local oscillator. The horizontal axis is the sum of measurements in an
interval of length 10/γ , after a “burn-in” time of 4/γ that reduces
the influence of transient dynamics. The squeezing parameter is
given by ζ = 0.1γ , and the system Hilbert space is truncated at nine
excitations. Each histogram was prepared from 50 000 trajectories.

comparisons to the conventional jump algorithm, such as
those illustrated in Fig. 3, indicate that the correspondence
remains approximately valid for a range of α.

IV. DELAYED COHERENT FEEDBACK

In Sec. III we showed that our algorithm reproduces the
results of conventional quantum trajectory theory for Marko-
vian systems, when applied to both photodetection and homo-
dyne detection. We now turn our attention to non-Markovian
systems. The parameters γn that appear in Eq. (6) describe
position-dependent coupling of the system to the environment.
Coupling at a single point, as considered in Sec. III, leads to
a Markovian open quantum system. If, on the other hand, the
system couples to the environment at more than one location,
the system can create excitations in the environment that
interact again with the system at a later time. Put another
way, the environment “remembers” the state of the system
and feeds this information back coherently after some time
delay. Here we consider perhaps the simplest example of such
an environmental memory, wherein the system couples to the
environment at exactly two spatial locations, creating a coher-
ent environmental feedback loop with a discrete propagation
delay. This kind of feedback has previously been studied in
work on “atomic” emission in front of a mirror [25–28] and in

EM EM−1 E1 E0

S

FIG. 4. Collision model of an open quantum system with delayed
coherent feedback. The system (yellow, below) couples to two differ-
ent environment subsystems (blue, above), creating a feedback loop
with delay τ = M�t .

solid-state systems with significant propagation delays [29].
Figure 4 illustrates a collision model for this setup.

To make things more concrete, consider the interaction
Hamiltonian (6), with γ0 = γ eiφ , γM = γ , and γn = 0 for all
other n. This coupling describes an environmental feedback
loop of length τ = M�t , with a phase advance of φ in the
loop. We choose as an example system a driven qubit, with
free Hamiltonian HS = �(a† + a) in a frame rotating at the
system resonant frequency, and the system initially in its ex-
cited state. Sample trajectories, along with ensemble averages,
calculated by using our collision model for this system with
both photodetection and homodyne detection, are shown in
Fig. 5. Without observing the in-loop field, we cannot tell
whether a detected photon was emitted directly from the
system or via the loop. This ambiguity means that trajectories
for this system are, in general, mixed-state trajectories. Note,
however, that this is not a property of coherent feedback as
such: a detection delay results in mixed-state trajectories even
for a system with Markovian dynamics.

We thus see that our algorithm is particularly well suited
for simulating non-Markovian systems. The main compu-
tational advantage is that the algorithm is constant-space,
requiring only enough computer memory to store the state of
the system along with enough of the environment to model
the feedback loop in question. This is in contrast to the
approach introduced by Grimsmo [13] and explored further in
Ref. [30], which requires an additional “copy” of the system
Hilbert space after each delay cycle and thus consumes an
amount of memory that grows exponentially with the number
of delay intervals to be simulated. The approach adopted by
Pichler and Zoller [14], on the other hand, also has constant
space complexity. Our algorithm has the further advantage
that it allows us to simulate not just discrete feedback loops
but other kinds of quantum memory as well. A continuous
environmental memory kernel, where the evolution of the
system depends most generally on its state at all previous
times, may be approximated as a series of discrete feedback
loops. This can be accomplished in our algorithm by choosing
appropriate γn. Take as an example the exponential coupling

γn = √
γ λ�te−λn�t , (23)

with λ > 0. Substituting this coupling into Eq. (5) and taking
the continuum limit (L → ∞) results in a Lorentzian spectral
density J (ω) = (2π )−1γ λ2/(λ2 + ω2). This spectral density
maps to a system coupled to a damped harmonic oscillator ini-
tially in the vacuum state [31,32]; if the system is a qubit then
this corresponds to the Jaynes–Cummings model [33]. As a
proof of principle Fig. 6 shows sample trajectories obtained
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FIG. 5. Trajectory simulations of a qubit with delayed coherent
feedback. The upper four plots show the occupation number: (a),
(b) for photodetection, and (c), (d) for homodyne detection with α2 =
100γ . Panels (a) and (c) correspond to emission from an initially
excited system without driving, while panels (b) and (d) correspond
to a driven qubit with �/γ = 1. Twenty sample trajectories are
plotted as solid blue lines for each configuration. The opacity of the
blue curves provides an indication of how common a given trajectory
is. Note in particular the trajectories without jumps that appear
in darker blue in panels (a) and (b). The corresponding ensemble
averages (25 000 trajectories) are shown as dotted orange lines.
Trajectories of the Pauli Y operator are shown in panels (e) and (f),
corresponding exactly to the driven cases (b) and (d); the onset of
the feedback is visible in the ensemble average at t = τ . The other
parameters are φ = π , γ τ = 0.5, γ�t = 0.01, and local oscillator
dimension 250.

with an exponential coupling and the environment truncated at
a finite “length,” and compares the ensemble average to results
obtained using the Markovian master equation.

V. CONCLUSION

In this paper we introduced an algorithm to simulate
quantum trajectories for non-Markovian systems by using

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

0

0.5

1

γt

a†a

FIG. 6. Comparison of simulations with the exponential cou-
pling (23), with L = 5. Fifty sample photodetection trajectories are
plotted as thin blue lines, with the ensemble average (10 000 trajecto-
ries) in orange. The broken lines show equivalent simulations using
the Markovian master equation for the Jaynes–Cummings model: for
the dashed green curve, the cavity Hilbert space was truncated at the
single-excitation level, while up to 20 excitations were allowed for
the dotted red curve. The trajectory simulations used Kmax = 1, so
the ensemble average agrees well with the single-excitation master
equation. The multiple-excitation master equation begins to diverge
at γ t ≈ 1, as the environment excitation level increases. The other
parameters are �/γ = 1, λ/γ = 1, and γ�t = 0.005. The size of
the environment has been truncated at L = 5γ −1.

a collision model to represent the environment and its
interaction with the system. The algorithm produces trajectory
unravelings of the system density matrix. As is the case in the
well-known Markovian theory of quantum trajectories, these
unravelings are contextual in the sense that they depend on
the measurement setup. We provided two versions of the al-
gorithm, corresponding to photodetection and homodyne de-
tection respectively, and illustrated the algorithm’s application
to two signature examples of non-Markovian dynamics: a co-
herent feedback loop with a discrete delay, and the Lorentzian
spectral density that arises in the Jaynes–Cummings model.

Our simulation method has computational advantages over
some alternative approaches. In particular, while the algo-
rithm requires us to simulate a portion of the environment—
the “memory”—in addition to the system, the Hilbert-space
dimension of this environmental memory remains constant
irrespective of the simulation time, meaning that the algorithm
has constant space complexity. The algorithm acts on a pure
state of the system and environment, which consumes less
computer memory than a density-matrix representation—an
advantage our approach shares with stochastic approaches
derived from Markovian quantum trajectory theory.

Because our approach is derived directly from a funda-
mental model of a system interacting with an assemblage of
harmonic oscillators, it has in principle very wide applicability
when used as a brute force method, given enough computing
power. An efficient implementation, however, requires a suffi-
ciently compact representation of the part of the environment
containing the memory. The systems studied in this paper have
finite-length memories that are only ever populated with one
or two photons. Systems with very long memories, or systems
whose timescales require a very small step size �t , may
pose computational difficulties for this method because the
number of environment subsystems would be large. The same
is true of environments with more than one spatial dimension.
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Performance issues could also arise with systems that scatter
many photons into the environment, necessitating a large
Kmax. In these cases, alternative methods of “compressing”
the environment state may be required. One possibility is to
adapt a matrix product state approach, as used for example
by Pichler and Zoller [14], for use in quantum trajectory
simulations.

Quantum trajectory theory is of interest beyond its use as
a numerical tool. Genuine quantum trajectories provide an
accurate description of the evolution of a system, conditioned
on a sequence of observations of the system’s output. The
contextuality of a specific trajectory unraveling, depending as
it does on the measurement scheme chosen by the observer,
has been described as “subjective reality” in the context of
quantum measurement theory [34]. The algorithm presented
in this paper generates genuine, measurement-conditioned

quantum trajectories for a fairly large class of non-Markovian
open quantum systems, namely those where the environment
can be represented as a collision model with a position-
dependent coupling. This connection to the theory of quan-
tum measurement opens up the possibility of analyzing non-
Markovian systems from a new perspective.
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[20] A. M. Dąbrowska, Quantum Inf. Process. 18, 224 (2019).
[21] A. C. Hindmarsh, ODEPACK, a systematized collection

of ODE solvers, in Scientific Computing, edited by R. S.
Stepleman et al., IMACS Transactions on Scientific Computa-
tion Vol. 1 (North-Holland, Amsterdam, 1983), pp. 55–64.

[22] E. Jones, T. Oliphant, P. Peterson et al., SciPy: Open
Source Scientific Tools for Python (2001), http://www.scipy.org/
(accessed 2019-02-09).

[23] J. Dalibard, Y. Castin, and K. Mølmer, Phys. Rev. Lett. 68, 580
(1992).

[24] H. J. Carmichael, Statistical Methods in Quantum Optics 2: Non-
Classical Fields (Springer-Verlag, Berlin, Heidelberg, 2008),
p. 455.

[25] U. Dorner and P. Zoller, Phys. Rev. A 66, 023816 (2002).
[26] A. Carmele, J. Kabuss, F. Schulze, S. Reitzenstein, and A.

Knorr, Phys. Rev. Lett. 110, 013601 (2013).
[27] T. Tufarelli, F. Ciccarello, and M. S. Kim, Phys. Rev. A 87,

013820 (2013).
[28] T. Tufarelli, M. S. Kim, and F. Ciccarello, Phys. Rev. A 90,

012113 (2014).
[29] L. Guo, A. Grimsmo, A. F. Kockum, M. Pletyukhov, and G.

Johansson, Phys. Rev. A 95, 053821 (2017).
[30] S. J. Whalen, A. L. Grimsmo, and H. J. Carmichael, Quantum

Sci. Technol. 2, 044008 (2017).
[31] B. M. Garraway, Phys. Rev. A 55, 2290 (1997).
[32] S. Lorenzo, F. Ciccarello, and G. M. Palma, Phys. Rev. A 96,

032107 (2017).
[33] E. Jaynes and F. W. Cummings, Proc. IEEE 51, 89 (1963).
[34] H. M. Wiseman, Quantum Semiclassical Opt. 8, 205 (1996).
[35] J. R. Johansson, P. D. Nation, and F. Nori, Comput. Phys.

Commun. 184, 1234 (2013).

052113-7

https://doi.org/10.1103/PhysRevLett.101.140401
https://doi.org/10.1103/PhysRevLett.101.140401
https://doi.org/10.1103/PhysRevLett.101.140401
https://doi.org/10.1103/PhysRevLett.101.140401
https://doi.org/10.1016/S0375-9601(96)00805-5
https://doi.org/10.1016/S0375-9601(96)00805-5
https://doi.org/10.1016/S0375-9601(96)00805-5
https://doi.org/10.1016/S0375-9601(96)00805-5
https://doi.org/10.1016/S0375-9601(97)00717-2
https://doi.org/10.1016/S0375-9601(97)00717-2
https://doi.org/10.1016/S0375-9601(97)00717-2
https://doi.org/10.1016/S0375-9601(97)00717-2
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevA.58.1699
https://doi.org/10.1103/PhysRevLett.82.1801
https://doi.org/10.1103/PhysRevLett.82.1801
https://doi.org/10.1103/PhysRevLett.82.1801
https://doi.org/10.1103/PhysRevLett.82.1801
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevA.70.012106
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.100.180402
https://doi.org/10.1103/PhysRevLett.120.150402
https://doi.org/10.1103/PhysRevLett.120.150402
https://doi.org/10.1103/PhysRevLett.120.150402
https://doi.org/10.1103/PhysRevLett.120.150402
https://doi.org/10.1103/PhysRevA.98.012142
https://doi.org/10.1103/PhysRevA.98.012142
https://doi.org/10.1103/PhysRevA.98.012142
https://doi.org/10.1103/PhysRevA.98.012142
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1103/PhysRevA.94.012106
https://doi.org/10.1515/qmetro-2017-0007
https://doi.org/10.1515/qmetro-2017-0007
https://doi.org/10.1515/qmetro-2017-0007
https://doi.org/10.1515/qmetro-2017-0007
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/PhysRevLett.115.060402
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1103/PhysRevLett.116.093601
https://doi.org/10.1119/1.1475328
https://doi.org/10.1119/1.1475328
https://doi.org/10.1119/1.1475328
https://doi.org/10.1119/1.1475328
https://doi.org/10.1088/0953-4075/39/15/S19
https://doi.org/10.1088/0953-4075/39/15/S19
https://doi.org/10.1088/0953-4075/39/15/S19
https://doi.org/10.1088/0953-4075/39/15/S19
https://doi.org/10.1088/1402-4896/aaf902
https://doi.org/10.1088/1402-4896/aaf902
https://doi.org/10.1088/1402-4896/aaf902
https://doi.org/10.1088/1402-4896/aaf902
https://doi.org/10.1103/PhysRevA.96.053819
https://doi.org/10.1103/PhysRevA.96.053819
https://doi.org/10.1103/PhysRevA.96.053819
https://doi.org/10.1103/PhysRevA.96.053819
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1088/1751-8121/ab01ac
https://doi.org/10.1007/s11128-019-2340-4
https://doi.org/10.1007/s11128-019-2340-4
https://doi.org/10.1007/s11128-019-2340-4
https://doi.org/10.1007/s11128-019-2340-4
http://www.scipy.org/
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevLett.68.580
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevA.66.023816
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevLett.110.013601
https://doi.org/10.1103/PhysRevA.87.013820
https://doi.org/10.1103/PhysRevA.87.013820
https://doi.org/10.1103/PhysRevA.87.013820
https://doi.org/10.1103/PhysRevA.87.013820
https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevA.90.012113
https://doi.org/10.1103/PhysRevA.95.053821
https://doi.org/10.1103/PhysRevA.95.053821
https://doi.org/10.1103/PhysRevA.95.053821
https://doi.org/10.1103/PhysRevA.95.053821
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1088/2058-9565/aa8331
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.55.2290
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1103/PhysRevA.96.032107
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1109/PROC.1963.1664
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1088/1355-5111/8/1/015
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019
https://doi.org/10.1016/j.cpc.2012.11.019

