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Attractors and asymptotic dynamics of open discrete-time quantum walks on cycles
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Open quantum walks often lead to a classical asymptotic behavior. Here we look for a simple open quantum
walk whose asymptotic behavior can be nonclassical. We consider a discrete-time quantum walk on an n-cycle
subject to a random coin-dependent phase shift at a single position. This finite system, whose evolution is
described by only two Kraus operators, can exhibit all kinds of asymptotic behavior observable in quantum
Markov chains: It either evolves towards a maximally mixed state, or partially mixed state, or tends to an
oscillatory motion on an asymptotic orbit. We find that the asymptotic orbits do not have a product structure;
therefore, the corresponding states can manifest entanglement between the position and the coin degrees of
freedom, even if the system started in a product state.
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I. INTRODUCTION

Evolution of a closed quantum system is governed by the
Hamiltonian H . The state of the system evolves according to
e−iH�t |ψ (t )〉 ≡ U (�t )|ψ (t )〉 = |ψ (t + �t )〉, where U (�t )
is the unitary evolution operator and �t is the time of the
evolution. The Hamiltonian is often considered to be primary
and the unitary evolution operator to be secondary, in the sense
that H determines U , not the other way around. Therefore,
the concepts like energy or momentum seem to be more
fundamental in physics than a change in time or a translation
in space.

However, change and translation are much more intuitive.
The way a system changes in time or travels through space
can be defined via a simple rule. This allows one to formulate
dynamics in an algorithmic way, i.e., describe it via a set of
instructions that need to be applied to a system to evolve
it forward in time. One of the most prominent applications
of this approach in classical physics is known as cellular
automata (CA). Cellular automata provide a universal dynam-
ical framework that can be used to model various physical
phenomena [1,2].

There were attempts to quantize classical CA [3], but
discrete-time quantum walks (DTQWs) [4,5] are considered
to be the most successful of them. Discrete-time quantum
walks are simple models describing the dynamics of a single
particle in a discrete space. There is an intuitive unitary rule
which translates the particle to a neighboring position. The
direction of the translation is determined by a state of an
auxiliary system that is known as a coin. Due to the underlying
quantum nature, the particle and the coin can be in a superpo-
sition and as a result the particle spreads in all directions in
a coherent way. The model appeared to be very powerful and
found applications in various fields of quantum physics and
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quantum information science. An interested reader can learn
more about it from a collection of review papers [6–8].

Discrete-time quantum walks evolve according to uni-
tary rules, which are fundamentally reversible. As a con-
sequence, for small finite systems one cannot observe the
emergence of any stable complex structures. This is because
reversible dynamics is quasiperiodic. It always returns close to
the initial state. This is a consequence of the Poincaré recur-
rence theorem. Of course, the Poincaré recurrence time scales
with the size of the system and for very large systems one may
observe interesting emergent behaviors before the recurrence
happens. In particular, it was shown that if the DTQW takes
place in the infinite space one can observe that the coin degree
of freedom tends to a stationary state [9]. Nevertheless, for
DTQWs defined in few-dimensional Hilbert spaces one can
observe recurrences if the evolution is traced for sufficiently
long times.

Fortunately, the DTQW unitary rules can be complemented
with irreversible ones [10–14]. The first irreversible rules
introduced to DTQWs modeled the effect of decoherence
[15–17]. However, although finite-space DTQWs with deco-
herence tend to stationary states, these states are the same as
the ones of the corresponding classical random walks. It is
therefore natural to look for irreversible processes leading to
new quantum behaviors.

Our main motivation is to look for a simple modification of
standard unitary DTQW rules that would give rise to attractors
and nonclassical asymptotic behavior. We focus on DTQWs
on n-cycles, i.e., a one-dimensional discrete space with n
positions and periodic boundary conditions. We supplement
the standard unitary evolution with only two Kraus operators.
The first one is proportional to identity and the second one is
a position and coin-dependent phase shift; its action is non-
trivial only if the particle is at a certain location and the coin
is in a certain state. Such Kraus operators are in fact unitary
transformations that act with some probability; therefore the
process is described by a random unitary channel.
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Random unitary channels were already considered in the
DTQW model, but in the context of dynamically percolated
graphs [18–21]. These works derived from more general
studies on asymptotic dynamics generated by random uni-
tary channels [22,23] or even more general quantum Markov
chains [24,25]. Such irreversible processes were shown to
either converge to a stationary state or tend to persistent
oscillations on an attractive orbit. Moreover, it was shown
that random unitary dynamics can generate entanglement
(see, for example, [26]); therefore, it is possible to observe a
nonclassical asymptotic behavior in open quantum dynamics.

We find that, although our model is described by three
parameters, it is enough to manipulate only one of them
to observe all of the aforementioned asymptotic behaviors
of quantum Markov chains. More precisely, we observe (i)
convergence to a maximally mixed stationary state, (ii) con-
vergence to a partially mixed stationary state, or (iii) persistent
oscillations on an attractive orbit. In the last case, the attractive
orbit lies in a subspace that does not admit a decomposition
into coin and position subspaces; hence the system initiated in
a product state can eventually fall into an attractive orbit made
of entangled states.

II. MODEL

We consider a discrete-time quantum evolution of a particle
whose dynamics is governed by a two-level system, known
as a coin. The coin can be an intrinsic degree of freedom of
the particle (similar to spin 1/2 or polarization). The particle
moves in one-dimensional discrete space with periodic bound-
ary conditions and its state is given by |x〉 (x = 1, 2, . . . , n).
The state of the coin is |c〉 (c = 0, 1) and the joint system is
described by |x〉 ⊗ |c〉.

A single step of the evolution is determined by a unitary
operator

U = S(1x ⊗ C), (1)

which is a coin rotation C chosen here to be

C|0〉 = 1√
2

(|0〉 − |1〉), (2)

C|1〉 = 1√
2

(|0〉 + |1〉), (3)

followed by the conditional translation S,

S|x〉 ⊗ |0〉 = |x + 1〉 ⊗ |0〉, (4)

S|x〉 ⊗ |1〉 = |x − 1〉 ⊗ |1〉. (5)

Periodic boundary conditions imply |n + 1〉 ≡ |1〉. In the
above, 1x is the identity operator on the position space. The
state after T steps is given by

|ψT 〉 = U T |ψ0〉. (6)

The above evolution generates entanglement between the coin
and the position. This is because of the conditional translation
operator

S|x〉 ⊗ (α|0〉 + β|1〉) = α|x + 1〉 ⊗ |0〉 + β|x − 1〉 ⊗ |1〉.
(7)

Next consider the Kraus operators

K0 =
√

1 − η1x ⊗ 1c, (8)

K1 = √
η[(1x − |n〉〈n|) ⊗ 1c

+ |n〉〈n| ⊗ (eiϕ0 |0〉〈0| + eiϕ1 |1〉〈1|)], (9)

where 1c is the identity on the coin space. These Kraus opera-
tors are described by three parameters: η ∈ [0, 1] and ϕ0, ϕ1 ∈
[0, 2π ). For η = 0 the Kraus operators have no effect. For
η = 1 they unitarily apply the coin-dependent phase shifts
ϕ0 and ϕ1, if the particle is at position x = n. In any other
case the phase shifts are applied with probability η. Note that
K†

0 K0 + K†
1 K1 = 1x ⊗ 1c.

Together with the unitary operation (1), the Kraus opera-
tors (8) and (9) generate the irreversible evolution

ρ(t + 1) = K0Uρ(t )U †K†
0 + K1Uρ(t )U †K†

1 , (10)

where ρ(t ) is the density matrix of the system at time t . Note
that if the operator K1 were position independent and of the
form

K1 = √
η1x ⊗ σz, (11)

where σz is the Pauli-Z operator, the system would undergo
standard decoherence, causing the transition of the DTQW
into a classical random walk [17]. In particular, if η = 1/2
the full decoherence would happen in a single step and the
corresponding DTQW would be equivalent to a classical ran-
dom walk on an n-cycle. In this model the particle moves ran-
domly, one step to either the right or left and each possibility
occurring with probability 1/2. For such a process the system
tends to a stationary state that is uniformly distributed over all
positions and over both coin states 1

2n1x ⊗ 1c. We are going to
show that our model with a position and coin-dependent phase
shift can arrive at this stationary state. However, we are also
going to show that there is a specific set of parameters ϕ0 and
ϕ1 for which the system has different asymptotic behavior.

Before we proceed, we remark that for even cycles the
system effectively performs a walk on only half of the po-
sitions. This is because in this case probability amplitudes at
even positions never interfere with the ones at odd positions;
therefore, the evolution can be separated into two different
walks. That is why we focus only on odd n.

III. DYNAMICS

In this section we present our preliminary observations ob-
tained from numerical simulations of the system’s dynamics.
A detailed analysis will be presented in the following section.
We found that the asymptotic behavior of the system can be
divided into two general cases, depending on the choice of
parameters ϕ0 and ϕ1. Moreover, we found that one of the pa-
rameters, say, ϕ0, can be fixed and it is enough to manipulate
with ϕ1 to observe all kinds of asymptotic behavior.

A. Case ϕ0 �= 0 and ϕ1 �= 0

We observed that if both phase shifts are nonzero the
system tends to a stationary state. The parameters η, ϕ0, and
ϕ1 determine the mixing time: The closer ϕ0/1 is to π and η is
to 1/2, the faster the relaxation to a stationary state happens.
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FIG. 1. Evolution of the DTQW on a 5-cycle for η = 1/2, ϕ0 =
π/2, ϕ1 = π/3, and the initial state |3〉 ⊗ |0〉. The system tends
to a maximally mixed state 1

101x ⊗ 1c. The left plot represents the
evolution of the spatial probability distribution for the first 36 steps
(showing every third step). The right plot shows the Bloch ball
representation of the evolution of the coin degree of freedom. Dots
inside the ball correspond to the coin states for the first 100 steps and
one can see that they start to gather in the center.

In addition, the form of the stationary state is determined by
ϕ0 and ϕ1. For ϕ0 �= ϕ1 the systems relaxes to a maximally
mixed state ρ(∞) = 1

2n1x ⊗ 1c. Therefore, for a wide range
of parameters the system tends to a classical behavior. An
example of such behavior for a 5-cycle is presented in Fig. 1.

B. Case ϕ0 = ϕ1 �= 0

For ϕ0 = ϕ1 �= 0 the stationary state may not be maximally
mixed. Its form depends on the initial state. In particular, the
nonmaximally mixed stationary state can be observed if the
system is initialized at the position x = n, i.e., the position at
which the phase shifts are applied. In this case the reduced
state of the position is 1

n1x and the stationary state of the coin
ρc depends on the initial coin state ρ0. We found the fitting

ρ0 =
( 1+cos θ

2 γ sin θ
2 eiα

γ sin θ
2 e−iα 1−cos θ

2

)
→

ρc =
( 1

2 iγ sin θ
2n sin α

−iγ sin θ
2n sin α 1

2

)
, (12)

where γ ∈ [0, 1] determines the purity of the initial state. In
the next section we will provide analytical arguments for this
behavior.

C. Case ϕ0 �= 0 and ϕ1 = 0

The other type of behavior occurs for ϕ1 = 0 (or due to
coin-flip symmetry for ϕ0 = 0). In this case the system does
not tend to a stationary state. Assuming that it starts in a pure
state, it first loses its purity and gets mixed, but not maximally,
and then it continues to evolve in a seemingly reversible way.
This evolution occurs in both position and coin space, i.e.,
the spatial probability distribution and the Bloch vector of
the coin do not freeze but continue to follow a quasiperiodic
sequence of states on a closed orbit (see Fig. 2). Therefore, the
system tends to an attractor which looks like a limit cycle.

The Bloch ball representation allows one to visualize the
reduced asymptotic dynamics on the attractor for the coin

FIG. 2. Evolution of the DTQW on a 3-cycle for η = 1/2, ϕ0 =
π/10, ϕ1 = 0, and the initial state |3〉 ⊗ 1√

2
(|0〉 + e−iπ/3|1〉). The

system does not tend to any stationary distribution. Instead, after a
short period of mixing it arrives at some quasiperiodic evolution. The
left plot represents the evolution of the spatial probability distribution
for the first 120 steps (showing every tenth step). The right plot shows
the Bloch ball representation of the evolution of the coin degree of
freedom. Dots inside the ball correspond to the coin states for the
first 1000 steps and one can see the ellipsoidal attractor pattern that
starts to emerge near the center of the Bloch ball.

degree of freedom. It strongly depends on the size of the
n-cycle on which the DTQW takes place. For example, it can
be an ellipsoid (3-cycle), a set of points forming a pattern
(5-cycle), or a seemingly structureless set of points that is
nevertheless confined to a finite region (7-cycle). These are
depicted in Fig. 3.

IV. ANALYSIS

In this section we provide an explanation of the above be-
haviors by analyzing the properties of the evolution generated
by (10). In particular, we show that the properties of the model
result from the interplay between the spectral decomposition
of the unitary evolution operator (1) and the parameters ϕ0

and ϕ1.

A. Random unitary channel

Let us first observe that

K0U ≡
√

1 − ηU0, (13)

K1U ≡ √
ηU1, (14)

where U0 = U and U1 = VU are both unitary operators. The
first one represents the standard DTQW evolution and the
second one represents the DTQW evolution followed by a
unitary coin-dependent phase shift

V = (1x − |n〉〈n|) ⊗ 1c

+ |n〉〈n| ⊗ (eiϕ0 |0〉〈0| + eiϕ1 |1〉〈1|). (15)

A single step of the evolution is therefore given by

ρ(t + 1) = (1 − η)U0ρ(t )U †
0 + ηU1ρ(t )U †

1 , (16)

i.e., the state evolves according to a randomly chosen unitary
operator, either U0 or U1.
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FIG. 3. The XZ section of the Bloch ball showing the evolution
of the coin degree of freedom from T = 1000 until T = 2000. Dots
correspond to subsequent coin states. The parameters are η = 1/2,
ϕ0 = 0, ϕ1 = π/2, and the initial state |1〉 ⊗ 1√

2
(|0〉 + e−i(π/3)|1〉).

The top left plot shows that in the case of a 3-cycle the Bloch vector
follows the pseudoreversible evolution on an ellipsoid. The top right
and bottom plots show that in the case of a 5-cycle and a 7-cycle
the Bloch vector follows the pseudoreversible evolution on a more
complicated structure.

The stationary states of the above evolution have special
properties. Assume that σ is a stationary state

σ = (1 − η)U0σU †
0 + ηU1σU †

1 . (17)

In this case the following also holds [22,23]:

σ = U0σU †
0 = U1σU †

1 . (18)

The above provides a substantial simplification of the asymp-
totic dynamics problem. In particular, we look for operators
Xλ that are eigenvectors of both transformations

U0XλU †
0 = U1XλU †

1 = λXλ, (19)

where λ is the eigenvalue. For random unitary channels these
eigenvalues obey |λ| � 1 [22,23]. For many steps (t → ∞),

ρ∞(t ) ≈
∑

λ

αXλ
λt Xλ (20)

holds, where

αXλ
= Tr[X †

λ ρ(0)]. (21)

In the above we assumed that the operators Xλ are nor-
malized to one. It is clear that for |λ| < 1 and for large t
one observes λt → 0; hence the sum in (20) should take
into account only operators Xλ for which |λ| = 1. This is
a further simplification, since we do not need to look for
all eigenvectors. Moreover, Eq. (20) clearly shows that the

asymptotic evolution is unitary [22,23]. The set of operators
{Xλ}|λ|=1 gives rise to an attractor of the dynamics. Such
dynamics is oscillatory; however, if all of these operators
correspond to λ = 1, the attractor is a fixed point [22,23].

Plugging U0 = U and U1 = VU into Eq. (19) leads to

UXλU † = λXλ (22)

and

V XλV † = Xλ. (23)

We provide solutions to these equations in the following
sections.

B. Attractor space and asymptotic dynamics
for ϕ0 �= 0 and ϕ1 �= 0

Due to Eqs. (15) and (23), any operator Xλ should have
a particular block form that depends on the choice of ϕ0

and ϕ1. For ϕ0 �= 0, ϕ1 �= 0, and ϕ0 �= ϕ1 the operator V has
eigenvalues eiϕ0 , eiϕ1 , and 1. The last eigenvalue is 2(n − 1)
times degenerate; therefore the block form of Xλ is 2(n −
1) ⊕ 1 ⊕ 1, where the one-dimensional spaces are spanned by
|n〉 ⊗ |0〉 and |n〉 ⊗ |1〉. Such a block form implies that

(〈x| ⊗ 〈c|)Xλ(|n〉 ⊗ |c′〉) = (〈n| ⊗ 〈c′|)Xλ(|x〉 ⊗ |c〉) = 0
(24)

for x = 1, . . . , n − 1 and c, c′ = 0, 1. In addition, the follow-
ing should also hold:

(〈n| ⊗ 〈0|)Xλ(|n〉 ⊗ |1〉) = (〈n| ⊗ 〈1|)Xλ(|n〉 ⊗ |0〉) = 0.

(25)
For ϕ0 = ϕ1 �= 0 the eigenvalues of V are eiϕ0 (two times

degenerate) and 1 [2(n − 1) times degenerate] and the block
form of Xλ is 2(n − 1) ⊕ 2, where the two-dimensional space
is spanned by the same vectors as in the previous case. This
time the operator Xλ needs to obey (24), but not (25).

In the most general form we have

Xλ =
n∑

x,x′=1

1∑
c,c′=0

γx,x′,c,c′ |x〉〈x′| ⊗ |c〉〈c′|. (26)

However, due to (24), γn,x,c,c′ = γx,n,c,c′ = 0 for x =
1, . . . , n − 1 and arbitrary c and c′. Let us plug Eq. (26) into
(22). It is convenient to introduce coin states |±〉 = 1√

2
(|1〉 ±

|0〉) and to occasionally use labels c, c′ = ±. Note that U
transforms |x − 1〉〈x′ − 1| ⊗ |+〉〈+| into |x〉〈x′| ⊗ |0〉〈0|. In
a similar way, |x − 1〉〈x′ + 1| ⊗ |+〉〈−|, |x + 1〉〈x′ − 1| ⊗
|−〉〈+|, and |x + 1〉〈x′ + 1| ⊗ |−〉〈−| are transformed into
|x〉〈x′| ⊗ |0〉〈1|, |x〉〈x′| ⊗ |1〉〈0|, and |x〉〈x′| ⊗ |1〉〈1|, respec-
tively. Therefore, (24) is satisfied if and only if

γx,n−1,c,+ = γx,1,c,− = γn−1,x,+,c = γ1,x,−,c = 0 (27)

for x = 2, . . . , n − 2 and arbitrary c. However, in addition, the
constraint (24) implies that after the application of U ,

γx,n−1,c,1 = γx,1,c,0 = γn−1,x,1,c = γ1,x,0,c = 0 (28)

holds for x = 2, . . . , n − 2 and arbitrary c. Both (27) and (28)
imply that

γx,n−1,c,c′ = γx,1,c,c′ = γn−1,x,c,c′ = γ1,x,c,c′ = 0 (29)

for x = 2, . . . , n − 2 and arbitrary c and c′.
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One can follow the same procedure to show that

γx,n−2,c,c′ = γx,2,c,c′ = γn−2,x,c,c′ = γ2,x,c,c′ = 0 (30)

for x = 3, . . . , n − 3 and arbitrary c and c′. Eventually, one
can show that

γx,n−k,c,c′ = γx,k,c,c′ = γn−k,x,c,c′ = γk,x,c,c′ = 0 (31)

for x = k + 1, . . . , n − k − 1 and arbitrary c and c′. There-
fore, the only operators that satisfy (24) are either

X (1)
λ =

n∑
x=1

1∑
c,c′=0

γ
(1)

x,c,c′ |x〉〈x| ⊗ |c〉〈c′| (32)

or

X (2)
λ =

n∑
x=1

1∑
c,c′=0

γ
(2)

x,c,c′ |x〉〈n − x| ⊗ |c〉〈c′|, (33)

or a linear combination of the two. It is straightforward to
show that

X (1)
λ=1 = 1x ⊗ 1c, (34)

X (2)
λ=1 =

n∑
x=1

|x〉〈n − x| ⊗ σy, (35)

where σy is the Pauli-Y operator and both operators are Her-
mitian and correspond to the eigenvalue λ = 1. We skipped
the normalization coefficients, so the norm Tr{X †X } of both
operators is 2n.

Finally, note that while both operators satisfy the constraint
(24), the constraint (25) is satisfied only by X (1)

λ=1. Therefore,
for ϕ0 �= 0, ϕ1 �= 0, and ϕ0 �= ϕ1 the attractor space consists
of only one operator, which is proportional to identity on the
whole space. As a result, the asymptotic dynamics in this case
is just a fixed point corresponding to a maximally mixed state.
This explains the behavior observed during the numerical
simulations.

On the other hand, for ϕ0 �= 0, ϕ1 �= 0, and ϕ0 = ϕ1 the
asymptotic dynamics is also a fixed point, but this time its
form depends on the initial state ρ0,

ρ∞ = 1

2n

(
X (1)

λ=1 + ξX (2)
λ=1

)
, (36)

where ξ = Tr{X (2)
λ=1ρ0}. This also confirms our observations

drawn from numerical simulations. In particular, the corre-
sponding asymptotic coin state can have a nonzero Bloch
vector that points in the Y direction if it started at position
x = n. The asymptotic state is a separable mixture

ρ∞ = (1 − ξ )
1

2n
1x ⊗ 1c + ξ

2
(ρ̄+ + ρ̄−), (37)

where

ρ̄± = 1

2n

(
1x ±

n∑
x=1

|x〉〈n − x|
)

⊗ (1c ± σy) (38)

is a product of a position and a coin state.

C. Attractor space and asymptotic dynamics
for ϕ0 �= 0 and ϕ1 = 0

For ϕ0 �= 0 and ϕ1 = 0 the eigenvalues of V are eiϕ0 (non-
degenerate) and 1 (2n − 1 times degenerate) and the block
form of Xλ is (2n − 1) ⊕ 1, where the one-dimensional space
is spanned by |n〉 ⊗ |0〉. This time it is convenient to use the
eigenvectors of the DTQW unitary evolution operator U . They
are well known, but for clarity of presentation let us recall
their derivation.

First, it is crucial to note that the evolution operator has
translational symmetry. Therefore, its eigenstates are of the
form

|k±〉 =
(

1√
n

n∑
x=1

ei 2π
n xk|x〉

)
⊗ (αk±|0〉 + βk±|1〉), (39)

where k = 0, 1, . . . , n − 1. As a result, the 2n-dimensional
problem U |k±〉 = λk±|k±〉 simplifies to a two-dimensional
one

1√
2

(
ei(2π/n)k ei(2π/n)k

−e−i 2π
n k e−i(2π/n)k

)(
αk±
βk±

)
= λk±

(
αk±
βk±

)
. (40)

It has the solution

λk± = 1√
2

[
cos

(
2πk

n

)
± i

√
1 + sin2

(
2πk

n

)]
≡ e±iφk ,

(41)
where

φk = π

2
− arctan

⎛
⎝ cos

(
2πk

n

)
√

1 + sin2
(

2πk
n

)
⎞
⎠. (42)

Since we assumed that n is odd, note that, apart from two
eigenvalues λ0± , each of the remaining ones are doubly de-
generate. This is because λk± = λ(n−k)± , or in other words
φk = φn−k (where φ0 = φn). Moreover, the double degeneracy
stems from the choice of the coin operator C. Finally, the
corresponding eigenstates are of the form

|k+〉 =
(

1√
n

n∑
x=1

ei(2π/n)xk|x〉
)

⊗ Nk

(
1

χk − 1

)
, (43)

|k−〉 =
(

1√
n

n∑
x=1

ei(2π/n)xk|x〉
)

⊗ Nk

(
1 − χ∗

k
1

)
, (44)

where

χk =
√

2ei(φk+2πk/n) (45)

and

Nk = 1√
4 − χk − χ∗

k

. (46)

Next we note that due to the degeneracy of |k±〉 and | − k±〉
(for k = 1, . . . , n − 1), one can define the pairs of states that
are also the eigenstates of U ,

|ϕk±〉 = ak±|k±〉 + bk±| − k±〉, (47)
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such that (〈n| ⊗ 〈0|)|ϕk±〉 = 0. The corresponding coefficients
are

ak+ = N−k√
N 2

−k + N 2
k

, (48)

bk+ = −N k√
N 2

−k + N 2
k

, (49)

ak− = N−k (1 − χ∗
−k )√

N 2
−k|1 − χ∗

−k|2 + N 2
k |1 − χ∗

k |2
, (50)

bk− = −N k (1 − χ∗
k )√

N 2
−k|1 − χ∗

−k|2 + N 2
k |1 − χ∗

k |2
. (51)

If one applied V to these states, the action would be the
same as if one applied 1x ⊗ 1c. Therefore, the states |ϕk±〉
are eigenstates of U0 and U1. Moreover, U0|ϕk±〉 = U1|ϕk±〉 =
λk±|ϕk±〉; hence the random unitary channel (16) generates a
unitary evolution of such states.

The above results lead to the immediate conclusion that
the attractor space is a (n − 1)-dimensional Hilbert subspace
spanned by the vectors {|ϕk±〉}(n−1)/2

k=1 . Apart from X (1)
λ=1 = 1x ⊗

1c, the attractor space consists of the operators

Xk±,k′± = |ϕk±〉〈ϕk′± |, (52)

and the corresponding eigenvalues are λk±,k′± = λk±λ∗
k′±

. More-

over, note that X †
k±,k′±

also belongs to the attractor space and the
corresponding eigenvalue is λ∗

k±,k′±
. Therefore, for an initial

state ρ0 such that Tr{Xk±,k′±ρ0} = Tr{X †
k±,k′±

ρ0}∗ �= 0, one can
observe oscillatory asymptotic dynamics with a period deter-
mined by λk±,k′± . In addition, any operator of the form

Xλ=1 =
(n−1)/2∑

k=1

∑
j=±

γk j |ϕk j 〉〈ϕk j | (53)

is in the attractor space and corresponds to the eigenvalue
λ = 1.

Note that each eigenvector |ϕk±〉 corresponds to a different
eigenvalue. For n = 3 there are only two such vectors; there-
fore, the reduced asymptotic dynamics of the coin, presented
in Fig. 3, is relatively simple since it consists of only one
oscillatory term. On the other hand, in higher dimensions
the asymptotic dynamics consists of many oscillations. In
addition, due to the discreteness of the dynamics and the
irrationality of the eigenvalues λk±,k′± , the oscillatory patterns
may take complex forms (see Fig. 3).

Finally, let us show that states |ϕk±〉 are entangled. They are
pure; therefore, the entanglement can be verified by calculat-
ing the purity of the reduced density matrix of the coin degree
of freedom

Trx{|ϕk+〉〈ϕk+|} = N
(

1 c∗
c b

)
, (54)

where

c = χk + χ−k

2
− 1, (55)

b = 1 − c − c∗, (56)

and N = 1/(1 + b). Similarly,

Trx{|ϕk−〉〈ϕk−|} = N
(

b c∗
c 1

)
. (57)

The purity of both reduced density matrices is

P = 1 + 2|c|2 + b2

1 + 2b + b2
; (58)

therefore, the state is entangled if |c|2 < b (the determinant of
both matrices is greater than zero). Simple substitution shows
that the above is equivalent to

cos2

(
2πk

n

)
< 1, (59)

which is always true, since we consider k = 1, . . . , n − 1
(recall that n is odd).

V. EXAMPLE: 3-CYCLE

In this section we discuss in more detail the simplest
case: the asymptotic dynamics on a 3-cycle. Although the
model is described by three parameters, to observe all possible
behaviors, one can fix η and one phase. Therefore, from now
on we fix η = 1/2 and ϕ0 = π and vary ϕ1 ∈ [0, π ]. The
same can be done for general n-cycles. If ϕ1 = 0 one can
observe oscillatory asymptotic dynamics, if ϕ1 = ϕ0 one can
observe relaxation to a nonmaximally mixed stationary state,
and if 0 < ϕ1 < ϕ0 one observes relaxation to a maximally
mixed state. Moreover, it is worth commenting here that the
effect of the asymmetry of η, i.e., when η �= 1/2, only affects
the time which is needed to achieve the final steady state.
The larger the deviation of η from 1/2, the longer the time
needed to achieve an asymptotic behavior for a given n-cycle.
This happens because when η approaches 0 or 1, the unitary
evolution with recurrent dynamical behavior prevails, i.e., the
considered asymptotic behavior disappears.

For simplicity, we assume that the initial state is |ψ0〉 =
|3〉 ⊗ |c0〉, i.e., it is localized at position x = 3 and the initial
state of the coin |c0〉 is pure. In order to visualize the system’s
tendency to the asymptotic dynamics we consider the property

�(t + 1) = Tr{(ρ(t + 1) − ρ(t ))2}, (60)

which measures how close the two consecutive states are. In
addition, we consider the purity of the reduced density matrix
of the coin. In Fig. 4 we show the evolution of �(t ) and
the purity of the reduced density matrix of the coin for two
different initial coin states. We see that the system reaches
equilibrium after fewer than 20 steps.

A. Asymptotic dynamics for ϕ1 �= 0

If 0 < ϕ1 < ϕ0 the asymptotic behavior is state indepen-
dent; there is just one fixed point corresponding to 1

61x ⊗
1c. The case ϕ1 = ϕ0 = π is more interesting because the
asymptotic behavior strongly depends on the initial state. The
asymptotic state, given by Eq. (36), is

ρ∞ = 1
6 [1x ⊗ 1c + ξ (|1〉〈2| + |2〉〈1| + |3〉〈3|) ⊗ σy]. (61)

The above is a mixed state with eigenvalues (1 ± ξ )/6, each
triply degenerate. In particular, the overlap −1 � ξ � 1 is in
this case given by ξ = 〈c0|σy|c0〉. For example, if |c0〉 = |1〉
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FIG. 4. Evolution of �(t ) and the purity of the coin density matrix for the walk on a 3-cycle. The time is discrete; however, for the
purpose of presentation the points are connected. The blue solid line corresponds to the case ϕ1 = 0, the green dotted line to ϕ1 = π/2, and
the orange dashed line to ϕ1 = π . The walk starts in the state |ψ0〉 = |3〉 ⊗ |c0〉. Two initial coin states are considered: |c0〉 = |1〉 (state 1) and
|c0〉 = 1√

2
(|0〉 + i|1〉) (state 2).

the overlap is ξ = 0, whereas for |c0〉 = 1√
2
(|0〉 + i|1〉) the

overlap is ξ = 1. The corresponding asymptotic reduced state
of the coin is

ρc∞ = 1

2
1c + ξ

6
σy, (62)

which confirms our fitting from Eq. (12).

B. Asymptotic dynamics for ϕ1 = 0

For ϕ1 = 0 the asymptotic dynamics is oscillatory, which
is presented in Fig. 4. The attractor space is two dimensional
and is spanned by

|ϕ1+〉 = 1√
7

(
|1〉 ⊗ |0〉 − 1 + i

√
7

2
|1〉 ⊗ |1〉 − |2〉 ⊗ |0〉

+ |2〉 ⊗ |1〉 − 1 − i
√

7

2
|3〉 ⊗ |1〉

)
, (63)

|ϕ1−〉 = 1√
7

(
|1〉 ⊗ |0〉 − 1 − i

√
7

2
|1〉 ⊗ |1〉 − |2〉 ⊗ |0〉

+ |2〉 ⊗ |1〉 − 1 + i
√

7

2
|3〉 ⊗ |1〉

)
, (64)

corresponding to the eigenvalues λ1± = 1
2
√

2
(−1 ± i

√
7).

Note that both vectors are orthogonal to |3〉 ⊗ |0〉.
We define the following operators, which are the eigenvec-

tors of the random unitary evolution:

�+ = |ϕ1+〉〈ϕ1+|, (65)

�− = |ϕ1−〉〈ϕ1−|, (66)

X+ = |ϕ1+〉〈ϕ1−|, (67)

X− = X †
+. (68)

These operators have the following overlap with the initial
state |ψ0〉:

p+ = 〈ψ0|�+|ψ0〉, (69)

p− = 〈ψ0|�−|ψ0〉, (70)

κ = 〈ψ0|X+|ψ0〉. (71)

In addition, we define

Ī = 1x ⊗ 1c − |ϕ1+〉〈ϕ1+| − |ϕ1−〉〈ϕ1−|. (72)

The asymptotic state is given by

ρ∞(t ) = 1 − p+ − p−
4

Ī + p+�+ + p−�−

+ κ�t X+ + κ∗�−t X−, (73)

where � = λ1+λ∗
1− = λ2

1+ . For the initial coin state |c0〉 = |1〉,
the parameters determining the asymptotic state are p+ =
p− = 2/7 and κ = − 1

14 (3 + i
√

7). In general, if the initial
coin state were |c0〉 = α|0〉 + β|1〉, the above parameters
would be multiplied by |β|2.

FIG. 5. Bloch sphere representation of the attractor for the coin
subsystem. The walk is on a 3-cycle, ϕ1 = 0, and the initial state
is |ψ0〉 = |3〉 ⊗ (α|0〉 + β|1〉). The plot represents the asymptotic
trajectory of the corresponding Bloch vector in the XZ plane as a
function of |β|2.
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FIG. 6. Time dependence of the smallest eigenvalue of the par-
tially transposed state ρ�

∞(t ). The initial state is |ψ0〉 = |3〉 ⊗ |1〉 and
the walk is on a 3-cycle with ϕ1 = 0. The points are connected for
better visualization. A negative value implies that the state ρ∞(t ) is
entangled.

Let us also discuss the asymptotic dynamics of the coin
subsystem. Straightforward calculations show that for the
initial coin state |c0〉 = α|0〉 + β|1〉 one gets

Tr{ρc∞ (t )σx} = 21 − 36|β|2 + 4|β|2Re(ω�t )

98
, (74)

Tr{ρc∞ (t )σy} = 0, (75)

Tr{ρc∞ (t )σz} = 21 − 36|β|2 + 32|β|2Re(�t+1)

98
, (76)

where ω = 1 + 3i
√

7. Therefore, the evolution takes place
in the XZ plane of the Bloch sphere and the path of the
corresponding Bloch vector is ellipsoidal (see Fig. 5), which
confirms our previous numerical simulations.

Finally, let us discuss the position-coin entanglement in
the asymptotic state. Since for a 3-cycle the system is made
of a qubit (coin) and a qutrit (position), the entanglement
can be verified via detection of a negative eigenvalue of the
partially transposed state ρ�

∞(t ) [27]. In Fig. 6 we plotted
how the smallest eigenvalue of ρ�

∞(t ) changes in time for the
initial state |ψ0〉 = |3〉 ⊗ |1〉. Such an initial state guarantees

the highest overlap with the attractor space for a system that
is initially a product of a coin state and the position state
|3〉. We see that for most time steps the smallest eigenvalue
is negative; therefore the system is entangled. In particular,
for 30 time steps there are only five instances for which the
system is not entangled, which confirms that the asymptotic
behavior can be nonclassical.

Interestingly, the entanglement oscillations [more pre-
cisely, oscillations of the smallest eigenvalue of ρ�

∞(t )] are
directly related to the oscillatory asymptotic evolution of the
system, thus to the oscillatory evolution of each degree of
freedom. In particular, Eq. (73) shows that the asymptotic
state evolves periodically in time and the time dependence
is given by �±t . The period of oscillations is 2π/arg(�) ≈
1.626. Since the considered evolution is discrete in time,
the observed behavior is effectively quasiperiodic and the
effective period of oscillations is a multiple k × 1.626 that is
close to some integer. The smallest possibility is 8 × 1.626 =
13.008, which is in agreement with the period of oscillations
observed in Fig. 6.

VI. CONCLUSION

We showed that a simple modification of a unitary DTQW
evolution to a nonunitary open dynamics can lead to a col-
lection of diverse asymptotic dynamical behaviors. These
behaviors depend on the parameters of the evolution. For the
majority of parameters the dynamics tends to a maximally
mixed state, which is the same as the stationary state of
the classical random walk on an n-cycle. However, there
are some sets of parameters for which the system exhibits a
nonclassical asymptotic behavior. In particular, we showed
that the system can fall into an attractive orbit that is made
mostly of entangled states. Therefore, the model proposed by
us can be used to generate and sustain entanglement via an
open system evolution.
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