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Li-Jun Zhao,!* Lin Chen,!2-" Yu-Min Guo,*-* Kai Wang,1 Yi Shen,! and Shao-Ming Fei?+§
1School of Mathematical Sciences, Beihang University, Beijing 100191, China
2International Research Institute for Multidisciplinary Science, Beihang University, Beijing 100191, China
3School of Mathematical Sciences, Capital Normal University, Beijing 100048, China
“Max-Planck-Institute for Mathematics in the Sciences, Leipzig 04103, Germany

® (Received 24 July 2019; published 13 November 2019)

We study the trade-off relations satisfied by the genuine tripartite nonlocality in multipartite quantum systems.
From the reduced three-qubit density matrices of the four-qubit generalized Greenberger-Horne-Zeilinger (GHZ)
states and W states (4-qubit entangled state), we find that there exists a trade-off relation among the mean values
of the Svetlichny operators associated with these reduced states. Namely, the genuine three-qubit nonlocalities
are not independent. For four-qubit generalized GHZ states and W states, the summation of all their three-qubit
maximal (squared) mean values of the Svetlichny operator has an upper bound. This bound is better than the
one derived from the upper bounds of individual three-qubit mean values of the Svetlichny operator. Detailed
examples are presented to illustrate the trade-off relation among the three-qubit nonlocalities.

DOLI: 10.1103/PhysRevA.100.052107

I. INTRODUCTION

Nonlocality is a fundamental feature of quantum mechan-
ics [1,2]. It is also a key resource in information processing
[3-6] and is related to various topics in quantum information
theory such as the understanding of classical and quantum
boundary [7,8], the entangling power of nonlocal unitary oper-
ations [9-11], and the efficient decomposition for realization
in quantum circuits [12], unextendible product basis [13], and
positive-partial-transpose entangled states [14].

Bell inequalities and nonlocality have been widely studied
and are shown to be related to the monogamy trade-off
obeyed by bipartite Bell correlations. It is believed that for
general translation-invariant systems, two-qubit states should
not violate the Bell inequality [15]. A nontrivial model is
constructed to confirm that the Bell inequality can be violated
in perfect translation-invariant systems with an even number
of sites [16]. Monogamy relations between the violations of
Bell’s inequalities have been derived in Ref. [17]. Meanwhile,
using the Bloch vectors, a trade-off relation has been derived,
together with a complete classification of four-qudit quantum
states [18].

In the multipartite case, nonlocality displays a much richer
and more complex structure compared with the case of bi-
partite systems. This makes the study and the characteriza-
tion of multipartite nonlocal correlations an interesting but
challenging problem. It comes thus as no surprise that our
understanding of nonlocality in the multipartite setting is
much less advanced than in the bipartite case [19,20].

In Ref. [21], a complete characterization of entanglement
of an entire class of mixed three-qubit states with the same
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symmetry as the Greenberger-Horne-Zeilinger state, known
as GHZ-symmetric states, has been achieved. By analytical
expressions of maximum violation value of most efficient
Bell inequalities, one obtains the conditions of standard non-
locality and genuine nonlocality of this class of states. The
relation between entanglement and nonlocality has been also
discussed for this class of states. Interestingly, genuine entan-
glement of GHZ-symmetric states is necessary to reveal the
standard nonlocality [22]. Nonlocal correlations are proposed
in three-qubit generalized GHZ states and four-qubit general-
ized GHZ states [23]. Meanwhile, all multipartite pure states
that are equivalent to the N-qubit W states (4-qubit entangled
state) under stochastic local operation and classical communi-
cation (SLOCC) can be uniquely determined (among arbitrary
states) from their bipartite marginals [24].

Two overlapping bipartite binary Bell inequalities cannot
be simultaneously violated, which would contradict the usual
no-signaling principle. It is known as the monogamy of
Bell inequality violations. Generally Bell monogamy rela-
tions refer to trade-offs between simultaneous violations of
multiple inequalities. The genuine multipartite nonlocality, as
evidenced by a generalized Svetlichny inequality, does exhibit
monogamy property [25]. There is a complementarity relation
between dichotomic observables leading to the monogamy of
Bell inequality violations [26].

To study the nonlocality of bipartite quantum states, one
considers the Clauser-Horne-Shimony-Holt (CHSH) inequal-
ity [27]. For any two-qubit density matrix p, if there exist local
hidden variable models to describe the system, the CHSH
inequality says that

|Tr(oBchusn)| < 2, )
where Bcysy is the CHSH operator
Bensu=ad-6 @ (b+b)-6+d -6@0b-1) 5,
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with @, @, b, and b/ being the real three-dimensional unit
vectors and ¢ = (o1, 03, 03) being the Pauli matrices. Denote
T the matrix with entries given by t;; = Tr[p(0; ® 0;]. It
has been shown that the maximal violation of the CHSH
inequality (1) is given by [28,29]

(CHSH), = max |Tr(pBcusun)| = 2vM(p),

where M(p) = max; i {u; + i}, j, k € {1,2,3}, u;, ui are
the two largest eigenvalues of the real symmetric matrix 7'T
and ¢ denotes the matrix transposition.

The distribution of nonlocality in multipartite systems
based on the violation of Bell inequality has been investigated
in Refs. [30,31]. For any three-qubit state pspc € HA @ HE @
HC, the maximal violation of CHSH inequality of pairwise
bipartite states satisfies the following trade-off relation:

2 2 2
(CHSH)2 + (CHSH)? + (CHSH)?_<12.  (2)

It implies that for a three-qubit system, it is impossible that all
pairs of qubit states violate the CHSH inequality simultane-
ously.

For genuine tripartite nonlocality, consider three separated
observers Alice, Bob, and Charlie, with their measurement
settings x, y, z and outputs a, b, ¢, respectively. The correla-
tions are said to be local if the joint probability distribution
p(abc|xyz) can be written as

plabcl|xyz) = / dx gq(A)p;.(alx)pr(bly)pr(clz),  (3)

where A is the local random variable and f digr)=1. A
state is called genuine tripartite nonlocal if p(abc|xyz) cannot
be written as

plabclxyz) = f drg(A)p;.(ablxy)p,(clz)
+ / dug(u)p,(belyz)py(alx)

+ / dvg(v)p,(ac|xz)p,(bly), )

where [diq(L)+ [dpq(p)+ [dvg(v) =1. A state sat-
isfying (4) is said to admit the bi-LHV (local hidden vari-
able) model. Svetlichny introduced an inequality to verify the
genuine tripartite nonlocality. There are also two alternative
definitions of n-way nonlocality and a series of Bell-type
inequalities for the detection of three-way nonlocality [32].
Nevertheless, such n-way nonlocalities are strictly weaker
than the Svetlichny’s. The dynamics of the nonlocality mea-
sured by the violation of Svetlichny’s Bell-type inequality has
been investigated in the non-Markovian model [33].

To quantify the nonlocality of three-qubit states, in
Ref. [34], a technique is developed to find the maximal
violation of the Svetlichny inequality, and a tight upper bound
is obtained. In this paper, we explicitly quantify the genuine
tripartite nonlocality of the reduced states of four-qubit pure
states. We first introduce the Svetlichny inequality whose
violation is a signature of the genuine tripartite nonlocality.
According to the maximal value of the Svetlichny operator,
we show that there exists a trade-off relation among the
mean values of the Svetlichny operators associated with the

three-qubit reduced states of GHZ and W states. We present
detailed examples to illustrate the trade-off relation among
such genuine three-qubit nonlocalities. The rest of this paper
is organized as follows. In Sec. II, we introduce the Svetlichny
inequality. In Secs. III and IV, we investigate the trade-off
for four-qubit symmetric pure states in the space spanned by
Dicke states. Finally, we conclude in Sec. V.

II. SVETLICHNY INEQUALITY

We consider the nonlocality test scenario for three-qubit
systems associated with Alice, Bob, and Chalie. Let the
two measurement observables for Alice be A =d -6 and
A’ =@ - &, where @ and @ are unit vectors in R3, and & =
(01, 02, 03) is the vector of Pauli matrices. Each observable
is an Hermitian operator with eigenvalues £1. Similarly, we
have B=5b-G and B = b -G for Bob, and C =¢-46 and
C' = ¢ - & for Charlie. The Svetlichny operator correspond-
ing to measurements A, A’, B, B, C, and C’ is defined by

S:=A(B+B)C+ (B—B)C)
+A'((B—B)C — (B+B)(C)
= ADC+D'CY+A(D'C—DC), (3)

where D =B+ B and D'=B—B'.
If a three-qubit state p admits a bi-LHV model, then it
satisfies the Svetlichny inequality [35],

(S(p)) =Tr(Sp) < 4, (6)

for all possible Svetlichny operators S. Conversely, a three-
qubit state which violates this inequality for some S is genuine
three-qubit nonlocal. To quantify the nonlocality of a three-
qubit system, we need to compute the maximum of the so-
called Svetlichny value,

Smax () = max Tr(Sp), (7N

where the maximization is taken over all possible Svetlichny
operators. Thus, Syax(p) > 4 is a sufficient condition for
p to be genuine three-qubit nonlocal. Moreover, the maxi-
mal Svetlichny value is 4+/2 when the Svetlichny inequal-
ity is maximally violated by, say, the GHZ state (]000) +
|111))/\/§ [35,36]. It has been shown in Ref. [34] that for
any three-qubit state p, the maximal value Sp,x related to the
Svetlichny operator S satisfies

Smax(p) < 4)‘-l 5 (8)

where A, is the maximum singular value of the matrix M =
(mjix), withm;jp = Tr (p(0; ® 0 @ 0y)), i, j. k =1,2, 3.

III. TRADE-OFF RELATIONS WITH RESPECT
TO FOUR-QUBIT SYMMETRIC STATES

Let X = (sin 8, cos ¢y, sin 6, sin ¢,, cos ;) for x =a, d’,
b,b,c,c. Set b+b = 2dcosw and b — b =2d'sinw.
If w+#nwn/2 for n€eZ, b+ and b— D' are mutually
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orthogonal. If w = wn/2 for n € Z, for example, w = /2,
then d’ = b. We can still construct a d which is orthogonal to
d’ in this case. These two vectors d and d’ satisfy

d-d = cos8,cos8y + sinby sin Oy cos(dg — ¢par) = 0,
)
that is, the maximum of cos?6,; + cos? 6, is 1, while_» the
maximum of sin® 6, + sin? 6, is 2. Then, setting D =d - &
and D' = d’ - &, we have

(S(p)) = 2|cosw(ADC), + sinw(AD'C’),
+ sinw(A'D'C), — cos w({A'DC’) ,|

1~ 2\1/2
< 2|({ADC). + (AD'C')?)

172

+((A'D'C)2 +(A'DC)2) 7|, (10)

where the following inequality has been taken into account,
xcosw + ysinw < (¥ +y*)2, (11

with the equality holding when tan w = )y—(, xcosw = 0,x #£0;
orsinw = *£1, ysinw > 0, x = 0. Equation (10) will be used
in the following derivations.

Let us consider the four-qubit generalized Greenberger-
Horne-Zeilinger (GGHZ) state |Y,5.4) and the generalized
maximal slice (MS) state |pupeq):

[Wabea) =cos 8]0000) + sin@|1111),
|baea) = 7510000) + 5[ 111) (cos 610) +sin 6]1)).  (12)

Denote Wypeq = |Wabcd ) (I/Iabcd | and ®ypeq = |¢ubcd ) <¢abcd | as
the corresponding density matrices.

Theorem1. For four-qubit GGHZ state
|Vabcd XWabeal, the violation of the Svetlichny inequality
on any three-qubit states satisfies the following relation:

(S (Wape )+ (S(Wapa ) +{S(Waca)) +(S(Wpea)) < 16] cos 26,
(13)

\Ilubcd =

where Wore = Yard = VYacd = Yped = cos? £1000)(000| +
sin?@[111)(111| are the corresponding reduced three-qubit
states. The equality holds in (13) when

| cosB,cos6, —cosBycosby| =2, 0 =0, =0,0p =m/2.

See the proof in Appendix A.

When the equality holds in (13), namely, we have
Smax (Wane) = Smax(Wabd) = Smax(Wacd) = Smax (Wpea) =
4| cos 20| < 4. It means that in this case all the reduced states
of GGHZ state do not violate the Svetlichny inequality.

For the GGHZ state, the four reduced three-qubit states are
the same. From (8), the maximal value of the Svetlichny oper-
ator is 4 max{cos* 0, sin* 8} for any one of such reduced three-
qubit states. It is remarkable that the upper bound in (13) is
always less or equal to the upper bound 16 max{cos* 6, sin* 8}
derived from (8); see Fig. 1 for 0 € [0, 7].

Generalizing Theorem 1 to general n-qubit case, we have
for n > 4 the following:

Corollary 1. For n-qubit GGHZ state |¥)=
c0s0]00...0)+sinf|11... 1), the violation of the Svetlichny
inequality on any three-qubit states satisfies the following

<S>
sl T -
101
5.
- - - - 6
0.2 0.4 0.6 0.8

FIG. 1. For 6 € [0, Z], the upper bound of the sum of violations
of the Svetlichny inequality for four reduced three-qubit states is
16| cos 260|. It is less or equal to 16 max{cos* 6, sin* 0} = 16cos* @
derived from (8). The blue line is the bound from Theorem 1.
The yellow dashed one comes from (8). When 6 = 0, two bounds
are equal.

relation:

3 SW) < 4(’;) cos20l, (14

1<I<J<K<n

where Wk = Trgg|WXV¥| = cos? #1000)(000|;,x + sin> 6
[111)(111|;yx are the corresponding reduced three-qubit
states associated with qubits /, J, and K, and Trj;% stands for
the trace over the rest qubit systems.

Theorem 2. For four-qubit generallized MS states ®,pqq,
the violation of the Svetlichny inequality on the reduced three-
qubit density matrices satisfies the following relation:

(S(Pape)) + (S(@upa)) + (S(Paca)) + (S(Ppca))
< 4v2|cos 6] + 12| cos? @ + L sin 20, (15)

where

D e = %|OOO) (000] + %cos&|000)(111|
+ 1 cos0[111)(000] + 3|111)(111],
Dups = Puca = Piea
= 11000)(000] + % cos#]110)(110]
+ % cosOsinO|110)(111] + %cos@ sinf|111)(110|
+ 1 sin® O 111)(111]. (16)
See the proof in Appendix B.

Inequality (15) gives a trade off relation of among the
three-qubit genuine nonlocalities in MS states. In fact, by
using (8) for any three-qubit states of a MS state, one has
(S(Pape )+ (S (Papa)) +(S(Paca)) + (S(Ppea)) < 20 cos™ 6.

A7)
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<S>

201

15}

10}

6

2.0 25 3.0 3.5 4.0 4.5
FIG. 2. The blue line is for the upper bound of (15), and the yel-
low dashed line is for the upper bound of (17) for 6 € (7 /2, 37 /2).

Nevertheless, the upper bound of (17) is larger than the one
of (15); see Fig. 2 for 6 € (/2,31 /2).
Now consider the n-qubit generalized MS states,

Wia.n) = J5100...0) + 11 DIy),  (18)

where |) = cos0|0) + sinf|1). Let Z denote a proper subset
of {1,2,...,n}. We define the states with n ¢ Z as the class
I # =m <n) and n € Z as the class II. Then, there are

[(") = (," )] states in class I and (" ) states in class II:

110...00X0...00| + 3|1...11Y1... 11| n¢Z
10...000...00] + 1. 1yX1...1y| neZ
(19)

From Theorem 2, we have the following corollary:

Corollary 2. For n-qubit generallized MS states ® .4, the
violation of the Svetlichny inequality on the reduced three-
qubit density matrices satisfies the following relation:

Z (S(Wk)) < 4\/§<n g 1)Icos9|

1<I<J<K<n

44 n n—1
3 2
where Wy =Trzz| W)} W|=11000) (000|545 111){111];x
for Wk belonging to class I and Wy x=Trz|VNV]
=11000)(000[+4 cos®#[110)(110] + 5 cos & sin6|110)(111]
+ 2 cosfsin@|111)(110] + 1 sin*@[111)(111|  for
belonging to class II.

1
cos’ 6 + 3 sin260|, (20)

Wik

IV. TRADE-OFF RELATIONS FOR THE W-CLASS STATES
For a four-qubit state,
|©) abea = ¢|1000)+510100)+y|0010)+5]0001) + A]0000),
21

with «, B, v, §, A are real numbers. It can generate four-qubit
quantum states by unitary operators. We consider a trade-

off relation between the reduced states of |Yp.q). Denote
G(x,y,u,v) =2[2x + 2y)% + (2x + 8y + 8u2v2]%).

Theorem 3. For any four-qubit state |¢) pcq, the violation of
Svetlichny operators on tripartite states satisfies the following
relation:

(S(Pave)) + (S(Paba)) + (S(Paca)) + (S(Pbca))
g G(leyl» 189 )’) + G(.X2, Y2, :31 5)
+G(x3, 3,8, 1) + G(x4, ya, 8, ¥), (22)

where Pabc = Trd|§0><(/)|abcd, Pabd = Trc|§0)(§0|abcds
TryloX@labeas Poea = Tral@X@lavea, and

xo= (4 +y? =87 = A7),
y = :32)/2 +a2)\2 + %0[2/32 ~|—y2k2+ %a2y2 +,32)\.2,
= (4B -y +8 - 1),
y2 = BRy? + oA + 3077 4 8707 + 3087 + 878,
X = (= B4yt + 67 =A%)
y3 = %a252+0[2)u2 + %a2y2 +52)L2+52)/2+)L2 27

Pacd =

xg = (= + B2+ y? + 87 =A%),
ya = 2B%y7 + BAAT + 8%y + 8707 + yPa + 387 By.

See the proof in Appendix C.

The n-qubit Dicke state is an n-partite symmetric state
defined as [D(n,m)) = ()2 X pep P(10)2" @ [1)O=m),
where P is the permutation group of n elements. The state
|D(4, 1)) is the standard four-qubit W state. When A = 0, the
state (21) reduces to the four-qubit W-class state:

|)w,., = |1000) + B0100) + 3 |0010) + §]0001). (23)
For the state (22) reduces to
(SWape))* + (SWapa ) + (S Waea))? + (S(Whea))?

< 64(1 + &?y?+B262 420287 + 287y +2p78%),  (24)

where Wpe, Wapa, Waca, and Wy, denote the corresponding
reduced states of |¢)(¢|w,,., -

However, from (8) the violation of Svetlichny operators
for tripartite states Wi, Wapa, Waca, and Wy satisfy the

F(G)
140}

120

100}

80

60

0.2 0.4 0.6 0.8 1.0 Y

FIG. 3. In the range of y € [0, 1], the bound F is smaller than G.
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(SWape)? (¢SWapg)?)

15

0.2 0.4 0.6 0.8 1.0

(Swy?
100

80
60
40

20}

(SWieg?? (i)

45
40
35
30
25

20

0.2 0.4 0.6 0.8 1.0

(SWape)? ((Swapa)?)

(SWaca?? ((Swpeg)?) F

02 04

08 10’

FIG. 4. Top left figure: violation of Svetlichny operators for states W, and W,,,. Top right figure: violation of Svetlichny operators
for states W,.; and W.,. Bottom figure: trade-off relation among the nonlocallity of W-class states. For y € [0, 1], the quantities <Swahr)2
(= (Sw,, )2) and (Sw,.y V(= (S )2) vary in a way such that their summation kept to be bounded by F.

following relations:

(SWae)) < Amax(y/4(@p? +ay?), V8y* + (282 — 1)),

(SWapa)) < 4max{y/4(@p? +a8?), /887 + 2y* — 1)),

(SWaea)) < 4max{y/day? + ad?), /8ys2 + (262 — 1)2),

(SWoea)) < 4max{V/4(By? + p52). /8y + 202 — 1)),
(25)

Accountin% to the fact that for positive X and Y, max{X, Y} =

KVHIXHT e has

(SWape)Y> + (SWapa))> + (SWaea))” + (SWaea))”

< 8[l4(ap” +ay?) —8By* — (28° — 1)’
+ [4(aB? + as®) — 888 — (2y% — 1)?|
+14(By + B8%) — 8y 8> — 22 — 1)
+ 4(ay? + as®) — 882 — (287 — 1)}
+8(ap® +ay® +as® + Iy? + 388 +2y8%)
+Qa2—1) + 2B*=1)* + 2y —1)* + (28°—1)?].

(26)

Denote F and G as the right sides of (24) and (26), respec-
tively. Figure 3 shows that the value of F is always less than
Gintherange y € [0, 1]fora = =0and 8% = 1 — y2.

Equation (24) also gives a kind of trade-off relation
among the quantum nonlocality of the reduced states. The
maximum value 704/7 of F is attained at {«, 8, y, 8} =

{0, \/2/7/3/7, /2]7)}. Figure 4 shows the detailed trade-off
relations among (Sw,, )%, (Sw.,,)%, (Sw,.,)?, and (Sw, ,)?. Here,
fora = B =0and §% = 1 — y2, we have (Sy, )> = (Sw,,)>
and (Sw,,)> = (Sw,,)*-

V. CONCLUSIONS

We have studied the trade-off relationship of genuine tri-
partite nonlocality in a multipartite system, and the corre-
sponding tight upper bounds for GHZ-class states and W-
class states have presented, showing that the genuine three-
qubit nonlocalities are not independent in a four-qubit system.
Meanwhile, we have identified that the reduced three-qubit
states of a four-qubit GHZ state cannot violate the Svetchlity
inequality. Our approach may be also used to investigate the
trade-off relations of genuine nonlocalities satisfied by the
reduced tripartite states of a more general multipartite system.
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APPENDIX A: PROOF OF THEOREM 1

By straightforward computation, we have

(ADC)y , = cos?26 cosb, cos0.cosby, (A1)

abc

and similar expressions for (AD'C’)y,, , (A'D'C)y,, and (A'DC’)y,,, . From (10), we have

+ sinw(A'D'C)y,, — cosw(A'DC’)y,,
)|

(S(Wape)) = 2| cos @(ADC)y,, + sinw(AD'C')y,

abe

+ ((A'D'CY,, +(A'DC'Y,

abe

172

abe

<2|((ADCY, + (AD'CY}, )

= 2| cos 26 cos 6, (cos2 0. cos? 6, + cos? 0. cos? Gdr)% + cos 20 cos O, (cos2 0. cos? Oy + cos? 0. cos? Qd)% | (A2)
Since the maximum of cos? 8; + cos? 8, is 1 [37], the above formula can be further reduced to
(S(Wape)) < 2|cos20|(|cosb,| + | cosby|) < 4|cos26]. (A3)

Since  (S(Wape)) = (S(Wapa)) = (S(Waca)) = (S(Wpea)) < 4|cos26| for the state Wapcad = [Vapca \Vabeal, one gets the
inequality (13).

APPENDIX B: PROOF OF THEOREM 2

For the reduced state @, one has the expectation value of the Svetlichny operator,

(ADC) ¢, = cos 8 sin 6, sin 6, sin b, cos (¢, + ¢, + ¢a).

abc

(AD'C"Yo,,., (A'D'C)q,,, and (A'DC’) 4, have similar expressions. Therefore, we have

(S(Pupe)) = 2| cos w(ADC) s, + sinw(AD'C')q,,, + sinw(A'D'C)e,, — cosw(A'DC')q,,
<2|((aDCY}, +(AD'CY; )P+ ((AD'CY;, +(A'DCY; )
< 2|{[cos 8 sin B, sin B, sin B cos (Pa + Pe + da))> + [cos O sin b, sin B, sin Oy cos (¢po + Par + Pa)*}/?
+ {[cos 6 sin O, sin B, sin O cos (Ppy + Pgr + qbc)]2 ~+ [cos 8 cos w sin B, sin B, sin 6. cos (¢ + ¢ + ¢>d)]2}'/2|
< 2|(cos2 0 sin® 6, + cos’ 6 sin® Gdr)l/z + (cos2 6 sin® 6, + cos” 0 sin’ Gd)1/2|
< 4| cos O(sin’ O + sin 6,)!/?|
< 4v/2| cosb). (B1)

When ¢; + ¢; + ¢ =0, where i € {a,d’}, j € {d,d'}, and k € {c, ¢}, one has (S(Pu)) = 4/2| cos 0.
For the reduced state ®,;,, we have
(ADC)y ,, = L cos 8, cos 6,4(sin 26 sin 6. cos ¢, + 2 cos” 0 cos 6.). (B2)

abd 2

The expressions for (AD'C')q,,,, (A’'D'C),,,, and (A’'DC")4,,, are similar. By direct computation, we obtain

(S(Pupa)) = 2| cos ®(ADC)s,,,, + sinw(AD'C')s,,, + sinw(A'D'C)q,,, — cos w(A'DC')q,,

1/2

<2|((4DCY;,,, + (DT, )" + (DY, +1(ADCH;, )

< 4|
< 4| cos® 0 + 1 sin26)]. (B3)
Taking into account that (S(®.pq)) = (S(Puca)) = (S(Ppea)), one proves the theorem.
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APPENDIX C: PROOF OF THEOREM 3

For the reduced state pgp,

Pabe = Tral@X@labea
= ?100)(100] + a8]100)(010] + ay’|100)(001| + aA|100)(000| 4+ 8]010)(100| + £%|010)(010|
+ By1010)(001] + BA[010)(000] + ay[001)(100| + By]001)(010] + 3*|001)(001] -+ y1|001)(000]
+ 821000) (000| 4 A|000)[100) + BA|000) (010] + y1|000) (001| 4 2%]000)000], (C1)
we can obtain
(ADC),,,. = —(a2 + ,32 + y2 —o?— Az)cos 0, cos 6. cos by + 2By cos(¢p. — ¢g)cos b, sin 6, sin 6,
4+ 2a) cos ¢, sin 8, cos 6. cos O + 2a B cos(p, — ¢g) sin b, cos .. sin O,
~+ 2y A cos ¢, cos 6, sin 6. cos 6 + 2ay cos(¢p, — ¢.) sin b, sin O, cos O,

~+ 2B A cos ¢y cos b, cos b, sinb,. (C2)
Let
w=—+p+y?—0> =1, v =0,
uy = 2By cos(Ppe — ¢a), v2 = 20h cos ¢,
uz =20 cos(¢dy — ¢a), vz =2yAcos,
usy =20y cos(¢pa — @),  vs =2BAcos ¢y, (C3)
and

X1 = cosf,cosb.cosb;, y =sinf,sinf.sinby,,

Xy = cosf,sinf,.sinf;, y, = sinf, cosb.cosby,,

x3 = sinf, cosb. sinf,;, y3 = cosf,sinb,. cosby,

X4 = sinf, sin 6. cosf;, y4 = cosB,cosO.sinb,. (C4)
One can verify that ijl (x? + y?) = 1. Hence, we consider the following optimization:

4
max Z uix; + Z v;y; | such that Z (xf +y?) =1. (C5)
J

i j=1

Using the Lagrange multiplier, we have the maximum k = ,/>",(u? + v?). It follows that the maximum is attained when each
cos¢p = =£1.
Therefore, we have

(ADC),,,, < V(@2 + B2+ y? — 0% — A2 +4(B2y2 + o202 + a?B2 + y222 + o2y 2 + B2A%).

Similarly, we have
(AD'C'),,. < V@2 + B+ y2 — 62 — A2 + 4(B22 + a2 + 20282 + y222 + 20292 + B2A2),
(A'D'C),,. < V@2 + B2+ y2 — 62 — A2 + 428292 + o202 + o2B% + y222 + 20292 + B2A2), (C6)
(A'DC),,. < V@2 + B+ y2 — 62 — A2 + 42822 + 0222 + 2022 + 202 + a2y + B2A2).

Therefore, concerning the violation of the Svetlichny inequality with respect to the reduced state p,., we have

(S(pave)) = 2| cosO(ADC),,, + sin6(AD'C'),, + sin0(A'D'C),, —cos0(A'DC'),,.

<2|(tADC)2, +(AD'C)2 ) + (D02, +(A'DCY, )

= 2[(@x1 +8y1)? + (2x + 8y + 882y )7], (C7)

where x| = (0 4+ B2+ y? — 82 — A2)%, y1 = B2y? + &?A% + 302 B2 + 247 + 3ay? + B2A2. Similarly, with respect to the
reduced states pPupd, Paca ANd Ppeq, WE get

(S(papa)) < 2[(2x2 + 8y2)? + (2x + 8y + 882827, (C8)
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WhCI‘CXQ — ((12+,32 _ )/2+52 —)»2)2,)/2 — 132)/2 +Ol2)\,2 + %012,32 +52)\2 + %a282 +82,32.

(S(Paca)) < 2[(2x3 + 8y3)? + (2x3 + 8ys + 88222)2], (C9)
where x3 = (@? — B2+ Y2 + 82 — A2)%, y3 = %a282 + a2+ %azyz + 8202 4+ 8%y + A2y

(S(opea)) < 2[(2x4 + 8y4)7 + (2x4 + 8ys + 85%%)7],

(C10)

where Xy = (—052 + ,32 + )/2 + 52 _ )\-2)2,}74 — %,32)/2 + ’32)\.2 +52y2 + 52)\.2 + y2)\2 + %52/3,}/
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