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Fundamental formulation of light-matter interactions revisited
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The basic physics disciplines of Maxwell’s electrodynamics and Newton’s mechanics have been thoroughly
tested in the laboratory, but they can nevertheless also support nonphysical solutions. The unphysical nature
of some dynamical predictions is demonstrated by the violation of symmetry principles. Symmetries are
fundamental in physics since they establish conservation principles. The procedures explored here involve gauge
transformations that alter basic symmetries, and these alterations are possible because gauge transformations
are not necessarily unitary despite the widespread assumption that they are. That gauge transformations can
change the fundamental physical meaning of a problem despite the preservation of electric and magnetic fields
is a universal proof that potentials are more basic than fields. These conclusions go to the heart of physics.
Problems are not evident when fields are perturbatively weak, but the properties demonstrated here can be critical
in strong-field physics where the electromagnetic potential becomes the dominant influence in interactions with
matter.
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I. INTRODUCTION

The unfamiliar properties of electromagnetism to be de-
scribed here can be overlooked when the electromagnetic
field is no more than a perturbative influence in physical
processes. However, when the electromagnetic field is the
dominant influence, then these properties become profoundly
important. The ever-expanding use of powerful lasers imparts
a fundamental significance to these unfamiliar properties.

Current beliefs about electromagnetism that are challenged
here come from the following demonstrations: (i) electromag-
netic potentials convey more physical information than elec-
tric and magnetic fields, (ii) reliance on electric and magnetic
fields can introduce basic errors, (iii) gauge transformations
alter the properties of a physical system, (iv) gauge transfor-
mations are not unitary, (v) concepts such as the adiabaticity
property in laser phenomena are false and wasteful, (vi) a pro-
posed nondipole correction is unphysical, and (vii) predictions
that follow from the solutions of Maxwell’s equations can be
unphysical. From these results, it is a corollary that Newton’s
mechanics can also support unphysical solutions.

An ancillary matter is the objection to the widespread use
of an intensity parameter that lacks Lorentz invariance, but
is held to be descriptive of otherwise covariantly described
phenomena.

It is emphasized that neglect of basic electrodynamic
principles in applications to strong-field laser processes has
caused important hindrances to the development of the dis-
cipline. These hindrances continue, and can lead to needless
delays in the development of this large and expanding field of
study.
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II. GAUGE TRANSFORMATIONS ALTER
PHYSICAL PROPERTIES

The fact that gauge transformations can fundamentally
alter the physical identity of a system is evident even in the
elementary problem of an electron immersed in a uniform
constant electric field E0.

A possible set of potentials to describe the field is

φ = −r · E0, A = 0. (1)

The Lagrangian that describes the electron in the field is
independent of time. By Noether’s theorem [1], this means
that energy is conserved. Another possible gauge for the
description of the constant field is

φ = 0, A = −cE0t . (2)

The Lagrangian for an electron with the field described by
Eq. (2) has time dependence, but is independent of the spatial
coordinate r. In this case, energy is not conserved but momen-
tum is conserved.

The potentials (1) and (2) have different symmetries, and
represent different physical situations. These differences are
produced by the gauge transformation.

An important case that possesses only one gauge that
satisfies all relevant symmetries was examined in Ref. [2]. The
electromagnetic field examined is a plane-wave field, such as
that of a laser beam. The symmetry that is present in that case
is the propagation property, which requires that the field can
depend on the spacetime 4-vector xμ only as a scalar product
with the propagation 4-vector kμ:

ϕ ≡ kμxμ = ωt − k · r, (3)

where ω is the field frequency and k is the propagation
3-vector. When a scalar potential φ such as that from a
Coulomb potential is also present, then the sole possible gauge
satisfying the necessary symmetry is the radiation gauge (also

2469-9926/2019/100(5)/052105(6) 052105-1 ©2019 American Physical Society

https://orcid.org/0000-0003-1023-1462
http://crossmark.crossref.org/dialog/?doi=10.1103/PhysRevA.100.052105&domain=pdf&date_stamp=2019-11-06
https://doi.org/10.1103/PhysRevA.100.052105


H. R. REISS PHYSICAL REVIEW A 100, 052105 (2019)

called Coulomb gauge), where the 3-vector component A is
descriptive of the plane-wave field, and the scalar potential φ

describes the binding potential, so that the total 4-potential is

Aμ : (φscalar, Aplane wave). (4)

III. GAUGE TRANSFORMATIONS ARE NOT
NECESSARILY UNITARY

The starting point here is the property known as form
invariance, where the Schrödinger equation has the same form
when expressed in terms of the gauge-transformed potentials
as it does in the original gauge. See, for example, Ref. [3].
Form invariance under a gauge transformation generated by
the operator U can be written as

H̃ − ih̄∂t = U (H − ih̄∂t )U
−1, (5)

where H̃ is the transformed Hamiltonian. This gives the
gauge-transformed Hamiltonian

H̃ = UHU −1 − ih̄U (∂tU
−1). (6)

This means that the gauge transformation cannot be a unitary
transformation if U is time-dependent.

For laser-related problems, the time dependence of the
field imparts time dependence to any gauge transformation
employed. Such transformations are not, in general, unitary.

IV. ELECTROMAGNETIC POTENTIALS ARE MORE
FUNDAMENTAL THAN

ELECTRIC AND MAGNETIC FIELDS

The primacy of potentials over fields was first established
by the Aharonov-Bohm effect [4,5]. This relates to a specific
example: the deflection of an electron beam as it moves in
the field-free region around a solenoid. It is the potential that
causes the deflection, since there is a potential but no field out-
side the solenoid. That quantum result stood for many years as
the sole example of the fundamental role of electromagnetic
potentials. A more general case is the demonstration [2] that
there exists an unphysical solution of the Maxwell equations
for a plane-wave field propagating in the vacuum. This has
consequences that are both quantum and classical.

Furthermore, as shown in the following section, when a
solution of the Maxwell equations is unphysical, then the
properties of the potentials are necessary to distinguish phys-
ical from unphysical solutions. This is a universal proof that
potentials are more fundamental than fields.

V. SOLUTIONS OF MAXWELL EQUATIONS ARE NOT
NECESSARILY PHYSICAL

A single unphysical solution of Maxwell’s equations is
sufficient to demonstrate that such unphysical solutions can
exist. The example selected here is significant since it has been
proposed or employed for practical laser-induced processes.

The symmetry condition that applies to all plane-wave
fields, such as laser fields, comes from the Einstein principle
[6] that the speed of light in vacuum is the same in all
inertial frames of reference. This was referred to above as the
propagation property. Its mathematical statement is that the
spacetime 4-vector xμ can occur only as the scalar product

ϕ defined in Eq. (3); that is, the vector potential describing a
plane wave must have the form Aμ(ϕ).

A gauge transformation of the electromagnetic field is
generated by the function �:

Aμ → Ãμ = Aμ + ∂μ�. (7)

The only constraints on � are that it be a scalar function and
that it satisfies the homogeneous wave equation

∂μ∂μ� = 0. (8)

This is sufficient to preserve the electric and magnetic fields.
If Aμ satisfies the Lorenz condition ∂μAμ = 0, the same will
be true of Ãμ. Now consider the generating function [7]

� = −Aμxμ, (9)

which leads to the gauge-transformed potential

Ãμ = −kμ(xνA′
ν ), (10)

where A′
ν is the total derivative of Aν with respect to ϕ: A′

ν =
(d/dϕ)Aν . Equation (10) takes a familiar form if the initial
gauge for Aμ is the radiation gauge. A pure plane-wave field
is described in the radiation gauge by the 4-vector

Aμ(ϕ) : (0, A(ϕ)). (11)

The gauge-transformed 4-vector is then

Ãμ = −k̂μr · E(ϕ), k̂μ ≡ kμ

ω/c
, (12)

where k̂μ is the unit propagation 4-vector that lies on the light
cone.

The form (12) resembles the dipole-approximation scalar
potential r · E(t ) that is so ubiquitous in length-gauge atomic,
molecular, and optical (AMO) physics. This is the reason why
it was examined in Ref. [7] in an attempt to provide a rigorous
basis for the Keldysh approximation [8] of strong-field atomic
physics. It was rejected in Ref. [7] on multiple grounds, the
most obvious of which is that it violates the Einstein principle.
The violation is evident in Eq. (10) from the appearance of xν

in isolation from the propagation 4-vector, and the presence
of the 3-vector r in Eq. (12) that requires an origin for a fixed
spatial coordinate system that is contrary to the nature of a
freely propagating plane-wave field. Nevertheless, the fields
are preserved by the gauge transformation (9), and so are the
Lorenz condition ∂μAμ = 0 and the transversality condition
kμAμ = 0 [7].

The 4-potential in Eq. (10) or (12) has the curious feature
that it lies on the light cone. A plane-wave field is described by
a spacelike 4-potential, not one that is lightlike. Furthermore,
a fundamental property of a charged particle in interaction
with a plane-wave field is the ponderomotive energy [9–11]
Up, which is proportional to AμAμ. However, since kμ is
self-orthogonal,

kμkμ = 0, (13)

the Ãμ of Eq. (10) or (12) predicts a zero ponderomotive
energy for any charged particle.

For all of these reasons, Eqs. (10) and (12) are unphysical.
Nevertheless, they are arrived at by a valid gauge transfor-
mation from a proper plane-wave 4-potential, meaning that
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they predict the same electric and magnetic fields, and hence
they satisfy the same Maxwell equations, since the Maxwell
equations depend only on the fields, not on the potentials.
This is proof that Maxwell’s equations can support unphysical
solutions.

Equations (10) and (12) were first proposed and discussed
in Ref. [7], where the above-mentioned problems were noted,
and Eqs. (10) and (12) were rejected as unphysical. However,
a Heidelberg group [12] took note of these equations and
applied them to practical problems on the grounds that they
described correctly the electric and magnetic fields of laser
beams. Also, a Norwegian group [13], apparently without
knowledge of Ref. [7], proposed these equations as a way
of introducing nondipole corrections into the study of laser-
induced reactions.

While Eq. (10) or (12) is not acceptable for a properly
formulated theory, it is possible that qualitative information
can be attainable from it. It was used in Ref. [14] to estimate
the onset of magnetic effects, which it established correctly.

VI. SOLUTIONS OF NEWTON’S EQUATIONS ARE NOT
NECESSARILY PHYSICAL

Newtonian physics is based on forces, and electromagnetic
forces are dependent on electric and magnetic fields, as given
by the Lorentz force expression

F = q
(

E + v
c
×B

)
. (14)

Hence, the reasoning applied to show the possibility of un-
physical solutions of the Maxwell equations applies as well to
Newton’s equations.

Alternative formulations of classical mechanics, such as
the Lagrangian, Hamiltonian, Hamilton-Jacobi, etc., are based
on potentials, and hence they convey more information than
a force-based theory like Newton’s mechanics. This explains
the common practice in mechanics textbooks to show that
potential-based formalisms imply the Newtonian formalism,
but the reverse is never shown.

VII. PRACTICAL CONSEQUENCES

When approximations are employed in the study of a
physical process, results can be inefficient and possibly er-
roneous if basic symmetries are not observed. An example
from strong-field physics is the phenomenon known as above-
threshold ionization (ATI), which refers to the observation
[15] that ionization by an intense laser beam can exhibit
processes of photon number in addition to, or in place of,
the lowest allowed order predicted by perturbation theory.
AMO physics has experienced accurate and reliable results
from perturbation theory, and the observation of ATI came
as a shock to the AMO community. A recent assessment
by prominent researchers [16] of this unexpected result can
be paraphrased in abbreviated form as “... multiphoton ion-
ization experiments using intense infrared pulses found the
then-amazing result that an ionizing electron often absorbed
substantially more photons than the minimum needed for
ionization. This puzzling behavior led to the term... ATI... The
problem was ultimately solved by computer simulations and
the semiclassical recollision model.” Citations of the relevant

theory place the date for eventual understanding of the 1979
experiment at 1993, a span of 14 years.

The important fact here is that both analytical and numeri-
cal studies employed the dipole approximation, which has the
effect of replacing the propagating laser field by an oscillatory
electric field. This loses the propagation symmetry that is at
the heart of the strong-field processes described above.

From the point of view of propagating fields, the significant
contribution of many photon orders at high field intensi-
ties is obvious, and noted long before the 1979 experiment.
For example, in bound-bound transitions, there is the 1970
statement [17] “...as the intensity gets very high ... higher
order processes become increasingly important.” For photon-
multiphoton pair production in 1971 [18], “... an extremely
high-order process can... dominate the lowest order...”. For
interband transitions in band-gap solids in 1977 [19], “...high-
order processes can be more probable than lower-order pro-
cesses when the intensity is sufficiently high.” The 1980
ionization paper [20], written before the ATI experiment,
describes ATI in detail. Other high-intensity phenomena, such
as channel closing and stabilization, are also discussed in the
early papers just cited.

A. Nondipole corrections

The difficulty of Eq. (10) or (12) for the introduction of
nondipole corrections has been discussed above. A valuable
laboratory project would be to determine the limitations on
such an approach.

A fully relativistic propagating strong-field theory is cer-
tainly applicable for all nondipole, magnetic field, and rela-
tivistic studies. The construction of such a theory was elabo-
rated in Ref. [21] for the Klein-Gordon case, and implemented
in detail in Ref. [22] for the Dirac case.

B. Local constant field approximation (LCFA)

The LCFA is an example of how field-based criteria can
differ from potentials-based criteria. One justification of the
LCFA follows from the field-based observation that the two
Lorentz invariants of plane-wave fields,

E2 − B2 = 0, E · B = 0, (15)

can be satisfied by constant crossed fields [23,24].
When viewed from the standpoint of potentials, the poten-

tials that describe constant crossed fields E0, B0 are

φ = −r · E0, A = − 1
2 r × B0, (16)

|E0| = |B0|, E0 ⊥ B0. (17)

These potentials are unrelated to the Aμ(ϕ) requirement for
propagating fields.

C. Low-frequency limit of a plane wave

Plane waves are characterized by the fact that they propa-
gate in vacuum at the speed of light. This feature is indepen-
dent of frequency. There is a line of reasoning, adopted for
many years in the strong-field community, that there exists a
zero-frequency limit of plane waves, and this limit is simply
a constant electric field. This is inferred from the dipole
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approximation, so that there is no magnetic field present,
distinguishing if from the LCFA.

There is no such thing as a zero-frequency plane wave.
Plane waves propagate at the speed of light, independently
of frequency. An example of a plane-wave phenomenon of
extremely low frequency is the Schumann resonance [25].
This is a naturally occurring phenomenon in which power-
ful lightning strikes generate extremely low-frequency radio
waves that resonate in the cavity formed by the Earth’s surface
and the ionosphere. The lowest mode of this cavity is 7.83 Hz,
corresponding to a wavelength about equal to the circumfer-
ence of the Earth. On a laboratory scale, a plane wave with
a wavelength equal to the circumference of the Earth would
appear to be a constant field. Yet neither a constant crossed
field nor a constant electric field can spread its influence over
the entire planet.

A pernicious consequence of the concept of a low-
frequency limit of a laser field as being a constant electric
field was its use as a criterion for judging the worth of
analytical approximations. For many years, a zero-frequency
limit equivalent to a constant electric field was regarded as a
feature of sufficient importance to reject any theory that did
not possess that property. See, for example, Ref. [26]. This
limit was regarded as an adiabatic limit, and the qualitative
stance was adopted that low-frequency fields should exhibit
this adiabaticity. In actuality, the ω → 0 limit of plane waves
is relativistic [27], not adiabatic. It is the relativistic property
of propagation at the speed of light that distinguishes the
Schumann resonance from a constant field phenomenon.

It is impossible to estimate the cost in valuable research
resources of the long-term application of the adiabaticity test
as a basic criterion, but it is undoubtedly considerable.

VIII. CENTRAL ROLE OF Aμ

The basic properties of a propagating field can be described
entirely by the 4-vector potential. This makes possible a
covariant statement of those properties, including the identity
of the coupling constant of strong-field physics.

The 4-vector potential enters the description of propagating
fields in the three fundamental expressions:

∂μAμ = 0, (18)

kμAμ = 0, (19)

z f ∼ AμAμ. (20)

The first is the Lorenz condition, second is the transversal-
ity condition, and the third enters into the definition of the
strong-field coupling constant z f . The implications of Eq. (20)
seem to be little known, but they are perhaps the most direct
expressions of the ascendancy of potentials over fields.

The Lorenz condition can be expanded into

∂μAμ = ∂

c∂t
φ − ∇ · A = 0. (21)

In the radiation (or Coulomb) gauge, where the scalar poten-
tial φ applies only to longitudinal potentials, the Lorenz con-
dition for the propagating field reduces to ∇ · A = 0, which is
often used as the identifying condition for the radiation gauge.

The expression (19) is the covariant transversality condi-
tion. This is readily shown to infer geometrical transversality:
k · E = 0 and k · B = 0.

The coupling constant of strong-field physics was iden-
tified [9,10] long ago. Strong-field physics as a separate
discipline was established (see Appendix A in Ref. [28])
as a consequence of the demonstration by Dyson [29] that
standard quantum electrodynamics (QED) does not possess a
convergent perturbation expansion. This raised the question of
the convergence properties of an external-field theory, which
represents a strong-field situation in which the number of
photons present during an interaction is large. The expansion
parameter of standard QED is the fine-structure constant α.
A convergence study of the external-field theory revealed the
fact that every appearance of α involved the same intensity-
dependent factor. That is, the expansion parameter is not α,

but rather the product of α with that factor. This product was
labeled z in the original studies [9,10], since an expansion
parameter must be extended into the complex plane to find the
singularities that limit convergence, and z is often used to label
a complex number. In more recent work, z was relabeled z f

to indicate that it is the intensity parameter for free electrons
as opposed to two new parameters z (nonperturbative inten-
sity parameter) and z1 (bound-state intensity parameter) that
arises when scalar potentials exist through interactions of the
electron with binding potentials in addition to the plane-wave
field. See Sec. 1.3 in Ref. [30] for further discussion.

In current terminology, the coupling constant is written

z f = 2Up/mc2, (22)

where Up is the ponderomotive energy, defined as

Up = e2

2mc2
〈|AμAμ|〉. (23)

The angle brackets denote an average over a full cycle of the
field, and the absolute value is taken because Aμ is a spacelike
4-vector.

The quantity z f just identified as the coupling constant
for strong laser fields is known as an intensity parameter for
strong fields, but its additional role as the coupling constant
seems to have escaped general attention.

From Eq. (23), the ponderomotive energy and hence z f are
Lorentz invariants. If z f is to be a proper coupling constant, it
must also be gauge-invariant, and this is not apparent in (23).
However, when Aμ describes a propagating field, then Up has
been shown [11,31] to be gauge-invariant.

An objection is raised here to an intensity parameter that
has found acceptance in the relativistic strong-field literature.
The quantity AμAμ is rendered as |E2|/ω2, and then, since the
square seems unnecessary, the parameter is commonly written
as proportional to E/ω. The intent apparently is to introduce
the electric field in the belief that it is more fundamental
than the 4-vector potential. In addition to its inappropriate
emphasis on the electric field rather than on the 4-vector
potential, this convention is objectionable in a theory that is
founded on covariant expressions. Lorentz invariance is lost
because Lorentz transformation properties of the electric field
E are not the same as for the frequency ω. The quantity z f of
Eq. (22) is Lorentz-invariant, gauge-invariant, and covariant.

052105-4



FUNDAMENTAL FORMULATION OF LIGHT-MATTER … PHYSICAL REVIEW A 100, 052105 (2019)

It is not possible to express AμAμ in terms of fields. When
a quantity can be stated with fields it is always possible to
convert it to potentials because fields are found from potentials
by differentiation—a local procedure. To convert a quantity
stated entirely with potentials, any attempt to convert the
expression to fields will fail because such a procedure requires
integration, which is nonlocal.

The z f parameter also occurs in the intensity-dependent
mass-shell condition for the electron in a strong field. The
usual mass shell of QED is

pμ pμ = (mc)2. (24)

However, all the early studies of strong-field interactions
[9,10,32–35] found the shifted-mass equation

pμ pμ = (mc)2(1 + z f ). (25)

Sarachik and Schappert find [36] that the altered mass shell
expression (25) also exists with classical strong fields.

A further implication of z f becomes clear when it is
expressed in terms of the photon density ρ. This expression
has the form [11]

z f = αρV, (26)

with the fine-structure constant α multiplied by the number
of photons contained in an effective interaction volume V .
This volume is approximately a cylinder of radius given by
the electron Compton wavelength and a length λ given by the
wavelength of the plane-wave field. The Compton wavelength
is the expected interaction length for a free electron, but λ

is a macroscopic length in most laboratory applications. This

is a way to understand why ω → 0 (or λ → ∞) leads to
relativistic behavior and not adiabatic behavior.

The fundamental quantity AμAμ is expressed directly in
terms of the 4-vector potential Aμ. There is no equivalent ex-
pression in terms of the electric field. This simple compelling
fact supports the primacy of potentials over fields.

IX. THE PATH AHEAD

As laser intensities increase and as low-frequency capabil-
ities improve, the lessons contain herein are basic. In brief,
one must consider the true electromagnetic properties of very
strong fields, including especially the requirements that follow
from the propagation property. The dipole approximation,
long a reliable feature of AMO physics, is not to be trusted,
and new criteria must be adopted that are consonant with
relativistic behavior. The penalty for a waste of research
resources that was mentioned in connection with the expla-
nation of ATI by a transverse-field method 14 years earlier
than in terms of the dipole approximation, and the fallacious
adiabaticity demand that also delayed progress by many years,
is a caution that also applies to the LCFA model. Guidance
in research activities allows for some investigation of the
limits of applicability of the proposed nondipole correction of
Eq. (10) or (12), but always with the knowledge that it lacks
support as a reliable method.

Perhaps most important of all is the need to be aware that
electromagnetic potentials are the essential determinants of
the nature of electromagnetic phenomena, and that a depen-
dence on electric and magnetic fields carries existential risks.
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