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We study the heating time in periodically driven D-dimensional systems with interactions that decay with the
distance r as a power law 1/rα . Using linear-response theory, we show that the heating time is exponentially
long as a function of the drive frequency for α > D. For systems that may not obey linear-response theory,
we use a more general Magnus-like expansion to show the existence of quasiconserved observables, which
imply exponentially long heating time, for α > 2D. We also generalize a number of recent state-of-the-art Lieb-
Robinson bounds for power-law systems from two-body interactions to k-body interactions and thereby obtain a
longer heating time than previously established in the literature. Additionally, we conjecture that the gap between
the results from the linear-response theory and the Magnus-like expansion does not have physical implications,
but is, rather, due to the lack of tight Lieb-Robinson bounds for power-law interactions. We show that the gap
vanishes in the presence of a hypothetical, tight bound.
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I. INTRODUCTION

Periodically driven systems can host interesting nonequi-
librium physics, such as Floquet topological insulators [1],
time crystals [2,3], and anomalous Floquet phases [4]. How-
ever, most driven systems eventually heat up to equilibrium,
infinite-temperature states, erasing the interesting features in
the process.

The timescale before heating becomes appreciable in peri-
odically driven systems is known as the heating time, and it
generally exhibits a nontrivial dependence on the frequency
of the drive, ω. Previous works [5–8] established that finite-
range interacting systems under rapid, local [9], periodic
drives could not heat up until after a time t∗ = eO(ω) that is
exponentially long in the drive frequency ω. This slow heating
rate stems at least in part from the locality of the interactions,
which constrains the probability that distant particles collec-
tively absorb an energy quantum h̄ω.

This result also applies to systems with long-range interac-
tions that decay with the distance r, e.g., as a power law 1/rα .
Such systems are of great interest, as they can be implemented
in a wide variety of experiments, such as trapped ions [10,11],
Rydberg atoms [12], ultracold atoms and molecules [13,14],
nitrogen-vacancy centers [15], and superconducting circuits
[16]. On the theoretical side, for spin systems with disordered,
sign-changing power-law couplings, Ref. [17] demonstrated
the exponentially suppressed heating rate when α > D/2,
where D is the dimensionality of the system. Furthermore,
Ref. [8] proved an exponential heating time t∗ = eO(ω) for
general power-law interactions with α > 2D. In contrast, for
D < α < 2D, Ref. [8] only obtained a linear heating time

t∗ = O(ω), while numerical evidence [18] suggests that the
heating time is still exponential within this regime of α.

In this paper, we study the heating time in periodically
driven, power-law-interacting systems with α > D from two
different perspectives. Within linear-response theory, we show
that such systems only heat up after some time exponentially
large as a function of the drive frequency. This result mir-
rors the statement established for finite-range interactions in
Ref. [5] and extends Ref. [17] to systems without disorder
(though at the expense of a smaller range of valid α). The
result also matches the numerical evidence in Ref. [18]. For
generic periodically driven, power-law-interacting systems
that may not obey the linear-response theory—such as those
under a strong drive—we generalize Ref. [6] and construct an
effective time-independent Hamiltonian with power-law inter-
actions. This Hamiltonian closely describes the dynamics of
the driven system up to time t∗, where t∗ is exponentially large
as a function of the drive frequency. We thereby show that the
system cannot heat up until at least after this timescale.

We note that, although our generalization of Ref. [6] is
different from Ref. [8], it is similar in spirit to their arguments.
While Ref. [8] mainly focused on finite-range interactions,
their construction of the effective Hamiltonian by truncating
the Magnus series would also apply to power-law systems.
However, our approach here also provides insights into the
structure of the effective Hamiltonian. In particular, we show
that the effective Hamiltonian is also power-law with the
same exponent α as the driven Hamiltonian. Furthermore,
we prove a stronger, albeit still exponential in ω, bound on
the heating time than one would get from the argument in
Ref. [8]. This improvement relies on the use of state-of-the-art
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Lieb-Robinson (LR) bounds [19,20], which we develop for
this purpose. In particular, through a different technique, we
generalize the bound in Ref. [20] from two-body to many-
body interactions.

Similarly to Ref. [8], our construction requires α > 2D,
in contrast to the numerical evidence in Ref. [18] and to the
wider range of validity α > D found in the linear-response
theory. Because both Ref. [8] and this paper crucially rely
on Lieb-Robinson bounds to prove that the heating time is at
least exponential in ω, we conjecture that the aforementioned
gap stems from the lack of a tight Lieb-Robinson bound for
α > D, and we show the gap would vanish if such a tight
bound were to exist. While the linear-response theory also
utilizes Lieb-Robinson bounds, it has weaker assumptions
and, therefore, does not require a tighter bound to achieve the
desired result of exponentially suppressed heating for α > D.

The remainder of the paper is organized as follows. In
Sec. II, we provide definitions and describe the systems of
interest. In Sec. III, we review various Lieb-Robinson bounds
for power-law systems and extend two of them—including
one with the tightest light cone known to date—to k-body
interactions. In Sec. IV, we prove that in the linear-response
regime the heating time is at least exponential in ω for all α >

D. In Sec. V, we provide a more general analysis using the
Magnus-like expansion and existing Lieb-Robinson bounds to
prove exponentially long heating times for α > 2D. We also
conjecture a tight Lieb-Robinson bound that would extend this
range of validity to α > D. Finally, we summarize and discuss
potential improvements in Sec. VI.

II. SETUP AND DEFINITIONS

We consider a system of N spins in a D-dimensional
square lattice [21]. The system evolves under a periodic, time-
dependent Hamiltonian H (t ) with period T , i.e., H (t + T ) =
H (t ). While the following analysis works for any H (t ) that is a
sum of finite-body interactions, we assume that H (t ) consists
of only two-body interactions for simplicity. Without loss of
generality, we can write H (t ) = H0 + V (t ) as the sum of a
time-independent part H0 and a time-dependent part V (t ) such
that 1

T

∫ T
0 V (t ) = 0. We further assume that H0 and V (t ) are

both power-law Hamiltonians with an exponent α.
Definition 1. A Hamiltonian H on a lattice � is power-

law with an exponent α and a local energy scale η if we can
write H = ∑

X hX , where hX are Hamiltonians supported on
subsets X ⊂ �, such that for any two distinct sites i, j ∈ �

∑
X�i, j

‖hX ‖ � η

dist(i, j)α
, (1)

and the norm ‖h{i}‖ � η for all i ∈ �, where ‖·‖ denotes
the operator norm and dist(i, j) denotes the distance between
sites i, j. In addition, we call supX |X | the local support size,
where |X | is the number of sites in X , and define ‖H‖l =
supi

∑
X�i ‖hX ‖ to be the local norm of H .

In the following discussion, we assume η = 1, which sets
the timescale for the dynamics of the system. In addition, we
will occasionally write H instead of H (t ) for brevity.

III. LIEB-ROBINSON BOUNDS FOR MANY-BODY
POWER-LAW INTERACTIONS

Before discussing the linear-response theory and the
Magnus-like expansion, it is helpful to review the existing LR
bounds for power-law interactions. We will also generalize
several of them from two-body to arbitrary k-body interac-
tions for all k � 2. In particular, we discuss the relations
between the bounds in Refs. [22,23], which imply logarithmic
light cones for all α > D, and the bounds in Refs. [19,20,24],
which imply algebraic light cones for α > 2D.

A. Lieb-Robinson bounds for α > D

First, we discuss the bounds in Refs. [22,23], which are
valid for all α > D. Recall that LR bounds are upper bounds
on the norm of the commutator [A(t ), B], where A, B are two
operators supported on some subsets X,Y of the lattice, and
A(t ) is the time-evolved version of A under a time-dependent
Hamiltonian H . The minimum distance between a site in X
and a site in Y is r = dist(X,Y ) > 0. Since the sets X,Y are
disjoint, [A(0), B] = 0 initially. As time grows, the operator
A(t ) may spread to Y , making the commutator nontrivial.

The first LR bound for power-law interactions was proven
in Ref. [22] by Hastings and Koma (HK):

C(t, r) ≡ ‖[A(t ), B]‖ � C‖A‖‖B‖|X ||Y |evt

rα
, (2)

where r = dist(X,Y ), v ∝ η is a constant that may depend on
α, and C is a constant independent of the system. We shall also
use the same C to denote different inconsequential prefactors.
Setting the commutator norm to a constant yields the light
cone t � log r, which means it takes time at least proportional
to log r for the commutator to reach a given constant value.

Technically, we can already use the HK bound in our later
analysis of the heating time because it applies to k-body
interactions for all k. However, this bound is loose for large α

for two reasons: (i) the velocity v ∝ 2α diverges for α → ∞
and (ii) the light cone is logarithmic for all α, which is un-
physical since larger values of α correspond to shorter-range
interactions and, therefore, we expect slower spreading of
correlations. In particular, we expect the light cone to become
linear for large enough α, given that the interactions are finite
range at α = ∞.

Gong et al. [23] resolved the first challenge and derived a
bound for two-body interactions:

C(t, r) � C‖A‖‖B‖|X ||Y |
(

evt

[(1 − μ)r]α
+ evt−μr

)
, (3)

where μ ∈ (0, 1) is an arbitrary constant. The light cone
implied by this bound is still logarithmic, but the velocity
v is finite for all α. Although the bound in Ref. [23] was
derived only for two-body interactions, their proof applies to
arbitrary k-body interactions, where k is a finite integer (see
Appendix A for a proof).

B. Lieb-Robinson bounds for α > 2D

In this section, we discuss the LR bounds for power-law
interactions with α > 2D. While the bounds in Refs. [22,23]
work for α > D, they all have logarithmic light cones. For
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α > 2D, it is possible to derive tighter algebraic light cones.
The first such bound was proven by Foss-Feig et al. [24] for
two-body interactions (and generalized by Refs. [19,25] to
k-body interactions for all k � 2). A recent bound by Tran
et al. [20], however, gives a tighter algebraic light cone.
Here, we provide the generalization of that bound to k-body
interactions:

C(t, r) � C‖A‖‖B‖(r0 + r)D−1

(
1

(1 − μ)α
tα−D

rα−D−1
+ te− ξr

t

)
,

(4)

where r0 is the radius of the smallest ball that contains X and
μ, ξ ∈ (0, 1) are arbitrary constants. The second term decays
exponentially with r/t and becomes negligible compared to
the first term when r � t . Note that, other than its dependence
on r0, this bound is independent of the size of X,Y and is valid
for α > 2D.

Before we present the proof of Eq. (4), we summarize the
key steps of the proof.

(1) First, divide [0, t] into M equal time intervals and define
t0, t1, . . . , tM such that t0 = 0 and t j+1 − t j = τ = t/M. We
denote by Uti,t j the evolution unitary of the system from time
ti to t j .

(2) Setting Uj = UtM− j ,tM− j+1 for brevity, we can decompose
the evolution of A into M time steps:

A(t ) = U †
MU †

M−1 . . .U †
1 AU1 . . .UM−1UM . (5)

(3) We then use a truncation technique (explicitly described
below) to approximate U †

1 AU1 by some operator A1 such that

‖U †
1 AU1 − A1‖ = ε1, (6)

and A1 is supported on a ball of size at most 	 larger than the
size of the support of A.

(4) Repeat the above approximation for the other time
slices, i.e., find A2, . . . , AM such that

‖U †
2 A1U2 − A2‖ = ε2, (7)

‖U †
3 A2U3 − A3‖ = ε3, (8)

. . .

‖U †
MAM−1UM − AM‖ = εM . (9)

By the end of this process, we have approximated A(t ) by an
operator AM the support of which is at most M	 larger than
the support of A.

(5) By choosing M	 just smaller than r, the support of AM

does not overlap with the support of B. Therefore, [AM, B] =
0, and C(t, r) is at most the total error of the approximation,
i.e.,

ε = ε1 + · · · + εM . (10)

The total error ε, and hence the bound, depends on the
truncation technique used in step 3. In Ref. [20], the authors
used a technique inspired by digital quantum simulation,
which works for α > 2D. However, in addition to truncating
the evolution unitary, the technique in Ref. [20] also truncates
the Hamiltonian. The large error from this truncation makes
it difficult to further improve the bound. Here, we use a dif-
ferent, simpler technique to generalize the bound in Ref. [20]

to k-body interactions for all k � 2. Our technique does not
require truncating the Hamiltonian, eliminating a hurdle for
future improvements on the bound [26].

Let us start without any assumption on the interactions of
the system. We only assume that there already exists a bound
on the commutator norm for the system:

C(t, r) � f (t, r)φ(X )‖A‖‖B‖, (11)

for some function f that increases with t and decreases with
r, where φ(X ) is the boundary area of X .

To truncate U †
1 AU1, we simply trace out the part of U †

1 AU1

that lies outside a ball of radius 	 around the support of A [27]:

A1 ≡ 1

Tr(IB	(A)c )
TrB	(A)c (U †

1 AU1) ⊗ IB	(A)c (12)

=
∫
B	(A)c

dμ(W )W (U †
1 AU1)W †, (13)

where B	(A) is a ball of radius 	 + r0 centered on A and
X c denotes the complement of the set X . In Eq. (13), we
rewrite the trace over B	(A)c as an integral over the unitaries
W supported on B	(A)c and μ(W ) denotes the Haar measure
for the unitaries. Effectively, A1 is the part of A that lies inside
the ball B	(A). The error from approximating U †

1 AU1 with A
is

ε1 = ‖U †
1 AU1 − A1‖

=
∥∥∥∥U †

1 AU1 −
∫
B	(A)c

dμ(W )W (U †
1 AU1)W †

∥∥∥∥
=
∥∥∥∥
∫
B	(A)c

dμ(W )[U †
1 AU1 − W (U †

1 AU1)W †]

∥∥∥∥
�
∫
B	(A)c

dμ(W )‖[U †
1 AU1,W ]‖. (14)

Note that W is a unitary the support of which is at least a
distance 	 from the support of A. Therefore, using the LR
bound in Eq. (11), we have

ε1 = ‖U †
1 AU1 − A1‖ �

∫
B	(A)c

dμ(W )‖A‖φ(X ) f (τ, 	)

= ‖A‖φ(X ) f (τ, 	), (15)

where τ is the time interval of each time slice. In addition, it
is clear from the definition of A1 in Eq. (13) that ‖A1‖ � ‖A‖.
Therefore, the error of the approximation in the jth time slice
is at most

ε j � ‖A‖φ(Xj−1) f (τ, 	), (16)

where Xj is the support of Aj . Thus, the new bound is

C(t, r) � 2‖B‖ε � 2M‖A‖‖B‖φmax f (τ, 	) (17)

= 2‖A‖‖B‖ t

τ
φmax f (τ, 	), (18)

where φmax = max j φ(Xj ) and M has been replaced by t/τ .
Note that the above bound is valid for all choices of t, 	, as
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long as

M = t

τ
<

r

	
, (19)

	 � 1, (20)

τ � t . (21)

The first condition ensures that the operator after the last time
slice AM is still outside the support of B, while the last two are
practical constraints.

Equation (19) is equivalent to 	 < rτ/t . Because f (τ, 	) is
a decreasing function of 	, the bound Eq. (18) would be the
tightest if we chose 	 = ξrτ/t for some ξ less than, but very
close to, 1. The bound Eq. (18) becomes

C(t, r) � 2‖A‖‖B‖φmax f

(
τ,

ξrτ

t

)
t

τ
. (22)

Note that the only free parameter left is τ , which is con-
strained by [see Eqs. (19)–(21)]

t � τ >
t

r
. (23)

We are now ready to generalize the bound in Ref. [20] to
many-body interactions. Plugging the k-body generalization
of Eq. (3) [see Eq. (A13) in Appendix A] into Eq. (22), we
have

C(t, r) � C‖A‖‖B‖φmax
t

τ

×
(

1

(1 − μ)α
evτ(

ξrτ
t

)α−D−1 + evτ− ξrτ
t

)

� C‖A‖‖B‖(r0 + r)D−1 t

τ

×
[

1

(1 − μ)α
evτ

τ α−D−1

(
t

r

)α−D−1

+ evτ− ξrτ
t

]
,

where we have assumed without loss of generality that X is
a ball of radius r0 and replaced φmax ∝ (r0 + r)D−1. Taking
τ = 1 to be a constant, we obtain a bound that is valid for all
α > D + 1:

C(t, r) � C‖A‖‖B‖(r0 + r)D−1

(
1

(1 − μ)α
tα−D

rα−D−1
+ te− ξr

t

)
.

In particular, if r0 is a constant, we can simplify (in the limit
of large t, r) to

C(t, r) � C‖A‖‖B‖
(

1

(1 − μ)α
tα−D

rα−2D
+ trD−1e− ξr

t

)
. (24)

Note that although the bound is, in principle, valid for α >

D + 1, it is only useful for α > 2D.

IV. LINEAR-RESPONSE THEORY

In this section, we present the derivation of an exponen-
tially suppressed heating rate for periodically driven, power-
law Hamiltonians under the assumptions of linear-response
theory. We will assume that the drive V (t ) is harmonic and
local. That is, we can write V (t ) = gcos(ωt )O, for some small
constant g and some time-independent operator O = ∑

i Oi

composed of local operators Oi. For simplicity, we assume
each Oi is supported on a single site i (but our results also hold
when Oi is supported on a finite number of sites around i). We
also assume the system is initially in a thermal state ρβ of
H0 with a temperature β−1. Within the linear-response theory,
the energy absorption rate is proportional to the dissipative
(imaginary) part of the response function σ (ω) = ∑

i, j σi j (ω)
[5], where

σi j (ω) = 1

2

∫ ∞

−∞
dteiωt 〈[Oi(t ), Oj (0)]〉β, (25)

〈O〉β ≡ Tr(ρβO) denotes the thermal average of O, and
O(t ) = eiH0t Oe−iH0t is the time-evolved version of O
under H0.

The authors of Ref. [5] showed that there exists a constant
κ such that for all i, j and for all ω, δω > 0 the (i, j) entry of
σ (ω) can be bounded as

|σi j ([ω,ω + δω])| � e−κω, (26)

where f ([ω1, ω2]) ≡ ∫ ω2

ω1
f (ω)dω. Although the statement of

Ref. [5] applies to Hamiltonians with finite-range interactions,
we show in Appendix B1 that it also holds for power-law
Hamiltonians for all α � 0.

In principle, Eq. (26) already implies that the absorption
rate of a finite system is exponentially small as a function
of the frequency ω. However, since there are N sites in
the system, naively applying Eq. (26) by summing over the
indices i, j yields a superextensive heating rate ∼N2e−κω.
Such superextensivity is nonphysical, as it would imply that
a local drive instigates a divergent absorption per site in the
thermodynamic limit. To address this, Ref. [5] introduced a
bound complementary to Eq. (26)—based on Lieb-Robinson
bounds for finite-range interactions [28]—that implies the
contribution from the off-diagonal terms is also exponentially
suppressed with the distance ri j between the sites i, j.

The case of power-law-interacting Hamiltonians is some-
what more involved. Due to the long-range interaction, the
commutator 〈[Oi(t ), Oj]〉β can decay more slowly as a func-
tion of ri j than in the finite-range case. Fortunately, we show
that it still decays sufficiently quickly for us to recover the
extensive, exponentially small heating rate for power-law
Hamiltonians. We provide the technical proof in Appendix
B 2, but a high-level argument goes as follows.

Lieb-Robinson bounds for power-law systems with α > D
[19,20,22,23] imply that the contributions from the (i, j) en-
tries are suppressed by 1/rα

i j . Therefore, the total contribution
to σ ([ω,ω + δω]) from the pairs (i, j) with ri j larger than
some distance r∗ (to be chosen later) is at most∑

i, j:ri j�r∗

C

rα
i j

� CN

rα−D∗
, (27)

where we use the same notation C to denote different con-
stants that are independent of ri j, t, and N . The factor N
comes from summing over i and the factor rD

∗ comes from
summing over j at least a distance r∗ from i.

For ri j � r∗, we simply use the bound in Eq. (26) to bound
their contributions:∑

i, j:ri j�r∗

Ce−κω � CNrD
∗ e−κω, (28)
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where NrD
∗ is roughly the number of pairs (i, j) separated by

distances less than r∗. Combining Eq. (27) with Eq. (28), we
get |σ ([ω,ω + δω])| � CNrD

∗ (e−κω + r−α
∗ ). Finally, choos-

ing r∗ = exp(κω/α), we obtain a bound on the absorption
rate:

|σ ([ω,ω + δω])| � CN exp

[
−
(

1 − D

α

)
κω

]
, (29)

which decays exponentially quickly with ω as long as α > D.
Thus, we have shown that, within the linear-response theory,
the heating rate of power-law-interacting Hamiltonians obeys
a bound that is qualitatively similar to that for finite-range
interactions: the heating rate is extensive, but exponentially
small in the driving frequency.

V. MAGNUS-LIKE EXPANSION

We now present a more general approach to proving a
bound on the heating time in a system governed by a pe-
riodically driven, power-law Hamiltonian. In particular, this
approach remains correct for strongly driven systems, where
linear-response theory does not apply. We generalize Ref. [6]
and construct an effective time-independent Hamiltonian H∗.
The leading terms of H∗ resemble the effective Hamiltonian
one would get from the Magnus expansion [29–31]. Using
Lieb-Robinson bounds for power-law interactions, we show
that the evolution of local observables under H∗ well approx-
imates the exact evolution up to time t∗, which is exponen-
tially long as a function of the drive frequency. Additionally,
the existence of the effective Hamiltonian H∗ also implies
a prethermalization window during which the system could
thermalize with respect to H∗ before eventually heating up
after time t∗.

Following Ref. [6], we construct a periodic unitary trans-
formation Q(t ) such that Q(t + T ) = Q(t ) and Q(0) = I.
After moving into the frame rotated by Q(t ), we show that
the transformed Hamiltonian is nearly time independent and
the norm of the residual time-dependent part is exponentially
small as a function of the frequency.

To construct the unitary Q(t ), we note that the state of the
system in the rotated frame, |φ(t )〉 = Q†(t ) |ψ (t )〉, obeys the
Schrödinger equation with a transformed Hamiltonian H ′(t )
(h̄ = 1):

i∂t |φ(t )〉 = (Q†HQ − iQ†∂t Q) |φ(t )〉 ≡ H ′(t ) |φ(t )〉 . (30)

We write Q = e�, where �(t ) is a periodic, anti-Hermitian
operator, i.e., �(t ) = �(t + T ) and �† = −�. We then as-
sume that the period T is small so that we may expand
�(t ) = ∑∞

q=1 �q in orders of T , where ‖�q‖ = O(T q), and
we will eventually choose �q such that the transformed
Hamiltonian H ′(t ) is almost time-independent. In particular,
we shall truncate the expansion of �(t ) up to order qmax and
choose �q recursively for all q � qmax to minimize the norm
of the driving term in H ′(t ).

We can rewrite H ′(t ) from Eq. (30) as

H ′(t ) = e−ad�[H0 + V (t )] − i
1 − e−ad�

ad�

∂t�, (31)

with ad�A = [�, A]. From Eq. (31), we can define H ′
q(t )

for q = 0, 1, . . . such that H ′ = ∑∞
q=0 H ′

q(t ) is expanded in

powers of T :

H ′
q(t ) = Gq(t ) − i∂t�q+1(t ), (32)

where we define Gq via �1, . . . , �q as follows:

Gq(t ) =
q∑

k=1

(−1)k

k!

∑
1 � i1, . . . , ik � q
i1 + · · · + ik = q

ad�i1
. . . ad�ik

H (t )

+ i
q∑

k=1

(−1)k+1

(k + 1)!

∑
1 � i1, . . . , ik , m � q + 1
i1 + · · · + ik + m = q + 1

× ad�i1
. . . ad�ik

∂t�m, (33)

and G0(t ) = H (t ). Now, recall that �q(t ) are operators that
we can choose. From Eq. (32), we choose �1(t ) such that it
cancels out the time-dependent part of G0(t ), making H ′

0 time
independent. This choice of �1(t ) also defines G1(t ). We then
choose �2(t ) to eliminate the time-dependent part of G1(t ). In
general, we choose �q successively from q = 1 to some q =
qmax (to be specified later) so that H ′

q are time independent for
all q < qmax. Therefore, the remaining time-dependent part of
the transformed Hamiltonian H ′(t ) must be at least O(T qmax ).
Specifically, for q < qmax, we choose the following:

H̄ ′
q = 1

T

∫ T

0
Gq(t )dt, (34)

�q+1(t ) = −i
∫ t

0
(Gq(t ′) − H̄ ′

q)dt ′. (35)

Here, Eq. (35) ensures that Eq. (32) becomes H ′
q(t ) = H̄ ′

q, and,
thus, that H ′

q is time independent for all q < qmax. On the other
hand, for q � qmax, we choose �q+1(t ) = 0, so that H ′

q(t ) =
Gq(t ). By this construction, we can rewrite the transformed
Hamiltonian into the sum of a time-independent Hamiltonian
H∗ and a drive V ′(t ) that contains higher orders in T :

H ′(t ) =
∞∑

q=0

Hq(t ) =
qmax−1∑

q=0

H̄ ′
q

︸ ︷︷ ︸
≡H∗

+
∞∑

q=qmax

Gq(t )

︸ ︷︷ ︸
≡V ′(t )

. (36)

As a result of the transformation, the driving term V ′(t ) is
now O(T qmax ). As discussed before, we will eventually choose
the cutoff qmax to minimize the norm of the residual drive
‖V ′(t )‖.

To estimate the norm of V ′(t ), elucidating its dependence
on qmax, we first need more information on the structure of
the �q(t ) for all 1 � q � qmax. In particular, we show that Gq

and �q are power-law-interacting Hamiltonians. To do so, we
first need to define some more notation. We denote by Hα the
set of power-law Hamiltonians with exponent α and a local
energy scale η = 1. In addition, we denote by H(k)

α the subset
of Hα which contains all power-law Hamiltonians the local
support size of which (see Definition 1) is at most k + 1. For
a real positive constant a, we also denote by aHα the set of
Hamiltonians H such that a−1H is a power-law Hamiltonian
with the same exponent α.

The following lemma says that Gq and �q are also power-
law Hamiltonians up to a prefactor.
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Lemma 1. For all q < qmax, we have

Gq ∈ T qq!cqλqH(q+1)
α , (37)

∂t�q+1 ∈ T qq!cqλqH(q+1)
α , (38)

�q+1 ∈ T q+1q!cqλqH(q+1)
α , (39)

where c, λ are constants to be defined later.
Observe that for any order q the last two bounds, i.e.,

Eqs. (38) and (39), follow immediately from Eq. (37) and
the definition of �q. Note that Lemma 1 holds for G0(t ) =
H (t ) ∈ H(1)

α . It is also straightforward to prove Lemma 1
inductively on q. The factor T q comes from the constraint in
Eq. (33) that i1 + · · · + ik = q, along with the fact that each
�iν is O(T iν ) for all ν = 1, . . . , k. Similarly, the factor of q!
is combinatorial and comes from the nested commutators in
Eq. (33). We provide a more technical proof of Lemma 1 in
Appendix C.

As a consequence of Lemma 1, we can bound the local
norms of the operators:

‖Gq‖l � T qq!cqλq+1 � λe
√

q

(
T qcλ

e

)q

, (40)

‖�q‖l � T q(q − 1)!cq−1λq � e

c

(
T qcλ

e

)q

. (41)

There are two competing factors in the bounds: T q, which
decreases with q, and q! ∼ qq, which increases with q. This
suggests that the optimal choice for qmax—in order to mini-
mize the local norm in Eq. (40)—should be around e/(cT λ).
In the following, we shall choose

qmax = ω∗ ≡ e

cT λ
e−κ , (42)

for some κ > ln 2. Note also that ω∗ is equal to frequency
ω = 1/T up to a constant. With this choice of qmax, Eq. (37)
reduces to

Gq ∈ λe
√

qe−κqH(q+1)
α , (43)

for all q < qmax = ω∗. By summing over Gq with q < ω∗,
we find that the effective time-independent Hamiltonian H∗
[see Eq. (36)] is also a power-law Hamiltonian, i.e., H∗ ∈
CH(qmax )

α ∈ CHα, up to a constant C that may depend only on
κ .

Similarly, we find from Eq. (39) that �q ∈ e/(cλ)e−κqH(q)
α

for all q � ω∗. Plugging into the definition of Gq and noting
that we choose �q = 0 for all q � qmax, we find an identity
similar to Eq. (43), but for q � ω∗:

Gq ∈ Ce−κ ′qHα, (44)

where κ ′ > κ − ln 2 is a constant. Summing over Gq with
q � qmax [see Eq. (36)], we again find that the residual drive
V ′(t ) is a power-law Hamiltonian up to a prefactor that decays
exponentially with ω∗:

V ′(t ) ∈ Ce−κ ′ω∗Hα, (45)

where C and κ ′ are some positive constants. As a result,
the local norm of V ′(t ) decreases exponentially with ω∗:
‖V ′(t )‖l � Cλe−κ ′ω∗ .

As discussed earlier, Eqs. (36) and (45) imply the existence
of an effective time-independent Hamiltonian H∗ such that
the difference ‖Q†HQ − H∗‖ = ‖V ′‖ is exponentially small
as a function of ω∗ ∝ 1/T . However, even if ‖V ′‖l is ex-
ponentially small, ‖V ′‖ still diverges in the thermodynamic
limit. Therefore, in order to characterize the heating rate of
the Hamiltonian, it is necessary to investigate the evolution of
a local observable O under H (t ). We show that the evolution is
well described by the effective time-independent Hamiltonian
H∗ at stroboscopic times t = TZ. Without loss of generality,
we assume the local observable O is supported on a single site
and ‖O‖ = 1. Following a similar technique used in Abanin
et al. [6], we write the difference between the approximate
evolution under the effective Hamiltonian and the exact evo-
lution (in the rotated frame):

δ = Q(t )U †(t )OU (t )Q†(t ) − eitH∗Oe−itH∗

= i
∫ t

0
dsW †(s, t )[V ′(s), eisH∗Oe−isH∗ ]W (s, t ),

where U (t ) = T exp [−i
∫ t

0 H (t ′)dt ′] is the time evolution
generated by the full Hamiltonian H (t ) and W (s, t ) =
T exp [−i

∫ t
s H ′(t ′)dt ′] is the evolution from time s to t gener-

ated by H ′(t ). We can then bound the norm of the difference
using the triangle inequality:

‖δ‖ �
∫ t

0
ds‖[V ′(s), eisH∗Oe−isH∗ ]‖. (46)

We can bound the right-hand side of Eq. (46) using Lieb-
Robinson bounds for power-law interactions.

First, we provide an intuitive explanation why the norm of
δ is small for small time. Recall that the operator O is initially
localized on a single site. At small time, it is still quasilocal
and therefore significantly noncommutative with only a small
number of terms of V ′ lying inside the “light cone” generated
by the evolution under H∗. There are several Lieb-Robinson
bounds for power-law interactions [19,20,23,24] [see also
Eqs. (A13) and (4)]; each provides a different estimate for the
shape of the light cone, resulting in a different bound for the
heating time.

If the light cone is logarithmic (as bounded in Ref. [23]),
the commutator norm in Eq. (46) would grow exponentially
quickly with time and eventually negate the exponentially
small factor exp(−κ ′ω∗) from ‖V ′‖l . Therefore, in such cases,
the system could potentially heat up only after t∗ ∝ ω∗ =
1/T . On the other hand, if we use the Lieb-Robinson bounds
that imply algebraic light cones (as in Refs. [19,20,24] for
α > 2D), the commutator norm only grows subexponentially
with time, and we can expect to recover the exponentially long
heating time t∗ ∝ eκ ′ω∗ derived for finite-range interactions
[6,7].

Appendix D contains the mathematical details, but the
results of this analysis are as follows. Using the bound in Gong
et al. [23] [or its k-body generalization Eq. (A12)], which
holds for α > D and has a logarithmic light cone t � log r,
yields

‖δ‖ � Ce−κ ′ω∗e2Dvt/α. (47)

Thus, the difference δ is only small for time t∗ ∝ ω∗ ∝ 1/T .
This behavior is expected because the region inside the light
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cone implied by Gong et al.’s bound expands exponentially
quickly with time.

If instead we use the bound in Else et al. [19], we find

‖δ‖ � Ce−κ ′ω∗ξ

(
D

1 − σ

)
t

D
1−σ

+1, (48)

where ξ (x) ≡ 1
x 2x�(x) and � is the Gamma function. Thus,

the difference is small up to an exponentially long time t∗ ∝
eκ ′ω∗ 1−σ

D+1−σ . The result holds for α > D(1 + 1
σ

), where σ can
be chosen arbitrarily close to 1. This condition is effectively
equivalent to α > 2D (see Appendix D for a discussion of the
limit σ → 1−).

We may also use the bound in Tran et al. [20] [see Eq. (24)
for its generalization to k-body interactions], which gives

‖δ‖ � Ce−κ ′ω∗t
D(α−D)
α−2D +1. (49)

Thus, the difference is small up to an exponentially long time
t∗ ∝ exp (κ ′ω∗ α−2D

α(D+1)−D(D+2) ). This analysis works only when
α > 3D, but, within this regime, the exponent of the heating
time using this bound is larger than obtained in Eq. (48).
This is due to the tradeoff between the tail and the light cone
between the bounds in Refs. [19,20]. See Appendix D for
more details.

Finally, we conjecture a tight bound for power-law inter-
actions that holds for all α > D, and we will provide the
full derivation of δ for such a bound. First, we consider the
light cone of such a bound. Given the best known protocols
for quantum information transfer [32], the best light cone we
could hope for would be t � rα−D for D + 1 > α > D and
linear for α > D + 1. In the following, we assume the light
cone of the conjectured bound is t � r1/β for some constant
β � 1 for all α > D.

Next, we consider the tail of the bound, i.e., how the
conjectured bound decays with the distance at a fixed time.
Since it is always possible to signal between two sites using
their direct interaction, which is of strength 1/rα , the tail of
the bound cannot decay faster than 1/rα . We shall assume that
the bound decays with the distance exactly as 1/rα .

For simplicity, we assume that the conjectured bound takes
the form

‖[A(t ), B]‖ � C‖A‖‖B‖
(

tβ

r

)α

, (50)

which manifestly has a light cone t � r1/β and decays as 1/rα

with the distance. Let r∗(t ) = tβ be the light cone boundary
and consider the sum inside and outside the light cone.

For convenience, denote V ′′ = C−1eκ ′ω∗V ′, H̄ ′′ = γ −1H∗
so that V ′′, H̄ ′′ ∈ Hα . We can rewrite the bound on ‖δ‖ as

‖δ‖ � Ce−κ ′ω∗
∫ t

0
ds‖[V ′′(s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖. (51)

Now write V ′′(s) = ∑∞
r=0 V ′′

r (s), where V ′′
r (s) ≡∑

X :dist(X,O)∈[r,r+1) hX denotes the terms of V ′′(s) supported
on subsets exactly a distance between r and r + 1 away from
O. Since V ′′(s) is a power-law Hamiltonian, it follows that
‖V ′′

r (t )‖ � CrD−1. Writing the sum this way, we can now
separate terms inside and outside of the light cone.

For the terms inside the light cone, we bound∑
r�r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� 2
∑

r�r∗(s)

‖V ′′
r (s)‖‖O‖ � Cr∗(s)D � CsβD. (52)

For the terms outside the light cone, we use the conjectured
bound: ∑

r>r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� C
∑

r>r∗(s)

‖V ′′
r (s)‖‖O‖ sβα

rα
(53)

� C
∑

r>r∗(s)

sβα

rα−D+1
� C

sβα

r∗(s)α−D
= CsβD. (54)

Combining Eqs. (52) and (54), we get

‖δ‖ � Ce−κ ′ω∗tβD+1, (55)

which implies an exponential heating time as a function of
ω∗, i.e., t∗ ∝ exp[κ ′ω∗/(βD + 1)]. Recall that the best values
of β for which we can hope are β = 1/(α − D) when D +
1 > α > D and β = 1 when α > D + 1. Note also that the
exponential heating time would hold for all α > D, matching
the result given by the linear-response theory.

VI. CONCLUSION AND OUTLOOK

Our paper generalizes the results of Refs. [5–7] for finite-
range interactions to power-law interactions. Using two inde-
pendent approaches, we show that periodically driven, power-
law systems with a large enough exponent α can only heat
up after time that is exponentially long in the drive frequency.
The results only hold if α is larger than some critical value αc.
Physically, the existence of αc coincides with our expectation
that power-law interactions with a large enough exponent α

are effectively short range.
However, the two approaches imply different values for αc.

While both the Magnus expansion in Ref. [8] and the Magnus-
like expansion in this paper independently suggest αc = 2D,
the linear-response theory implies αc = D. We conjecture that
this gap is due to the lack of tighter Lieb-Robinson bounds
for power-law interactions, especially for α between D and
2D. Indeed, we demonstrated in Sec. V that a tight Lieb-
Robinson bound for this range of α implies an exponentially
long heating time for all α > D, matching the result from
the linear-response approach, as well as previous numerical
evidence for systems with α < 2D [18]. Therefore, proving a
tight Lieb-Robinson bound has important implications for the
heating time of power-law-interacting systems.

Note added. Recently, we became aware of a related
complementary work on long-range prethermal phases [33].
We also became aware of a tighter Lieb-Robinson bound for
power-law interactions [34]. However, the bound has a range
of validity α > 2 in one dimension and, thus, does not close
the aforementioned gap.
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APPENDIX A: GENERALIZATION OF GONG et al. [23]
TO MANY-BODY INTERACTIONS

In this section, we prove Eq. (3) and thereby generalize the
bound in Gong et al. [23] from two-body to k-body interac-
tions, where k is an arbitrary finite integer. This bound is an
ingredient in the generalization of the tighter Lieb-Robinson
bound in Tran et al. [20] to k-body interactions.

Proof. We recall that the bound in Ref. [23] is based on the
Hastings and Koma series [22]:

‖[A(t ), B]‖ � 2‖A‖‖B‖
∞∑

k=1

(2t )k

k!

⎡
⎢⎢⎢⎣

∑
Z1:Z1∩X �=∅

∑
Z2:Z1∩Z2 �=∅

· · ·
∑

Zk : Zk−1 ∩ Zk �= ∅,

Zk ∩ Y �= ∅

k∏
i=1

‖hZi‖

⎤
⎥⎥⎥⎦, (A1)

and we can bound the summation within the square brackets as

∑
Z1:Z1∩X �=∅

∑
Z2:Z1∩Z2 �=∅

· · ·
∑

Zk : Zk−1 ∩ Zk �= ∅,

Zk ∩ Y �= ∅

k∏
i=1

‖hZi‖ �
∑
i∈X

∑
j∈Y

∑
z1

∑
z2

· · ·
∑
zk−1

( ∑
Z1�i,z1

‖hZ1‖
)

. . .

⎛
⎝ ∑

Zk � zk−1, j

‖hZk ‖
⎞
⎠

�
∑
i∈X

∑
j∈Y

λkJ k (i, j), (A2)

where J k (i, j) is given by the k-fold convolution of the hopping terms Ji j ≡ 1
rα

i j
[where ri j = dist(i, j)] for i �= j and Jii = 1 for

all i:

J k (i, j) ≡
∑

z1

∑
z2

· · ·
∑
zk−1

Jiz1 Jz1z2 . . . Jzk−1 j .

Note that Eq. (A2) comes from Definition 1:
∑

Z�i, j ‖hZ‖ � 1/rα
i j = Ji j for i �= j and∑

Z�i

‖hZ‖ �
∑

j

∑
Z�i, j

‖hZ‖ � λ, (A3)

where λ = 1 +∑
j �=i 1/rα

i j is a finite constant for all α > D. This equation is exactly Eq. (3) in Ref. [23].
For simplicity, we consider D = 1 in the following discussion. To put a bound on J k (i, j), we use the same trick as in

Ref. [23]. First, we consider the sum over z1: ∑
z1

Jiz1 Jz1z2 � 2
∑

z1:riz1 �rz1 j

Jiz1 Jz1z2 , (A4)

where the right-hand side sums only over z1 being closer to i than to z2 and the factor 2 accounts for exchanging the roles of i
and z2. We further separate the sum over z1 in Eq. (A3) into two, corresponding to whether z1 is within a unit distance from i or
not:

∑
z1

Jiz1 Jz1z2 � 2

⎛
⎝ ∑

z1:riz1 �1

+
∑

z1:riz1 �2

⎞
⎠Jiz1 Jz1z2 . (A5)

Since riz1 � rz1z2 , it follows that rz1z2 � riz2/2. Therefore, Jz1z2 � 2αJiz2 and we further bound the second sum in Eq. (A5) by∑
z1:riz1 �2

Jiz1 Jz1z2 � 2αJiz2

∑
z1:riz1 �2

Jiz1 � 2αJiz2 21−α (λ − 1) � 2(λ − 1)
∑

z1:riz1 �1

Jiz1 Jz1z2 , (A6)
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where we bound
∑

z1:riz1 �2 Jiz1 � 21−α (λ − 1) and Jiz2 � ∑
z1:riz1 �1 Jiz1 Jz1z2 similarly to Ref. [23]. Therefore, we have∑

z1
Jiz1 Jz1z2 � 4λ

∑
z1:riz1 �1 Jiz1 Jz1z2 . Repeating this analysis for z2, . . . , zk in Eq. (A3), we have an upper bound on J k (i, j):

J k (i, j) � (4λ)k−1
∑

z1:riz1 �1

∑
z2:rz1z2 �1

. . . · · ·
∑

zk−1:rzk−2zk−1 �1

Jiz1 Jz1z2 . . . Jzk−1 j (A7)

� (12λ)k−1 ×
{

1/(ri j − k + 1)α if k < μri j,

1 if k � μri j,
(A8)

� (12λ)k−1 ×
{

1/[(1 − μ)ri j]α if k < μri j,

1 if k � μri j,
(A9)

where μ ∈ (0, 1) is an arbitrary constant.
To get the second to last bound, we note that the maximum value that the summand in Eq. (A7) may achieve is

1/(ri j − k + 1)α when k < μri j and 1 when k � ri j , and the number of sites within a unit distance of any site is 3. Plugging this
bound into Eqs. (A1) and (A2), we have the Lieb-Robinson bound in Ref. [23] generalized to many-body interactions:

‖[A(t ), B]‖ � ‖A‖‖B‖
∑
i∈X

∑
j∈Y

⎛
⎝�μri j�−1∑

k=1

(24λ2t )k

6λk![(1 − μ)ri j]α
+

∞∑
k=�μri j�

(24λ2t )k

6λk!

⎞
⎠

� ‖A‖‖B‖
∑
i∈X

∑
j∈Y

Cevt

(
1

[(1 − μ)ri j]α
+ e−μri j

)
(A10)

� ‖A‖‖B‖|X ||Y |Cevt

(
1

[(1 − μ)r]α
+ e−μr

)
, (A11)

where C = 1/6λ, v = 24λ2, and r is, again, the distance
between X,Y . The proof for D > 1 follows a very similar
analysis. �

A feature of Eq. (A11) is that it depends on |X |, |Y |, which
can become problematic when A, B are supported on a large
number of sites. In such cases, we can sum over the sites of
X,Y in Eq. (A10) to get more useful bounds. Without any
other assumptions, summing over the sites of Y gives an extra
factor of rD:

‖[A(t ), B]‖ � C‖A‖‖B‖|X |
(

1

(1 − μ)α
evt

rα−D
+ evt−μr

)
,

(A12)

where the constant C absorbs all constants that may depend
on μ. Note that the bound still depends on |X | but not on |Y |.

We can go one step further and sum over the sites of X , but
we need to assume that X is convex (similarly to Ref. [20]).
Then, we have a bound

‖[A(t ), B]‖ � C‖A‖‖B‖φ(X )

(
1

(1 − μ)α
evt

rα−D−1
+ evt−μr

)
,

(A13)

which is independent of |X |. Here φ(X ) is the boundary area
of X , defined as the number of sites in X that are adjacent to a
site outside X .

APPENDIX B: ABSORPTION RATE FROM
LINEAR-RESPONSE THEORY

This section provides more details on the derivation of the
absorption rate within linear-response theory. In particular,
we provide more mathematically rigorous proofs of Eq. (26)
(Appendix B1) and Eq. (29) (Appendix B2).

1. Proof of Eq. (26)

In this section, we prove the statement of Eq. (26) [also
Eq. (B2) below]. We recall that the system Hamiltonian H0

is a power-law Hamiltonian, while the harmonic drive V (t ) =
gcos(ωt )O is a sum of local terms, gcos(ωt )Oi, each of which
is supported on the site i only, where i runs over the sites of
the system. In addition, we assume that the system is initially
in the equilibrium state ρβ of H0 corresponding to the temper-
ature 1/β. To the lowest order in g, the energy absorption rate
of the system is proportional to the dissipative (imaginary)
part of the response function, σ (ω) = ∑

i, j σi j (ω), where i, j
are the sites of the system and

σi j (ω) = 1

2

∫ ∞

−∞
dteiωt 〈[Oi(t ), Oj (0)]〉β, (B1)

where 〈X 〉β ≡ Tr(ρβX ) denotes the expectation value of an
operator X in ρβ .

In Ref. [5], the authors proved that there exist constants
C, κ such that for all ω > 0, δω > 0 and for all pairs i, j

|σi j ([ω,ω + δω])| � Ce−κω. (B2)

The statement in Ref. [5] is for finite-range interactions, but,
for completeness, we show here that it also holds for power-
law Hamiltonians. First, we consider the diagonal terms
σii(ω). Let |n〉 and En denote the eigenstates and eigenvalues
of H0. Similarly to Ref. [5], we rewrite σii(ω) as

σii(ω) = π
∑

n

pn
[
γ

(n)
ii (ω) − γ

(n)
ii (−ω)

]
, (B3)

where pn is the probability that the state is in the eigenstate
|n〉, and γ

(n)
ii denotes the contribution to σii from the nth
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eigenstate:

γ
(n)

ii (ω) =
∑

m

|〈m| Oi |n〉|2δ(En − Em − ω)

=
∑

m

∣∣〈m| adk
H Oi |n〉∣∣2
ω2k

δ(En − Em − ω), (B4)

where adH Oi = [H, Oi], k is an integer to be chosen later,
and the last equality comes from the fact that |m〉 , |n〉 are
eigenstates of H and the δ function fixes the energy difference
to be ω.

In Ref. [5], the authors used the fact that H has a finite
range to upper bound the norm of adk

H Oi by λkk! for some
constant λ. For power-law interactions, the proof does not
apply because the Hamiltonian H can contain interaction
terms between arbitrarily far sites. Instead, we upper bound
adk

H Oi by realizing that Oi technically satisfies Definition 1
and is therefore a power-law Hamiltonian. It then follows from
Lemma 3 in Appendix E that adk

H Oi ∈ λkk!Hα , i.e., adk
H Oi is

a power-law Hamiltonian up to a factor λkk!, where λ is the
same constant as in Lemma 3 and Hα is the set of power-law
Hamiltonians with exponent α (see Appendix E1). Finally, we
can upper bound ∥∥adk

H Oi

∥∥ � Cλkk!, (B5)

by realizing that the supports of the terms in adk
H Oi all contain

the site i.
Integrating Eq. (B4) over ω, assuming δω is small enough

so that the number of energy levels in the range [ω,ω + δω]
is finite, and using Eq. (B5), we have

∣∣γ (n)
ii ([ω,ω + δω])

∣∣ � C

(
λkk!

ωk

)2

� C

(
λk

ω

)2k

� Ce−κω, (B6)

where κ = 2/(λe) and, to get the last line, we choose k =
ω/(λe). Plugging this bound into Eq. (B3) and summing
over n yields Eq. (26) for i = j. The bound for i �= j can be
derived using the positivity of σ [5] and the Cauchy-Schwarz
inequality:

|σi j (ω)| � 1
2 [σii(ω) + σ j j (ω)]. (B7)

Therefore, Eq. (26) applies for all power-law Hamiltonians H .

2. Proof of Eq. (29)

We now provide a rigorous proof of Eq. (29) in the main
text. Eq. (B2) indicates that the (i, j) entry of σ ([ω,ω + δω])
is exponentially suppressed. In principle, summing over all
i, j implies that σ ([ω,ω + δω]) is also exponentially small
as a function of ω. However, since there are N sites in the
system, this summation results in an additional factor of N2,
making σ ([ω,ω + δω]) superextensive. Therefore, this naive
calculation breaks down in the thermodynamic limit (N →
∞).

Instead, to show that σ ([ω,ω + δω]) increases only as fast
as N , we use Lieb-Robinson bounds to bound the off-diagonal
terms σi j (ω). Let ri j = dist(i, j) denote the distance between

the pair of sites i, j. Without loss of generality, we assume
ω � 2δω. We can then bound

σ ([ω,ω + δω]) =
∫ ω+δω

ω

dω′σ (ω′)

� c1

∫ ∞

−∞
dω′e−( ω′−ω

δω
)2
σ (ω′)

= c2δω
∑
i, j

∫ ∞

−∞
dte(−t/δt )2

e−iωt 〈[Oi(t ), Oj]〉,

(B8)

where c1 = e
1−e−8 and c2 = c1

√
π/2, which we will combine

and denote by C, and δt = 2/δω. The first inequality is
because σ (ω) is positive for ω > 0 and σ (−ω) = −σ (ω). The
second equality comes from evaluating the integral over ω′.
We then use the Lieb-Robinson bound in Ref. [23], which
applies for interactions with characteristic exponent α > D:

‖[Oi(t ), Oj (0)]‖ � Cevt

(
1

rα
i j

+ e−μri j

)
, (B9)

where v,C, μ are positive constants. While this bound was
derived in Ref. [23] for two-body interactions, it also holds
for more general k-body interactions and thus for fully general
power-law Hamiltonians [see Eq. (A11)].

We now divide the sum in Eq. (B8) into two parts corre-
sponding to ri j > r∗ and ri j � r∗ for some parameter r∗ we
shall choose later. The sum over i, j such that ri j > r∗ can
then be bounded by first inserting Eq. (B9) into Eq. (B8)
and evaluating the integration over time. Note that the factor
e−t2/δt2

suppresses the contribution from evt at large t . There-
fore, performing the integral yields an upper bound C(1/rα

i j +
e−μri j ) for each term corresponding to the pair (i, j), and the
sum over ri j > r∗ gives

∑
i, j:ri j>r∗

C

(
1

rα
i j

+ e−μri j

)
� CN

(
1

rα−D∗
+ e−μr∗

)
, (B10)

for α > D, where the factor of N comes from summing over i
and the factor of rD comes from summing over j.

On the other hand, for ri j � r∗, we simply use Eq. (B2) to
bound their contributions. Summing over i, j such that ri j �
r∗, we get a bound CNrD

∗ e−κω, where the factor of N again
comes from summing over i and the factor of rD

∗ comes from
counting the number of sites j within a distance r∗ from i.
Combining with Eq. (B10) yields an upper bound on the total
heating rate:

|σ ([ω,ω + δω])| � CNrD
∗

(
e−κω + 1

rα∗
+ r−D

∗ e−μr∗

)
.

(B11)

Choosing rα
∗ = eκω and noting that the last term is dominated

by the first two when ω is large enough, we find

|σ ([ω,ω + δω])| � CNe− α−D
α

κω, (B12)

which is exponentially small with ω as long as α > D.
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APPENDIX C: THE EFFECTIVE HAMILTONIAN

In this section, we study the structure of the effective
Hamiltonian defined in Eq. (36). Specifically, we show that
the operators Gq defined in Eq. (33) are also power-law

Hamiltonians (see also Lemma 1 in the main text for q < qmax

and Lemma 2 below for q � qmax). In addition, we show that
the norm Gq for q � qmax is exponentially small as a function
of q and ω∗ (Lemma 2), implying that the norm of the residual
drive V ′ is also exponentially small.

1. Structure of Gq for q < qmax

First, we prove the statement of Lemma 1 that the operators Gq are also power-law Hamiltonians for all q < qmax.
Proof. We proceed by induction and assume that Lemma 1 holds for all q up to q = q0 − 1 for some q0 � 1. We now prove

that it also holds for q = q0. We consider the first term in the definition of Gq0 [Eq. (33)]:

Gq0,1 =
q0∑

k=1

(−1)k

k!

∑
1 � i1, . . . , ik � q0
i1 + · · · + ik = q0

ad�i1
. . . ad�ik

H (t ). (C1)

Using Lemma 1 (note that it applies to all i � q0) and Lemma 3 in Appendix E, we have

Gq0,1 ∈
q0∑

k=1

1

k!

∑
1 � i1, . . . , ik � q0
i1 + · · · + ik = q0

T q0 cq0λq0−k
k∏

j=1

(i j − 1)!qk
0c−kλkH(q0+1)

α

= T q0 cq0λq0

q0∑
k=1

qk
0c−k

k!

∑
1 � i1, . . . , ik � q0
i1 + · · · + ik = q0

k∏
j=1

(i j − 1)!H(q0+1)
α

⊆ T q0 cq0λq0

q0∑
k=1

qk
0c−k

k!
(q0 − k)!2kH(q0+1)

α ⊆ T q0 cq0λq0 q0!
q0∑

k=1

2kqk
0c−k (q0 − k)!

q0!k!︸ ︷︷ ︸
�c1

H(q0+1)
α ⊆ c1T q0 cq0λq0 q0!H(q0+1)

α , (C2)

where c1 is a constant which exists because the sum over k converges (see Lemma 5 in Appendix E). To get the first equation,
we use Lemma 3, with kmax upper bounded by q0 every time. We have also used the second part of Lemma 4 in Appendix E to
bound the sum over i1, . . . , ik .

Next, we consider the second term in the definition of Gq0 :

Gq0,2 = i
q∑

k=1

(−1)k+1

(k + 1)!

∑
1 � i1, . . . , ik , m � q + 1
i1 + · · · + ik + m = q + 1

ad�i1
. . . ad�ik

∂t�m(t ). (C3)

Again, we use Lemmas 1 and 3 to show that

Gq0,2 ∈
q0∑

k=1

qk
0

(k + 1)!

∑
1 � i1, . . . , ik , m � q0 + 1
i1 + · · · + ik + m = q0 + 1

T q0 cq0−k−1λq0−k−1
k∏

j=1

(i j − 1)!(m − 1)!λkH(q0+1)
α (C4)

= T q0 cq0λq0

q0∑
k=1

qk
0c−k

(k + 1)!

∑
1 � i1, . . . , ik , m � q0 + 1
i1 + · · · + ik + m = q0 + 1︸ ︷︷ ︸

�2k+1

k∏
j=1

(i j − 1)!(m − 1)!

︸ ︷︷ ︸
�(q0+1−(k+1))!=(q0−k)!

H(q0+1)
α (C5)

⊆ T q0 cq0λq0 2
q0∑

k=1

2kqk
0c−k

(k + 1)
(q0 − k)!H(q0+1)

α (C6)

⊆ 2T q0 cq0λq0 q0!
q0∑

k=1

2kqk
0c−k

k!

(q0 − k)!

q0!︸ ︷︷ ︸
�c1

H(q0+1)
α ⊆ 2c1T q0 cq0λq0 q0!H(q0+1)

α , (C7)

where we have used Lemma 4 in Appendix E to bound the sums over i1, . . . , ik, m.
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Combining Eqs. (C2) and (C7), we have

Gq0 ∈ 3c1T q0 cq0 q0!λq0H(q0+1)
α . (C8)

Note that c1 can be made arbitrarily small by choosing a larger value for c. Therefore, with c large enough so that 3c1 < 1, we
have that Lemma 1 holds for q = q0. �

2. Structure of Gq for q � qmax

We now prove Eq. (44), which is a similar result to
Lemma 1, but for q � qmax = ω∗.

Lemma 2. For all q � qmax = ω∗, Gq ∈ Ce−κ ′qHα, where
C and κ ′ are constants.

Proof. Let us first look at the first term in Eq. (33):

Gq,1 =
q∑

k=1

(−1)k

k!

∑
1 � i1, . . . , ik � ω∗

i1 + · · · + ik = q

ad�i1
. . . ad�ik

H (t ). (C9)

We also recall from Lemma 1 that for all q � ω∗

�q ∈ T q(q − 1)!cq−1λq−1H(q)
α ⊆ 1

λcq
T qq!cqλqHα. (C10)

For all q � ω∗, we have

T qq!cqλq � (T cλq)q � (T cλω∗)q � e−κq, (C11)

where we have used ω∗ = e−κ/(T cλ). Therefore, for all q �
ω∗, we have

�q ∈ 1

λcq
T qq!cqλqHα ∈ 1

λcq
e−κqHα. (C12)

Note also that H (t ) ∈ Hα . Therefore, using Lemma 3, we
have

ad�i1
. . . ad�ik

H (t ) ∈ 1

i1 . . . ik

qk

ck
e−κqλ−kλkHα

= 1

i1 . . . ik

qk

ck
e−κqHα. (C13)

Thus, we get for all q

Gq,1 ∈

⎛
⎜⎜⎜⎝

q∑
k=1

qk

ckk!

∑
1 � i1, . . . , ik � ω∗

i1 + · · · + ik = q

1

i1 . . . ik

⎞
⎟⎟⎟⎠

︸ ︷︷ ︸
�eq/c2q

e−κqHα

⊆ e−(κ−ln 2−1/c)qHα. (C14)

Note that i j � ω∗ as we only define � up to ω∗. Further, the
factor of 2q comes from upper bounding 1

i1...ik
with 1 and the

number of terms with 2q. Next, we consider the second term
in the definition of Gq:

Gq,2 = i
q∑

k=1

(−1)k+1

(k + 1)!

∑
1 � i1, . . . , ik , m � q + 1
i1 + · · · + ik + m = q + 1

× ad�i1
. . . ad�ik

∂t�m(t ). (C15)

Note that

∂t�m(t ) ∈ T m−1(m − 1)!cm−1λm−1Hα ⊆ e−κ (m−1)Hα.

(C16)

Thus, we have

Gq,2 ∈

⎛
⎜⎜⎜⎝

q∑
k=1

qk

ck (k + 1)!

∑
1 � i1, . . . , ik , m � q + 1
i1 + · · · + ik + m = q + 1

e−κq

⎞
⎟⎟⎟⎠Hα

⊆ 2e−(κ−ln 2−1/c)qHα. (C17)

Combining Eqs. (C14) and (C17), we arrive at Lemma 2
with κ ′ = κ − ln 2 − 1/c, which can be made to be positive
by choosing κ > ln 2 + 1/c. It suffices, however, to choose
κ > ln 2, since making c large enough sends 1/c to zero.
Equation (45) also follows.

APPENDIX D: USING LIEB-ROBINSON BOUNDS FOR
EVOLUTIONS OF LOCAL OBSERVABLES

In this section, we use the Lieb-Robinson bounds to bound
the norm of δ in Eq. (46). In the main text, we argue that ‖δ(t )‖
would be small up to time t∗ ∝ ω∗ if the light cone induced by
the Lieb-Robinson bound is logarithmic, and t∗ ∝ eκ ′ω∗ if the
light cone is algebraic. We provide below the mathematical
details to supplement the argument.

Recall that V ′(t ) ∈ Ce−κ ′ω∗Hα, H∗ ∈ γHα (γ is a constant
that depends only on κ, α) and that we defined the normalized
V ′′ = C−1eκ ′ω∗V ′, H̄ ′′ = γ −1H∗ such that

‖δ‖ � Ce−κ ′ω∗
∫ t

0
ds‖[V ′′(s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖. (D1)

We now use a Lieb-Robinson bound for power-law interac-
tions to bound the commutator. The idea is that for a finite
time s the operator O mostly spreads within a light cone, and
only the terms of V ′′(s) within the light cone significantly
contribute to the commutator.

In contrast to the finite-range interacting Hamiltonians, a
tight Lieb-Robinson bound has yet to be proven for power-law
Hamiltonians with finite α > D. In the following sections, we
consider the effect of using different Lieb-Robinson bounds,
namely, the bounds in Gong et al. [23], Else et al. [19], and
Tran et al. [20]. The case of a hypothetical bound, which
would be tight if it were proven, is treated in the main text.

1. Using Gong et al.’s [23] bound

First, we consider a generalization of the bound in Gong
et al. [23] [see also Eq. (A12)]. The bound holds for α > D,
has a logarithmic light cone t � log r, and is extended to
many-body interactions. To bound the commutator norm in
Eq. (51), recall that we write V ′′(s) = ∑∞

r=0 V ′′
r (s), where

V ′′
r (s) ≡ ∑

X :dist(X,O)∈[r,r+1) hX denotes the terms of V ′′(s) sup-
ported on subsets exactly a distance between r and r + 1 away
from O. Furthermore, since V ′′(s) is a power-law Hamilto-
nian, it follows that ‖V ′′

r (t )‖ � CrD−1.
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From Eq. (A12), the light cone of the bound is r∗(s) =
evs/α . We further divide V ′′

r (s) into those with r � r∗(s) and
r > r∗(s). In the former case, we simply bound∑

r�r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� 2
∑

r�r∗(s)

‖V ′′
r (s)‖‖O‖ � Cr∗(s)D � CeDvs/α. (D2)

For the latter case, we use Eq. (A12) to bound the commu-
tator norm:∑

r>r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� C
∑

r>r∗(s)

‖V ′′
r (s)‖‖O‖

(
evs

rα−D
+ evs−μr

)
(D3)

� C
∑

r>r∗(s)

(
evs

rα−2D+1
+ rD−1evs−μr

)
(D4)

� C

(
evs

r∗(s)α−2D
+ r∗(s)D−1evs−μr∗(s)

)
(D5)

� C(e2Dvs/α + evs D−1
α evs−μevs/α

) (D6)

� Ce2Dvs/α, (D7)

where we use the same C to denote different constants that
may depend on μ, α. Note that while the bound in Eq. (A12) is
valid for α > D the sum over r converges only when α > 2D.

Plugging Eqs. (D2) and (D7) into Eq. (51) and integrating
over s, we have

‖δ‖ � Ce−κ ′ω∗e2Dvt/α, (D8)

which is the result presented in Sec. V. Again, δ is only small
for up to time t∗ ∝ ω∗ ∝ 1/T , which is expected because the
region inside the light cone implied by this bound expands
exponentially fast with time.

2. Using Else et al.’s [19] bound

Instead of using Gong et al.’s [23] bound, we now use the
bound in Else et al. [19], which already holds for many-body
interactions. The bound states that when |X | = 1

‖[A(t ), B]‖ � C‖A‖‖B‖
{

exp(vt − r1−σ ) + (vt )1+D/(1−σ )

rσ (α−D)

}
,

(D9)

where 1 > σ > (D + 1)/(α − D + 1) is a constant that we
can choose. Since our aim is to prove an exponential heating
time for α as small as possible, we need the algebraic tail
exponent σ (α − D) to be as large as possible. So we will
assume that we pick some σ very close to 1.

First, let us look at the light cone generated by Eq. (D9).
The first term of the bound gives a light cone t � r1−σ , while
the second term gives t � r (1−σ ) σ (α−D)

D+1−σ . Since we are choosing
σ close to 1, σ (α−D)

D+1−σ
will be larger than 1 when α > 2D. The

former light cone, i.e., t � r1−σ , is therefore looser and thus
dominates the latter. In the rest of the calculation, we take
r∗(t ) = t1/(1−σ ) to be the light cone boundary.

Similar to Eq. (D2), we get an upper bound for the terms
inside the light cone:∑

r�r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� 2
∑

r�r∗(s)

‖V ′′
r (s)‖‖O‖

� Cr∗(s)D � CsD/(1−σ ). (D10)

For the terms outside the light cone, we use Eq. (D9):∑
r>r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

�
∑

r>r∗(s)

‖V ′′
r (s)‖‖O‖

(
evs−r1−σ + (vs)1+D/(1−σ )

rσ (α−D)

)

� C
∑

r>r∗(s)

(
rD−1evs−r1−σ + (vs)1+D/(1−σ )

rσ (α−D)−D+1

)

� C

(
1

D
ξ

(
D

1 − σ

)
evsrD

∗ e−r1−σ
∗ + (vs)1+D/(1−σ )

rσ (α−D)−D
∗

)

� C

(
ξ

(
D

1 − σ

)
sD/(1−σ ) + (vs)1+D/(1−σ )

s
σ (α−D)−D

1−σ

)

� Cξ

(
D

1 − σ

)
s

D
1−σ , (D11)

where ξ (x) ≡ 1
x 2x�(x), � is the Gamma function, and we

again absorb all constants that may depend on D alone into
the constant C. We drop the second term in the second to last
inequality because for σ arbitrarily close to 1 and α > 2D
(see below) the second term may be upper bounded by the
first. To estimate the sum over r, we have used Lemma 6 in
Appendix E 2. Plugging Eqs. (D10) and (D11) into Eq. (51)
and integrating over time, we get

‖δ‖ � Ce−κ ′ω∗ξ

(
D

1 − σ

)
t

D
1−σ

+1. (D12)

Thus, the difference is small up to an exponentially long
time t∗ ∝ eκ ′ω∗ 1−σ

D+1−σ . The sum over r converges if σ (α − D) >

D, or equivalently α > D(1 + 1
σ

). Since σ can be chosen
arbitrarily close to 1, this condition is effectively equivalent
to α > 2D.

One should be careful, however; in taking the limit σ

goes to 1 (i) the heating time t∗ ∝ eκ ′ω∗ 1−σ
D+1−σ is no longer

exponential in ω∗ and (ii) the prefactor ξ ( D
1−σ

) diverges faster
than exponentially in this limit. Nevertheless, the analysis is
still valid for fixed values of σ < 1.

3. Using Tran et al.’s [20] bound

In addition to Else et al. [19]’s bound, we can also use the
bound in Tran et al. [20] [see also Eq. (24) for a generaliza-
tion to k-body interactions], which also works for α > 2D.
Compared to the bound in Else et al. [19], the bound in Tran
et al. [20] has a tighter light cone r∗(s) = s(α−D)/(α−2D), but
it decays with the distance r as rα−2D, slower than the tail
rσ (α−D) in Else et al. [19] when σ > (α − 2D)/(α − D).
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Similar to before, we further divide V ′′
r (s) into those with

r � r∗(s) and r > r∗(s). For the terms inside the light cone,
we again bound∑

r�r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

� 2
∑

r�r∗(s)

‖V ′′
r (s)‖‖O‖

� Cr∗(s)D � CsD(α−D)/(α−2D). (D13)

For the terms outside the light cone, we use Eq. (24) with
φ(X ) = 1:∑

r>r∗(s)

‖[V ′′
r (s), eisγ H̄ ′′

Oe−isγ H̄ ′′
]‖

�
∑

r>r∗(s)

‖V ′′
r (s)‖‖O‖

(
sα−D

rα−2D
+ srD−1e−r/s

)

� C
∑

r>r∗(s)

(
sα−D

rα−3D+1
+ sr2D−2e−μr/s

)

� C

(
sα−D

r∗(s)α−3D
+ s2r∗(s)2D−2e−μr∗(s)/s

)
� C(s

D(α−D)
α−2D + s2s2(α−D)(D−1)/(α−2D)e−μsD/(α−2D)

)

� Cs
D(α−D)
α−2D , (D14)

where we have dropped the second term in the second to last
inequality because it is exponentially small in s and can be
upper bounded by the first term. Note that we require α > 3D
in order for the sum over r to converge.

Plugging Eqs. (D13) and (D14) into Eq. (51) and integrat-
ing over time, we get

‖δ‖ � Ce−κ ′ω∗t
D(α−D)
α−2D +1. (D15)

Thus, the difference is small up to an exponentially long
time t∗ ∝ eκ ′ω∗ α−2D

α(D+1)−D(D+2) . Compared to using Else et al.’s
[19] bound, this analysis works only when α > 3D. However,
within this regime, the exponent of the heating time using this
bound is larger than using Else et al. This is a manifestation of
the tradeoff between the tail and the light cone when switching
from Else et al. to the Tran et al. [20] bound.

APPENDIX E: MATHEMATICAL PRELIMINARIES

This section contains mathematical details omitted from
the previous sections for clarity. In Appendix E1, we discuss
the properties of the set of power-law Hamiltonians defined
in Definition 1. In Appendix E2, we present some bounds on
discrete sums.

1. Properties of the set Hα of power-law Hamiltonians

In this section, we explore some properties of Hα that
are useful for proving that the effective Hamiltonian is also
power-law (see Appendix C).

TABLE I. Mutually exclusive indicator functions for Lemma 3.
For example, ξ1 = 1 if all of the conditions in the first row, i.e., i, j ∈
X and i, j /∈ Y , hold and ξ1 = 0 otherwise.

∈ X /∈ X ∈ Y /∈ Y

ξ1 i, j i, j
ξ2 i, j i j
ξ3 i, j j i
ξ4 i, j i, j
ξ5 i j i, j
ξ6 i j j i
ξ7 j i i, j
ξ8 j i i j
ξ9 i, j i, j

We recall from the main text that Hα is the set of power-
law Hamiltonians with the exponent α. In addition, H(k)

α is
the subset of Hα which contains all power-law Hamiltonians
the local support size of which (see Definition 1) is at most
k + 1. For a real positive constant a, we also denote by aHα

the set of Hamiltonians H such that a−1H is a power-law
Hamiltonian with the exponent α. It is straightforward to
prove the following identities:

aHα + bHα ⊂ (a + b)Hα, (E1)

aHα ⊂ bHα if a � b. (E2)

The following lemma is particularly useful for the adjoint
operation:

Lemma 3. For α > D, if H1 ∈ aH(k1 )
α , H2 ∈ bH(k2 )

α for some
positive constants a, b, k1, k2, then adH1 H2 ∈ abλkmaxH(k1+k2 )

α ,
where λ is a constant to be defined later and kmax =
max{k1, k2}.

Proof. Write H1 = ∑
X aX , H2 = ∑

Y bY , adH1 H2 =∑
Z hZ , where hZ = adhX hY and Z = X ∪ Y . By our definition

of power-law Hamiltonians, we have

∑
X�i, j

‖aX ‖ � a

dist(i, j)α
,

∑
Y �i, j

‖bY ‖ � b

dist(i, j)α
. (E3)

When α > D, it is also straightforward to prove that∑
X�i ‖aX ‖ � aλ0 for all i, where λ0 is a constant that depends

only on α, D.
Note that hZ �= 0 only if X ∩ Y �= ∅. We seek to bound∑
Z�i, j ‖hZ‖ which sums over Z = X ∪ Y � i, j and X ∩ Y �=

∅. We discuss some useful notations. We will occasionally
rewrite or label summations with restrictions using the in-
dicator function ξ (A) where ξ (A) = 1 or 0 if A is true or
false, respectively. There are nine mutually exclusive cases
(Table I), satisfying i, j ∈ X ∪ Y depending on whether i, j
are in X,Y , or both.

Thus, the indicator function ξ (X ∪ Y � i, j) may be writ-
ten as a sum of indicator functions of mutually exclusive
events listed in the table: ξ (X ∪ Y � i, j) = ∑9

n=1 ξn. The
overall sum that we want to bound can be written as a sum
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over the nine cases,∑
Z�i, j

‖hZ‖

=
∑

X∪Y �i, j

‖[aX , bY ]‖

� 2
∑

X

∑
Y

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)ξ (X ∪ Y � i, j)

= 2
9∑

n=1

∑
X

∑
Y

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)ξn, (E4)

and we will bound each of the nine cases individually. We will
often eliminate the condition that X ∩ Y �= ∅, which can only
make the sum larger, and introduce an inequality by summing
over all sets X or Y . To illustrate our technique, consider first
the contribution from ξ5:

2
∑

X

∑
Y

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)ξ5

� 2
∑
X�i

∑
Y �i, j

‖aX ‖‖bY ‖

� 2
∑
X�i

‖aX ‖ b

dist(i, j)α
� 2λ0ab

dist(i, j)α
, (E5)

where the first inequality comes from ignoring j /∈ X and the
second comes from H2 being a power-law Hamiltonian.

The bound on the term corresponding to ξ7 follows anal-
ogously since we simply switch i, j. Similarly, the terms
corresponding to ξ2, ξ3 switch only the roles of X,Y compared
to ξ5, ξ7. Meanwhile, analyzing the term corresponding to ξ1

yields

2
∑

X

∑
Y

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)ξ1

= 2
∑
X�i, j

∑
Y �i, j

‖aX ‖‖bY ‖

� 2ab

dist(i, j)2α
� 2ab

dist(i, j)α
, (E6)

where we take into account dist(i, j) � 1 for all D.
Upper bounding the term corresponding to ξ6 is a bit

trickier. Since X ∩ Y �= ∅, there exists a site 	 �= i, j such that
	 ∈ X ∩ Y . Rewriting the term corresponding to ξ6 as a sum
over 	, we have∑

X � i
X �� j

∑
Y � j
Y �� i

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)

� 2
∑
	 �=i, j

∑
X�i,	

∑
Y � j,	

2‖aX ‖‖bY ‖

� 2
∑
	 �=i, j

a

dist(i, 	)α
b

dist(	, j)α
� 2λ1ab

dist(i, j)α
, (E7)

where the last inequality comes from the reproducibility
condition [22], applicable when α > D, and λ1 is a constant
that depends only on D, α. The term corresponding to ξ8

contributes the same as ξ6, as it only switches the roles of i, j.

Finally, we bound the terms corresponding to ξ4, ξ9. For ξ4,
we are trying to bound the sum∑

X�i, j

∑
Y ��i, j

2‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅). (E8)

The nonempty intersection means that for there to be a
nonzero contribution ∃	 �= i, j such that 	 ∈ X,Y . Further
note that by assumption the maximum extent of X is k1 + 1
and therefore there are at most k1 − 1 sites distinct from i, j
where Y can intersect with X . We bound this as follows:

2
∑
X�i, j

∑
Y ��i, j

‖aX ‖‖bY ‖ξ (X ∩ Y �= ∅)

� 2
∑
X�i, j

∑
	 ∈ X

	 �= i, j

∑
Y �	

‖aX ‖‖bY ‖

� 2
∑
X�i, j

‖aX ‖
∑
	 ∈ X

	 �= i, j

λ0b � 2λ0(k1 − 1)ab

dist(i, j)α
. (E9)

We bound the term corresponding to ξ9 similarly by switching
the role of X,Y . Collecting everything, we have the lemma
with λ = 2(6λ0 + 2λ1 + 1). �

2. Bounds on discrete sums

In this section, we provide bounds on some discrete sums
used in the main text.

Lemma 4. For all 1 � k � q, we have the following in-
equalities:

∑
1 � i1, . . . , ik � q
i1 + · · · + ik = q

k∏
j=1

i j! � q!

(k − 1)!
, (E10)

∑
0 � i1, . . . , ik � q
i1 + · · · + ik = q

k∏
j=1

i j! � 2kq!. (E11)

Proof. We first bound

∑
1 � i1, . . . , ik � q
i1 + · · · + ik = q

k∏
j=1

i j! �
(

q − 1

k − 1

)
max

1 � i1, . . . , ik � q
i1 + · · · + ik = q

k∏
j=1

i j!. (E12)

For positive integers a � b, we have (a + b − 1)! = a!(a +
b − 1) · · · (a + 1) � a!b! with equality if either a, b = 1. This
implies that the maximal product occurs for some i j = q −
k + 1 and ik �= j = 1 (we omit the simple proof by induction),
yielding(

q − 1

k − 1

)
max

1 � i1, . . . , ik � q
i1 + · · · + ik = q

k∏
j=1

i j!

� (q − 1)!

(k − 1)!(q − k)!
(q − k + 1)!

� (q − 1)!

(k − 1)!
(q − k + 1) � q!

(k − 1)!
, (E13)
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as k �= 0 by the summation restrictions. Equation (E11) is
essentially the same as Eq. (E10) with some indices allowed to
be zero. For example, if i1 = 0 while the other i are nonzero, it
is just Eq. (E10) with k → k − 1. This part of the sum is then
crudely upper bounded by q!, while summing over all possible
choices of zero indices leads to a factor 2k . �

Corollary 1. For all 1 � k � q, we have

∑
1 � i1, . . . , ik � q0
i1 + · · · + ik = q0

k∏
j=1

(i j − 1)! � 2k (q0 − k)!. (E14)

Proof. Define p j = i j − 1 such that 0 � p j � q0 − 1 and
p1 + · · · + pk = q0 − k. This second condition implies that
we may simplify the first condition to 0 � p j � q0 − k.
Therefore,

∑
1 � i1, . . . , ik � q0
i1 + · · · + ik = q0

k∏
j=1

(i j − 1)!

=
∑

0 � p1, . . . , pk � q0 − k
p1 + · · · + pk = q0 − k

k∏
j=1

p j! � 2k (q0 − k)!, (E15)

where the last inequality is from Eq. (E11).
Lemma 5. For all 1 � k � q, we have

q0∑
k=1

2kqk
0c−k (q0 − k)!

q0!k!
� e√

2π
(e2e/c − 1). (E16)

Proof. Using Stirling’s approximation,
√

2πnn+ 1
2 e−n �

n! � enn+ 1
2 e−n for q0! and (q0 − k)!, we can bound

q0∑
k=1

2kqk
0c−k

k!

(q0 − k)!

q0!

�
q0∑

k=1

2kqk
0c−k

k!

e√
2π

(q0 − k)q0−k

qq0
0

√
q0 − k√

q0

e−(q0−k)

e−q0

� e√
2π

q0∑
k=1

2kekc−k

k!

(q0 − k)q0−k

qq0−k
0︸ ︷︷ ︸
�1

√
q0 − k√

q0︸ ︷︷ ︸
�1

� e√
2π

∞∑
k=1

2kekc−k

k!
= e√

2π
(e2e/c − 1). (E17)

We note that the bound approaches zero as c → ∞. �
Lemma 6. For D ∈ N>0, r∗ > 1, 0 < η < 1,∑

r>r∗

rD−1e−rη � 2

η
2D/η�(D/η)rD

∗ e−rη
∗ , (E18)

where � is the Gamma function.

Proof. Let f (r) = rD−1e−rη

. Our strategy is to upper
bound

∑
r>r∗ f (r) by an integral. For r ∈ (0,∞), f has a

maximum at r = r0 = (D − 1)1/ηη−1/η. Let r−
0 = �r0� and

r+
0 = r−

0 + 1 > r0. Then, the function f (r) is increasing for
r ∈ (r∗, r−

0 ) and decreasing for r � r+
0 . Therefore, we can

upper bound

∑
r>r∗

f (r) �
∫ r−

0

r∗
f (r)dr +

∫ ∞

r+
0

f (r)dr + f (r−
0 ) + f (r+

0 )

�
∫ r−

0

r∗
f (r)dr +

∫ ∞

r+
0

f (r)dr + 2
∫ r+

0

r−
0

f (r)dr

� 2
∫ ∞

r∗
f (r)dr, (E19)

where we use the fact that f (r) is concave between r−
0 and r+

0
to bound the first line by the second line. Next, to bound the
integral, we make a change of variable to x = rη so that

2
∫ ∞

r∗
f (r)dr = 2

∫ ∞

r∗
rD−1e−rη

dr

= 2

η

∫ ∞

x∗
x

D−η

η e−xdx

� 2

η

∫ ∞

x∗
xβe−xdx � 2

η
2ββ!xβ

∗ e−x∗

= 2

η
2ββ!rηβ

∗ e−rη
∗

� 2

η
2D/η�(D/η)rD

∗ e−rη
∗ , (E20)

where x∗ = rη
∗ , β = �(D − η)/η� � D/η is an integer, and �

is the Gamma function. Note that we have also used a bound
for the integral ∫ ∞

x∗
xβe−xdx � 2ββ!xβ

∗ e−x∗ , (E21)

which can be proven inductively on β for all β � 0 and
x∗ � 2. Indeed, the inequality is trivial for β = 0. Suppose
the inequality holds for β − 1; using integration by parts, we
have ∫ ∞

x∗
xβe−xdx = xβ

∗ e−x∗ + β

∫ ∞

x∗
xβ−1e−xdx

� xβ
∗ e−x∗ + β2β−1(β − 1)!xβ−1

∗ e−x∗

� 2β−1

(
1

2β−1β!
+ 1

x∗

)
β!xβ

∗ e−x∗

� 2ββ!xβ
∗ e−x∗ , (E22)

where the terms inside the bracket in the second to last line are
always less than or equal to 2 for all x∗ � 1 (corresponding to
r∗ > 1). �
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