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Decay of a quasistable quantum system and quantum backflow
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The decay of quasistable quantum systems involves primarily an outgoing probability current density.
However, during the transition from exponential to inverse-power-law decay there are time intervals during
which this current, although small, is inward. In this paper this inward flow is associated with quantum backflow.
Furthermore substantial backflow exists for time-evolving free wave packets which are initially confined in

space.

DOI: 10.1103/PhysRevA.100.052101

I. INTRODUCTION

In the early days after the discovery of radioactive decay it
was noted that the predominant characteristic of the decay is
the exponential decrease of the number of atoms in the source.
Elementary theory of decay would suggest an outgoing flux
density that tracks the decay. However, according to quan-
tum theory the outgoing probability current density, although
mainly exponentially decreasing, can display fluctuations in
time, which cause it to be negative or inward over some
(small) intervals of time. In this paper we employ models
of quantum quasistable systems to investigate such negative
probability current densities, and their relation to the initial
wave function and to the phenomenon of quantum backflow.
As quantum backflow is not dependent on the (presence of
an) interaction, we discuss also a simpler model of the time
evolution of a localized free particle in order to estimate upper
limits to the amount of backflow. In the study we use the
exact solution to the time-dependent Schrodinger equation
developed by us [1,2] for the §-function interaction, and
we derive the maximum backflow using the time-dependent
solution of the free Schrodinger equation.

In 1961 Winter [3] discussed the evolution of a quasista-
tionary quantum state in terms of a model involving the decay
of particle through a §-shell barrier. This model constitutes an
extremely simple simulation of a decaying quantum system
such as an «-emitting nucleus. It allows a transparent analysis
of exponential and nonexponential decay, whose features also
take form in more realistic models.

The decay of a quasistable system is characterized by a
nonescape or survival probability that behaves as a power
law in time for very short times after the creation of the
system, followed by a dominant exponential decay, and then
by a long-time behavior characterized as an inverse-power law
of time, pointed out by Khaflin [4]. The §-shell model was
further investigated by Garcia-Calder6én and Peierls in 1976
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[5], who provided an analytic expression of the wave func-
tion inside the potential barrier. More recently analytic wave
functions both inside and outside the potential barrier were
derived [1,2,6]. The determination of the exact wave function
was broadened to those due to potential barriers of different
shapes and to potentials supporting bound states [2]. The
experimental observation of the nonexponential decay is more
elusive. It is pointed out that decays of radioactive isotopes
are not suitable candidates since the energy released tends
to be much larger than the width of the energy distribution
and many exponential lifetimes need to have elapsed before
nonexponential decay sets in [7]. Nevertheless, by measuring
the luminescence decays of dissolved organic materials, Rothe
et al. [8] obtained experimental evidence for the long-time
nonexponential decay. Recently, Crespi ef al. using integrated
photonics [9] also observed the inverse-power-law decay, as
well as the quadratic short-time decay behavior.

A common and striking feature of the analyses is that
the nonescape and survival probabilities and the probability
current density display, besides the characteristic behavior in
the three time intervals indicated above, variable behavior in
the regions of transition during which the power law changes
to the exponential, and the exponential to the inverse-power
law. The existence of these fluctuations was shown by Winter
[3], but only recently did they receive detailed scrutiny [7].
Fluctuations of this kind are the motivation of the study of
this paper.

Normally one expects the probability current density of
the decaying system to flow outward. In fact the decay of
quasistable systems is often described in terms of Gamow
functions, which are characterized as ¢*” at the boundary
of, and outside, the potential region. These outward traveling
waves have positive wave numbers. However exact deter-
mination of the probability current density yields negative
values during certain time intervals, indicating that although
the system is decaying there are times when the probability
of the particle being inside the barrier is increasing. This
counterintuitive notion is strikingly displayed using Bohm’s
quantum trajectories where one observes certain trajectories
leaving and then reentering the potential region [10].
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A similarly counterintuitive notion exists in the phe-
nomenon of quantum backflow. This was pointed out by
Alcock in 1969 [11] and analyzed in greater detail by Bracken
and Melloy in 1994 [12]. The early discussions involve wave
packets consisting of components with positive wave numbers
only, i.e., traveling in the positive x direction, which however
yield a negative probability current density over some time
intervals at some spatial point, say the origin. This means
that the probability of the wave packet being to the left of
the origin increases during these time intervals. Bracken and
Melloy showed that there is no limit on the size of the time
interval during which the backflow occurs, but there is a
limit on the increase of particle probability on the left of the
origin. (See also Refs. [13,14].) In fact they suggest a quantum
number independent of physical quantities such as mass, time,
and Planck’s constant, which limits the increase to less than
0.04. This number, labeled c,,;,, was subsequently refined to a
more precise value [15].

Recently it was shown that quantum backflow is a uni-
versal quantum effect; it not only pertains to interaction-free
systems, but can be extended to scattering involving short-
range potentials [16]. Moreover, Goussev [17] demonstrates
the equivalence between quantum backflow of a wave packet
consisting of non-negative momentum components and the
reentry problem in which a free wave packet initially confined
to a semi-infinite line, but unconstrained in momentum space,
evolves in time to lower and, for certain intervals, to raise the
probability of being in the confined space region.

In this paper we consider the appropriateness of identifying
the negative probability current density of the decaying quan-
tum system with quantum backflow. In Sec. I we review the
fluctuating probability current density of the S-wave quantum
decaying system, especially the time intervals during which it
is negative. In Sec. III we present a possible quantum backflow
interpretation, followed by an analysis of the time evolution
of a free wave packet in an S-wave partial state in Sec. IV.
We discuss the backflow of the free particle as an eigenvalue
problem in Sec. V, and present a summary and concluding
comments in Sec. VI.

II. DECAY THROUGH A DELTA-FUNCTION BARRIER

Consider a particle of mass m initially confined to a spatial
region r € (0, a). Beginning at time f, it is allowed to escape
through a é-function barrier at » = a. The wave function of
such a particle is a solution of the time-dependent Schrédinger
equation,

2
i% - [—3—2 + V(r)]w(r, O Y 0) = gu(r),
T ar

(2.1)
where ¢, (r) is the initial wave function at T =0 and 0 <
r < a. For simplicity we choose generic units of time so
that © = A(t — 19)/(2m), where fy is the (arbitrary) initial
time and m is the mass of the emitted particle. The potential
barrier is V(r) = (A/a)§(r — a). The wave equation applies
to the S-wave partial wave in three dimensions, or, if one
additionally defines V (r) = oo for r < 0, it can be thought
of as a one-dimensional system. We follow previous analyses
[2,3,5] and choose the initial wave function of the particle as

an eigenstate of the infinite square well with radius a,

2 . /nmr
Y(:0) = ¢u(r) = | = sin (Z- )o@ — 1)
a a

where n =1, 2, ... and 6(x) is the Heaviside function. We
obtain the exact wave function ¥ (r, ) for values of r inside
and outside the potential barrier; it is given by [2]

(2.2)

iA
2k,a

w(r,r)=ch{M(kv,r—a,t)+ 0(a—r)

v

x [M(k,, r —a,t)— M(ku,a—r, r)]}, 2.3)

where the k,, v = &1, £2, ..., are the solutions of the alge-
braic equation
kacotka + A — ika =0, 2.4)
and
(—1)"2nm/2ak,
cy, = .
(k2a* — n?7?)[(1 + A — ik,a) cotk,a — i — kyal
2.5)
The function
1
Mk, x,t) =Mk, x,t)+ zX(XJ) (2.6)

where x (x,1) = 2‘1}% exp (%), and M(k, x, t) is the Moshin-

sky function which for our purposes is defined as [2]
—im /4% = 2K
N
2.7)

1 ) .
Mk, x,t) = Qe_lk LolkXerfe(y), y=e

The survival probability S(t) and the nonescape probabil-
ity P(t) are, respectively,
2

S(t) = ‘/oodr Y, O (r, 7)
0

P(7) = /adr I (r, 7)%. (2.8)
0

The probability density and the probability current density are

p(r,T) =9y"y,

. [ 0y 9yt

Jjro) = —i| Y — — v 2.9)

ar ar
These satisfy the equation of continuity,

0 J .
—prnt)+ —jr,t)=0, (2.10)
at ar

which by integration over r from zero to a gives a relation-
ship of the nonescape probability and the probability current
density at r = a,

d

—P(t)=—j(a, ).

e (7) Jja, 7)
The survival and nonescape probabilities as functions of

time are plotted in Fig. 1 for typical parameters, A = 6 and

a=1.
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FIG. 1. Nonescape and survival probabilities as a function of
time for a = 1 and A = 6. The units of t are generic as explained
in the text.

The decay probabilities are not exponential at all times,
but they fluctuate when the system transitions from the expo-
nential decay to the long-time inverse power-law decay. The
fluctuations are significant since the temporary positive slopes

(a) current density at » = a

10° j2.1)

(c) current density at » =4a

10°j(2;7)

| V/\VAVA |

6 8 10 12 14 16 18 20
T

indicate an increase, rather than a decrease, of the probability
of finding the particle inside the potential barrier.

The probability current densities are plotted in Fig. 2 at
four different distances from the potential barrier, at r = a,
r =2a, r = 4a, and r = 8a. For the current one needs the
spatial derivative of ¥ (r, 7). It is given' for 0 < r < oo,

0
El/f(",f)

=iY e lkMk.r—a)+ (1452 )t —an)
- v vV Vo 9 ztk‘) X )

v

A
— 0(a— r)ﬁ ;cv[M(kU, r—a,t)

4+ M(ky,,a—r,t)+2x(r —a)/k,]. (2.12)

Surprisingly the amplitude of the fluctuations of the probabil-
ity current density increases the further out one goes. In fact
the further out the more negative the current can be.

'Unfortunately the factor in parentheses in the second term of
Eq. (2.12) is omitted in Eq. (43) of Ref. [2].

(b) current dénsity at r =2a

10° j(2,50)

(d) current dénsity at r =8a

10° j(2,7)

FIG. 2. The current density at four different distances from the potential region when a = 1 and A = 6. The units of a are arbitrary length

units; the units of j are correspondingly inverse length units squared.
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TABLE II. The time intervals (t;_, 72;) during which the prob-
ability current density at r = 8a is negative, and the nonescape prob-
ability at 75;_; [here defined as probability of finding the particle in
the region r € (0, 8a)], and the increase of this nonescape probability
during the time interval.

-1

T,

10% j(10)
10° (1)

VYo

i T2i-1 Toi P, sq(T2i-1) A;

1 7.146 7.295 2.079 x 10~* 3.465 x 10~
2 7.963 8.177 1.022 x 10~ 4.367 x 10~°
3 8.806 9.023 6.351 x 107 2.015 x 10~°
4 9.675 9.835 4.543 x 107 3.689 x 1077

19 20
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FIG. 3. The enlarged profile of the probability density function
Jj(a, t) at the position of delta-function potential. The times at which
the current becomes negative are clearly seen.

A zoomed-in version of Fig. 2(a) is given in Fig. 3. In
this case there are 12 time intervals, (tp;_1, T2;), i = 1, ..., 12,
during which j(a, 7) is negative. Over each of these intervals
we calculate the increase in probability of finding the particle
to the left of the potential barrier,

Ti

A; = P(1;) — P(12i-1) = —/ dt j(a,7). (2.13)

T2i—1

Table I lists the times at which the probability current den-
sity is zero and the increase of the probability of the particle
inside the potential which occurs when the current is negative.
We also list the nonescape probability at the beginning of
each interval. The fluctuations in the current occur a long
time into the decay and hence the nonescape probability is
already very small. Nevertheless A; can be significantly larger
than P(t;—;). In other words the probability increase during
the time interval of negative probability current density can
exceed the nonescape probability at the beginning of the time
interval.

TABLE I. The time intervals (72—, To;) during which the prob-
ability current density at the potential boundary a is negative and
the nonescape probability at 7,;_; and the increase of the nonescape
probability during the time interval.

i Toi-1 Toi P(tpi-1) A;

1 10.745 10.983 4,742 x 1079 7.620 x 1079
2 11.532 11.847 1.074 x 10798 7.824 x 1079
3 12.338 12.693 1.979 x 107 5.149 x 1079
4 13.154 13.531 3.116 x 10710 2.887 x 107%
5 13.975 14.364 1.978 x 10710 1.498 x 10~
6 14.801 15.193 3.050 x 10710 7.420 x 10710
7 15.629 16.019 3.755 x 10710 3.545 x 10710
8 16.461 16.841 3.927 x 10710 1.624 x 10710
9 17.298 17.659 3.777 x 10710 6.948 x 107!
10 18.142 18.467 3.482 x 10710 2.595 x 10~
11 19.001 19.259 3.143 x 10710 6.804 x 10~'2
12 19.912 19.998 2.804 x 10710 1.364 x 10713

We also study the probability current densities at » = 8a
[Fig. 2(d)], where remarkably the negative amplitudes are
much larger than at r = a although, in the case shown, there
are fewer time intervals with negative probability current
density. The intervals are listed in Table II.

III. QUANTUM BACKFLOW INTERPRETATION

From a classical point of view one expects that particles
emitted from a decaying system travel away from the source.
It is therefore surprising that the quantum probability current
density at times is negative or inward, even at the potential
barrier. Consider the expectation value of the position and
velocity of the particle as functions of time,

x(t) = /Oodr v (r, Try(r, ),
0

e a
v(T)=/ dr W(hf)[(—i)a—l/f(nf)} (3.1
0 r

In Fig. 4 the mean velocity is plotted as a function of time
with the structure of the graph for small t shown in the
inset. The mean velocity is non-negative at all times becoming
nearly constant for large times. We note that the mean velocity
is outward at all times even during the time intervals when
the probability current density is negative. According to the

6 - 4
6

4t n 1

V(1) v(1)

2 L 4

2 4
0 Il Il

0 0.5 1 1.5
T
0
0 5 10 15 20

T

FIG. 4. The mean velocity of the particle as a function of time
for a = 1 and A = 6. The units of velocity are inverse length.
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FIG. 5. The regions colored (or grey shaded) on the rt plane
where the probability current density is negative fora = 1 and A = 6.

Ehrenfest theorem

ix(t) = (1), (3.2)

dt
so that x(7) is monotonically increasing with time.

It is instructive to plot the regions of negative probability
current density on the rt plane [18] as in Fig. 5. In the
graph the magnitude of the log,,[—j(r, T)] is plotted as a
function of (7, ) according to the color code indicated. Points
at which the probability current density is positive are left
blank. The graph provides a pictorial display of the “islands
of backflow,” and shows succinctly and generally the salient
features of Figs. 2 and 3. The somewhat regular pattern shows
a periodic behavior at the potential boundary, r = a, where the
probability flows in and out of the potential region. This is also
vividly demonstrated using Bohmian quantum trajectories
[10]. We note that the graph depends on having exact wave
functions for r > a.

The discussions of quantum backflow [11,12,14,18] focus
mainly on free particles traversing the origin from left to
right in one-dimensional space, whose wave functions in mo-
mentum space have zero amplitude for negative momentum
components. Quantum backflow occurs when the probability
of the particle being on the left side of the origin increases
temporarily. In our system the particle is initially confined to
a region in coordinate space, but escapes in time by tunneling
though the barrier. However, again there are times that the
probability of the particle being inside the potential region
increases temporarily. So we identify this also as quantum
backflow. Actually this phenomenon is closer to quantum
reentry discussed by Goussev [17], who determined that
quantum backflow and quantum reentry are equivalent. The
phenomenon is general in the sense that it is not an artifact
of the nature of the delta-function barrier. Exact solutions for
such systems with bound states and/or with square barriers
[2] or numerical solutions for Gaussian barriers [19] all show
similar behavior.

The experimental observation of the nonexponenial decay
is discussed recently by Ramirez Jiménez and Kelkar [7].
Their conclusion is that the nonexponential decay is unlikely

0 . . . .
i 0
2k 0.5 | 1
z 1y
T 4t SN 1
2 ; K
s 2
o 0 0.1 02 03 04 05
=) -6 F J
o0 T
2
-8 -P
AT
KSR
o 12 . . . .
0 2 4 6 8 10

FIG. 6. The nonescape and survival probabilities of a system
initially in state ¢, (). The quantity S; (7) is the probability of finding
the system in state ¢, (r) at time . The parameters of the calculation
aren=2,A=3,anda = 1.

to be seen in unstable nuclei and particles. However, exper-
imental evidence for nonexponential luminescence decay of
excited dissolved organic materials is reported in Ref. [8].
The experiments are not sufficiently precise to detect the
fluctuation in the transition regions. However the recent exper-
iments of Crespi et al. [9] using integrated photonics do show
short-, intermediate-, and long-time effects of quantum decay
including the oscillatory behavior between the exponential
and long-time inverse-power-law modes of behavior.

The backflow is related to the oscillatory behavior of the
probability current density occurring in the transition region
from exponential decay to inverse-power-law decay. Ramirez
Jiménez and Kelkar [7] suggest that the survival probability
in the transition period is obtained by combining the survival
amplitude of the exponential decay and the survival amplitude
of the inverse-power-law decay. This leads to an interference
term in the survival probability which shows up as oscilla-
tions. It may be of interest if such interference also occurs
when one transitions from one exponential decay region to
another. In Fig. 6 we show the nonescape probability when
the initial state is characterized with n = 2. In this case we
define survival probabilities S,,(t),

a 2
Sy(7) = ‘/0 dr ¢ (Y (r, )| . (3.3)
Since the initial state has n = 2, S»(t) is the true survival
probability, and S (7) is the probability of finding the system
instate n = 1 attime 7. Initially S;(7) is zero but as the system
evolves in time the n = 2 state is depleted and the n = 1 state
builds up and decays at a slower rate.

We note in Fig. 6 that the nonescape probability increases
by a small, but significant, amount from time t = 0.36to T =
0.40. Hence we observe backflow during the transition from
one type of exponential decay to another.

As mentioned, most of the earlier backflow studies involve
quantum wave packets with positive wave numbers passing
some point on the one-dimensional line, usually the origin. In
the model we study the initial wave function has momentum
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components in both directions. But the direction of the nega-
tive momentum wave is reversed as it reflects from the infinite
barrier and is positive as it arrives at the potential barrier
at r = a. The backflow occurs when there is complicated
interference of the immediate incident and reflected waves.

IV. “DECAY” OF FREE WAVE PACKET

Since backflow is purported to be a universal quantum
effect, existing in an interaction-free environment as well
as in the presence of short-range potentials [16], we further
elucidate the decaying behavior of the preceding section by
examining the time evolution of a free wave packet initially
confined to the region r € (0,a). To do so we first need
the S-wave partial-wave propagator of a free particle. For an
interaction-free system the time-independent eigenstates that
vanish at the origin are

[2
Yr(r) =4/ —sintkr) for 0<k<oo, 0<r<oo.
b4

4.1)
Normalization, orthogonality, and completeness result in the
following conditions:

/0 dk V() = 8(r — 1),

/ dr Y (r)Y (r) = 8(k — k). 4.2)
0
Furthermore, in terms of the Hamiltonian H s
. i 92 i k?
Hypy=|——— = —1Yy = . 4.3
Vi ( o 8r2>1ﬁk o V= €V (4.3)

The free-particle propagator is

K(r.t:7 10) /0 dk Y (rye— @ = 10)/ Ty )

2 (™ ,

== / dk sin(kr)e~ixt = 10)/ 1 g 1y
T Jo
Qdim /4

= i) i) /(4
2wt

4.4)

where again we define T = 7(t — ty)/(2m). The wave function
for any t can be calculated using

Y t) = /oodr’ K@ t;7, )y (', 0). 4.5)
0

Consider now the initial wave function (localized as with the
&-shell potential)

2 . /n7wr
Un(r, 0) = \/jsm (—)0((1 —r
a a

(4.6)

logo Pk)
S

n
10g10 P@)

~
—~——

-8 Lk . I = ] ~

8 r 0 5 10 15 20 N

T
-9 L L L L L L L

-2.5 -2 -1.5 -1 -0.5 0 0.5 1
loggT

FIG. 7. The nonescape probability of a free particle originally
located in region (0, @) whena = landn = 1, 5, and 11.

with n a positive integer. The time-dependent wave function
is

Un(r, 7)
i

—_ m‘f"'”znzf/“z({erf[sﬁ)(n %

+ erf £ 1)/ VTN TV et £ (r, 7)/ /7T
+ erf[£07)(r, —1)/ /T ]} T/, @7

where

EB(r, 1) = (1 —)Qrnt +d® £ar)/2av2).  (4.8)

By invoking the relationship lilil lerf (e 737 /4x)] = F1, it
X—> 00

is straightforward to show that v, (7, 7) reduces to ,(r, 0)
of Eq. (4.6) as 7 approaches 0. Using the wave function of
Eq. (4.7), we calculate the nonescape probability as a function
of time, and show the result in Fig. 7.

Typical features of decaying systems are in evidence in
this free-particle situation: the quadratic-time behavior at
short time, followed by exponential decay, somewhat erratic
transition to a clean 73 long-time fall off. The last property
follows from the long-time dependence of the propagator,

Qdim /4
K(rt;r' 1p) ~ T+ 0T, (4.9)
1
which yields the wave function at large 7,
17T/4 3/2(=1)"
w0~ =—() C L g o),
(4.10)

Such a wave function is useful in calculating the nonescape
probability at large times. Actually the long-time behavior
of the survival probabilities of free particles is discussed by
Miyamoto [20]; it varies as T =+, where £ characterizes the
small £ behavior of the Fourier transform of the initial wave
function as constantx k.
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FIG. 8. The probability current density at r = a = 1 as a func-
tipn of time for the free particle for W(r, ) = 1/«/5[1//1(1', )+
e /s (r, ).

For the calculation of the current we need the spatial
derivative of the wave function,

Yy

81/; (r,7)

_ . —intn’t/a’
2ﬁa3/2

+) _ (=) .
N R

(+) (=) _ .
+<erf[—§"+j;t)j|+erf[—g” i;? T)})e—mnr/a}_

@11

Since the v,(r, 0) form a complete set of states (they are
eigenstates of the infinite square well) we can, by superpo-
sition, start with an initial state of any shape as long as it is
zero at r = 0 and r = a. Thus

W(r0) =Y c¥u(r,0) with Y e’ =1 (4.12)
n=1 n=1

Then the wave function and its spatial derivative at any later
time are

oo
W(rt) =Y catu(rT) and
n=1
(4.13)
In Fig. 8 we plot the probability current density as a
function of time. We use a typical (and arbitrary) combi-
nation of n =1 and n =23 waves, ¥(r,t) = [Y1(r, T) +
e/ 4w23(r, )]/ /2. We observe the following:

(1) There are at least five, perhaps six, time intervals during
which the probability density current is negative.

(2) At early times the probability current density is pos-
itive. This is indicative of the fact that at t = 0 the wave
functions consist of components with positive and negative
wave numbers. The latter travel to the left initially and are
reflected at the origin. They combine with the initially right
moving components so that all components crossing the r = a

v 2. oY,
E(”, T)= ;an(", 7).

-03 3
0 0.01 0.02 0.03

log,,P)

0 0.5 1 1.5 2 2.5 3
T

FIG. 9. The logarithm of the nonescape probability of the free
particle as a function of time for @ = 1 and the parameters of Fig. 8.

point are moving to the right. The negative probability current
density occurs at later times when significant interference can
occur.

(3) The backflow occurs when there is interference of wave
function components with different values of n.

It is enlightening to relate the negative probability current
density intervals to the nonescape probability shown in Fig. 9.
Given that the energy of the n =23 component is much
larger than that of the n = 1 component, the former decays
much faster. This results in the precipitous drop of the escape
probability at very short times. Once the n = 23 component
is nearly depleted the n = 1 component continues to decrease
according to its rate of decay. This leads to an abrupt change
in the slope of the P versus t curve. The decay continues ac-
cording to the exponential decay of the component n = 1 until
at long times the nonescape probability attribute converts to a
773 behavior. At the changeover of the n = 23 exponential
decay to the n = 1 exponential decay we note fluctuations in
the escape probability. Figure 10 shows an expanded view of

-0.32
0.01 0.015 0.02

T

0.025 0.03

FIG. 10. The logarithm of the nonescape probability of the free
particle as a function of very short times for @ = 1 and the parameters
of Fig. 8.
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the nonescape probability as a function of a time over a range
involving only very short times.

It is noteworthy that the nonescape probability increases
over the time intervals during which the probability current
density is negative. Compare Figs. 8 and 10. This occurs
when the decay process transitions from one decay mode (n =
23) to another (n = 1). At this point we do not see similar
fluctuations when the decay rate changes from the exponential
to the inverse power law in time.

V. BACKFLOW AS EIGENVALUE PROBLEM

Bracken and Melloy [12] maximize the increase of back-
flow probability in their model by means of an eigenvalue
method. They investigate the evolution of an initial wave func-
tion consisting of components with nonnegative wave
numbers, and calculate the probability P(z) of the particle
in the region x € (—oo, 0) as a function of time. Backflow
is indicated if there are time intervals during which P(t)
increases. The maximum backflow they obtain is independent
of any dimensioned quantity (e.g., mass, 7, or the length of
time that backflow occurs.) There is however an upper limit
on the amount of backflow during any given time interval, and
it is found to be less than 4%.

The independence of the maximum backflow on the time
interval is based on a scaling property of the probability

current density,
) 1 ,(x t )
J X, = —J|— =)
W\ pu?

The backflow that occurs in the Bracken and Melloy model
depends on the current at the origin which does not change
with the scaling. In the case of the partial S wave of a free
particle, the particle is initially confined to the region r €
(0, a) and the nonescape probability as a function of time is
determined at some nonzero position, say a. Since the scaling
would give different positions, it is not meaningful to compare
currents, and the amount of backflow cannot be expressed
without reference to a or time 7. Nevertheless we calculate
a typical backflow and determine whether it is of the same
order of magnitude as the dimensionless quantum number
cmp = 0.0384517 ... [15] of Bracken and Melloy..

Using the results of the last section, the general time-
evolving wave function of a free particle is

(5.1)

YT =Y catn(r 1)

n=1

(5.2)

The probability current density is

o0 o0 9 » Ut
j(r,t):—iZZchn(w: ;)/[r _ 81/; w) (5.3)

n=1 n'=1

The backflow probability in the time interval (t;, t,) is

Tll
Ap = —/ dt j(a, 1)
T

1
Ty , *
dr (‘/”* W _ 20, 1//",)
1

[e0] [e9]
ZiZZC:c",/ "oar ar

n=1n'=1 T

=c'Mec, (5.4)

16

Jn@m)

0.04

0 0.05 0.1 0.15 0.2

FIG. 11. The probability current density j,(a, t) for small
whenn =3 anda = 1.

where ¢ = (¢1, ¢2, ..., Cp, ..., and
Ty 9 » our*
M,y = l/ dt |:1/f:f w - wn wn/i| (5.5
T ar ar

We determine the extrema of ¢Mc¢ with the constraint ¢'c =
1, using a Lagrange multiplier, i.e.,

I(¢c)=c'Mc—r(c’e—1)

- Z Z My — 1 Z cien+r (5.6)

The extremum condition aacl* =0fori=1,2,... leads to the

eigenvalue equation

Mc = Ac. 5.7)

Since the matrix M is Hermitian the eigenvalues are real.
Although the matrix elements of M need to be evaluated
only once, the integrals may present challenges since the
integrand has oscillations whose frequency goes to infinity
as t approaches zero. Figure 11 illustrates the behavior of
Jja(a, ) which is basically the integrand of M,,, for n = 3.

To overcome the difficulties of evaluating the integrals in
Eq. (5.5) we make a substitution T = 1/z, so that

Ty /7 d 1
/ dt f(r):/ —2Zf<—).
T 1r, < <

The Romberg integration algorithm is efficient in yielding
accurate integrals. We expect —1 < Ap < 1, where Ap = —1
is the case of no quantum backflow. In fact Ap > 0 indicates
a net backflow during the interval (z;, 7,,).

Considering the time interval such that r; = 0.02 and 7, =
0.04 we use the shifted power method algorithm to obtain the
least (i.e., most negative) eigenvalue and the shifted inverse
power method to obtain the largest eigenvalue. We do this
for the various maximum values of n in the sums listed
in Table III. According to values in Table III the range of
eigenvalues is as expected. The largest eigenvalue is 0.025 80
which is of the same order of magnitude of, but less than,
cmp- The values are very sensitive to the time interval. Using
7; = 0.05 instead makes the largest eigenvalue in the n =

(5.8)

052101-8



DECAY OF A QUASISTABLE QUANTUM SYSTEM AND ...

PHYSICAL REVIEW A 100, 052101 (2019)

TABLE III. Smallest and largest eigenvalues when t; = 0.02 and
7, = 0.04. The quantity » refers to the maximum value of n in the
sum of Eq. (5.2).

n 2D e(ll> A e(lh)

2 —0.164 24 1.47 x 1077 0.000 32 4.88 x 10714
3 —0.404 06 4.05 x 1077 0.000 93 2.37 x 10712
4 —0.597 55 5.77 x 10711 0.003 16 1.52 x 10712
5 —0.798 16 1.10 x 10~1° 0.01143 3.76 x 10~13
6 —0.922 58 5.17 x 1078 0.011 56 3.62 x 1071
7 —0.980 60 5.37 x 1077 0.01525 2.71 x 10718
8 —0.994 19 6.44 x 1077 0.015 53 2.69 x 10713
9 —0.997 62 3.75 x 1077 0.017 43 243 x 10718
10 —0.999 01 3.21 x 1077 0.017 93 238 x 1071
15 —0.999 97 2.57 x 1077 0.022 87 1.72 x 10713
20 —0.999 98 2.55 x 1077 0.024 09 1.64 x 10713
25 —0.999 98 2.55 x 1077 0.024 57 1.58 x 10713
50 —0.999 99 2.55 x 1077 0.025 41 1.53 x 10713

100 —0.999 99 2.55 x 1077 0.025 80 1.51 x 10713

2 case negative. After the eigenvalue A and corresponding
eigenvector ¢ have been determined, we calculate the “error”
el = |Mc — Ac| [e(ll) for the lowest eigenvalue and e(lh) for
the highest (most backflow)]. It turns out that the error for
the largest eigenvalue is much smaller than for the smallest
eigenvalue. It may be that the smallest eigenvalue has other
eigenvalues nearby leading to greater difficulty in isolating
it. It is conjectured that in the Bracken and Melloy model
there may a discrete spectrum in the interval (0, ¢,,) and a
continuous spectrum in the interval (—1, 0) (see Ref. [13]).
We are not certain whether there is more than one positive
eigenvalue. Overall there are n eigenvalues in the interval
(—1, cyp) and as n increases the density of eigenvalues in-
creases. One speculates that the density in the (—1, 0) range
is higher than in the (0, ¢,,;,) range.

Of greater importance is the time interval over which
the backflow probability is calculated, since the results are
sensitive to the time interval. For the free particle case the time
interval involves small times, for which the nonescape proba-
bility is still in the vicinity of, but less than, 1. We have seen
in the §-function barrier case that after long times when the
nature of decay changes from an exponential to an inverse
power law, there is backflow with probabilities less than 1078,
Clearly to obtain substantial backflow we need to consider
short times. Whether we can achieve values close c¢,,;, is an
open question, as is the question whether there is a limit
which is equal to ¢,,,. As we increase the value n the backflow
probability saturates. There is a small difference between the
backflow for n = 50 and n = 100.

Considering a particular case of n =20 we are able to
study the composition of the wave function that leads to
maximum forward flow or maximum backflow. In Fig. 12
the magnitude of the coefficients |c,|? are displayed. The
largest backflow occurs with a wave function constituted of
components with n < 6 and a maximum component whenn =
4, whereas the largest forward flow occurs with components
with n < 11 and a maximum at n = 7. For both cases com-
ponents with n > 11 do not appear to contribute significantly.
The initial wave function for the two cases when n = 20 is

0.4 T

T

' most backﬂow ceeen-
0.35 1 ! most forward flow -—-=—- |
03t |
oo |
0.25 D I |
Co AN
2 : N . 3
le,l~ 02} P i’ _\ |
B : \ |
0.15 | ca o ,'! |
0.1 f ’ N i i |
& /: \“
- tr \ |
e /'/“‘ Ral - }
0 — 1k .'7' S _e--%-0-o 2.2 .o
0 5 10 15 "

FIG. 12. The norm of the coefficients |c,|* for the n = 20 case
in Table III when backflow is maximum (red round dots), and when
forward flow is maximum (blue square dots).

shown in Fig. 13. The initial wave function is localized in the
interval (0,1); when maximum backflow occurs it seems to be
concentrated close to the end point » = 1, and when maximum
forward flow occurs the initial wave function is primarily
in the first half of the interval, oscillating with decreasing
amplitude.

In Fig. 14 the current probability density at » = a and the
nonescape probability are plotted as functions of t for the
n = 20 case. The slope of the nonescape probability curve is
positive during the time intervals when the probability current
density is negative. The total time shown spans more than two
half-lives, but the decay is clearly nonexponential. Since we
used the parameters of Table I11, i.e., 7; = 0.02 and 7, = 0.04,
we note that the probability current density is prominently
negative in that time interval. Exploring that region in t
space, we find that the interval (0.020,0.036) gives slightly
more backflow, i.e., Apnax = 0.027 12, which seems to be the
maximum value in that time region. Taking a larger region

5 ‘ ‘
most backflow ——
N most forward flow -—--—--
4t \ |
it ~
il i
o 3piov it l
S . F
< I [
= [ S
IR A N A SN ]
i b Yooy
i Lo IS
hoovi
’: \. "\, e~
0 R
0 0.2 0.4 0.6 0.8 1

FIG. 13. The probability density at T = O for the n = 20 case in
Table III when backflow is maximum (red solid curve), and when
forward flow is maximum (blue dashed curve).
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FIG. 14. The current probability density at r =a (red solid
curve) and the nonescape probability (blue dashed curve) as func-
tions of t for the n =20 case in Table IIl yielding maximum
backflow.

e.g., (0.02,0.06), we obtain Ay.x = 0.017 57. This time inter-
val encompasses the backflow as well as significant positive
probability current density, hence the net backflow is smaller.
One expects the greater amounts of backflow to occur shortly
after initial decay since the amplitudes of the probability cur-
rent and density decrease significantly in time. For example in
the time interval (1.00,1.40) we reach a maximum backflow
probability of 5.971 x 1078.

Figure 15 shows the regions of negative probability current
density in the rt plane for the free particle (n = 20) wave
packet with a maximum backflow over the 0.02-0.04 time (t)
interval. The elongated shapes with positive slopes indicate an
outward movement of these regions.

0.7

0.5
0.4
0.3 ‘
0.2 / .

0.1
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FIG. 15. The logarithm of the absolute value of the current
probability density where it is negative as a function of (r, ) for
the n = 20 case in Table III yielding maximum backflow.

VI. SUMMARY AND CONCLUDING COMMENTS

In the decay of quasistable systems there are time intervals
during which the nonescape probability increases and the
probability current density is inward. In the case of the finite
8-shell potential with ¢,(r), n = 1, as initial wave function,
this backflow occurs after many half-lives when the decay
makes a transition from exponential to inverse-power-law be-
havior and the nonescape probability is very small. However,
surprisingly the amplitude of the negative probability current
density increases as one moves further away from the barrier.
The corresponding backflow amounts are very small however.
These quantities can be calculated accurately because we have
access to the exact wave function of this model at any r and
any 7. A regular pattern of backflow results is seen in Fig. 5.

For the free particle with an initial wave function ¢,(7) ata
single n, we do see somewhat erratic behavior of the probabil-
ity current density in the transition region from exponential
to inverse-power law, but not sufficient to detect backflow.
When the initial wave function is a superposition of ¢, (r) with
different n, we obtain substantial backflow at very short times.
Clearly interference of components with different values of n
play a role as transitions occur between regimes dominated
by different n components. In other words, the shape of the
initial wave function can have a profound effect on the amount
of backflow. A similar study with an initial function with
different n components for the potential barrier problem may
also result in short-time backflow, but that is beyond the scope
of this paper and is left as future work.

Traditionally quantum backflow involves wave packets
whose momentum components are truncated in momentum
space, e.g., nonzero components exist only for positive mo-
menta. The backflow studied in this paper involves wave
packets which are initially limited in coordinate space, i.e.,
only nonzero for r € (0, a) at t = 0. Whereas the momentum
composition does not change in time, the spatial extent of
the wave packet, that is initially localized in space, changes
significantly.

Although we show that backflow is present in decaying
systems, with or without interactions, it is very small in the
decay through a § barrier that we study. For the free particle
case we obtain backflow probability of around 2.58%. This
is less than c,,;, = 3.8452% obtained in the original backflow
analyses, however there is no analytical account of this limit
[13]. With the model of the free particle of this paper the
value more or less saturates and is not expected to increase
significantly by including a greater number of states. The time
interval chosen plays an important role in this model, but not
to the extent of altering the maximum backflow substantially.
It must be emphasized that backflow occurs for the potential
barrier model and for the free particle case, but the inter-
ference causing it has different origins, viz., exponential and
inverse-power law for the § barrier, and two or more different
exponential regions for the free particle.

It would be interesting to investigate the free particle
“decay” using Bohmian mechanics as we did for the § barrier
[10,21]. Initial work on this is promising.

The effect of quantum backflow on transparent bound-
ary conditions is another area that invites scrutiny. The
use of transparent boundary conditions is an approach [22]

052101-10



DECAY OF A QUASISTABLE QUANTUM SYSTEM AND ...

PHYSICAL REVIEW A 100, 052101 (2019)

frequently employed in numerical calculations to account for
the effect on the propagating wave function due to the bound-
ary of the computational space. The method referenced [22]
is claimed to be exact, yet in its derivation terms are neglected
with justification that varies from author to author. In any case
the mechanism by which the wave packet is allowed to cross a
boundary without reflection when substantial backflow occurs
is worth investigating.
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