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The elastic scattering properties of three bosons at low energy enter the many-body description of ultracold
Bose gases via the three-body scattering hypervolume D. We study this quantity for identical bosons that
interact via a pairwise finite-range potential. Our calculations cover the regime from strongly repulsive potentials
towards attractive potentials supporting multiple two-body bound states and are consistent with the few existing
predictions for D. We present a numerical confirmation of the universal predictions for D in the strongly
interacting regime, where Efimov physics dominates, for a local nonzero-range potential. Our findings highlight
how D is influenced by three-body quasibound states with strong d-wave or g-wave characteristics in the weakly

interacting regime.
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Introduction. Due to the precise experimental control of
interatomic interactions via external magnetic fields, ultracold
atomic gases have emerged as a versatile field for studying and
manipulating quantum systems. The effective two-body inter-
action strength given by the s-wave scattering length a can be
tuned via Feshbach resonances [1]. When |a| diverges, Efimov
predicted the existence of an infinite number of three-body
bound states whose universal scaling properties have been
observed experimentally [2-8]. This nonperturbative three-
body effect influences the properties of strongly interacting
Bose gases [9—13] and Bose-Einstein condensates (BECs)
interacting with an impurity particle [14-17]. Connecting
few-body processes with bulk properties of ultracold Bose
gases is fundamental to our understanding of these quantum
many-body systems.

This connection is evident from a low-density expansion
of the ground-state energy density £ of a dilute BEC with a
homogeneous number density » [18]:
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where the dots indicate higher-order correction terms in the
diluteness parameter na’, m is the mass of a boson, r; is the
two-body effective range, and a > 0. The Vna® correction,
calculated by Lee, Huang, and Yang (LHY) [19,20], originates
from two-body elastic scattering characterized by a alone.
Experiments have probed LHY physics by measuring the
critical temperature of a BEC [21], quantum depletion [22],
excitation spectrum [23,24], thermodynamic equation of state
[25], and contact [26]. Additionally, recent studies predicted
[27] and experimentally confirmed the formation of quantum
droplets in mixtures [28—30] and dipolar BECs [31-33] due to
a stabilizing force originating from the LHY correction.
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As the study of strongly interacting Bose gases advances,
there is the opportunity to observe beyond-LHY correc-
tions. These corrections have been studied both phenomeno-
logically, via extensions of the Gross-Pitaevskii equation
[34—42], and microscopically, via quantum Monte Carlo simu-
lations [43,44] and studies of three-body scattering in vacuum
[18,45-47]. Specifically, zero-energy three-body collisions
determine the In(na®) correction calculated by Wu [48-50]
and the scattering hypervolume D [18]. Crucially, D deter-
mines the effective three-body interaction in an analogous
role to a in the two-body case. It is predicted to act as a
stabilizing force for quantum droplets in ultracold Bose gases
[38—40], may be tuned experimentally [51], and could be
experimentally determined from the compressibility or sound
modes of Bose gases [52].

The imaginary part of D is proportional to the three-body
recombination rate [4,53] and has been studied extensively
for various three-body systems, both experimentally and the-
oretically [54]. However, despite its fundamental relevance,
the real part of D remains sparsely explored. This is partly
caused by the difficulty of removing singular contributions
to the elastic three-body scattering amplitude required to
obtain the real part of the scattering hypervolume [4,6,45,55].
In the strongly interacting regime, Efimov physics plays a
dominant role leading to universal log-periodic behavior of D
[4,6,47,56]. In the weakly interacting regime, D has been stud-
ied considering the repulsive hard-sphere potential [18] and
a Gaussian interaction potential [53]. However, the behavior
of D over a full range of interaction strengths has not been
explored for any finite-range potential, which demonstrates
the nontrivial character of this problem.

In this Rapid Communication, we investigate the three-
body scattering hypervolume D for identical bosons interact-
ing via a pairwise square-well potential, covering the range
from weak to strong interactions, and analyze the correspond-
ing universal and nonuniversal effects. We present numerical
calculations of D in the strongly interacting regime for a
local finite-range potential, and study the corresponding Efi-
mov universality. Besides the Efimov resonances, we identify
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additional three-body resonances close to two-body d- and
g-wave resonances and study their character.

Elastic three-body scattering amplitude. A convenient way
to calculate D is to use the Faddeev equations for the three-
particle transition operators U,g in the form presented by Alt,
Grassberger, and Sandhas (AGS) [57,58],
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to find the transition amplitude for three-body elastic scat-
tering that is described by the operator Uyy(z). Here z is the
(complex) three-body energy. The index o (8) in U,g(z) labels
the four possible configurations for the outgoing (incoming)
state of the three-body scattering wave function, i.e., « =0
denotes three free particles, whereas o = 1, 2, and 3 stand for
the three possible atom-dimer configurations. 7, (z) represents
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which holds for any local symmetric two-body potential. Here
the three-body energy z = 0 is approached from the upper
half of the complex energy plane, which fixes the sign of the
imaginary part of D.

We consider three identical bosons that interact via a
pairwise square-well potential
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where r denotes the relative distance between two particles
and R and Vj represent the range and depth of the potential,
respectively. To obtain D, we solve the AGS equations given
in Eq. (2) for the matrix element (p, q|Uy0(0)|0,0) after
subtracting the terms in Eq. (3) that diverge as p, ¢ — 0 (see
Ref. [60]). The dimension of this set of integral equations
is reduced to one by expanding this amplitude in spherical
harmonics and in two-body states that are determined by the
Weinberg expansion and are thus related to two-body bound
states or resonances [59,61]. The resulting integral equation is
solved as a matrix equation by discretizing the momenta.

Our method differs from another approach recently pre-
sented by Zhu and Tan [53] who calculated the scattering
hypervolume D from the zero-energy three-body scattering
wave function in position space for a variable two-body
Gaussian potential. Their numerics were limited to the weakly
interacting regime in contrast to our approach covering the
complete regime ranging from strongly repulsive to attractive
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the transition operator for scattering between particles 8 and
y B,y =1,2,3, B#y # «) in the presence of particle
o and is simply related to the two-body T operator 7T (z2p)
[59], where 7z, is some complex value for the energy of
the two-body system. The operator Gy(z) is the free three-
body Green’s function (z — Hy)~' where H is the three-body
kinetic energy operator in the center-of-mass frame of the
three-particle system.

The three-body configuration is parametrized by
the Jacobi momenta py=Pg—P,)/2 and q,=
(2/3)[P, — (Pg+P,)/2] where P, represents the
momentum of particle « in the laboratory frame.
There exist three possibilities to choose these Jacobi
vectors. If we define q=q; and p=p;, we have
©=p—4q/2, pp=-p/2-3q/4, ¢3=-p—4q/2, and
p3 = —p/2 +3q/4. This parametrization is suitable for
relating the matrix element (p, q|Uyo(0)|0, 0) to the scattering
hypervolume D where we normalize the plane-wave states
according to (p’|p) = §(p’ — p). From Tan’s definition of
the three-body scattering hypervolume D [18], we deduce
the following relation between (p, q|Unn(0)|0, 0) and D (see
Supplemental Material [60]):
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potentials and from weak (Ja|/R < 1) to strong (Ja|/R > 1)
interactions. In the following, we show our results in these
regimes obtained by tuning the potential depth V;.

Repulsive potentials. In the limit Vj — —oo, the square-
well potential approaches the hard-sphere interaction that was
considered already a decade ago by Tan [18]. Our results for
D in this limit are shown in Fig. 1(a) where we find good
agreement within the numerical accuracy of our approach:

D/a* =
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Vo——o00
When the potential barrier —Vj is decreased, the scattering
hypervolume decreases as well, and it eventually goes to zero
in the limit |Vy| — 0 as
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where Vo = mVyR?/ K% denotes the dimensionless interaction
strength. Equation (6) is a general relation for D for local
symmetric potentials V' in the zero-depth limit [62], whereas
Eq. (7) applies specifically to the square-well potential. We
have analytically derived Eq. (6) from the AGS equations
using the Born approximation (see Ref. [60]), and we have
numerically confirmed it for the square-well potential. An
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FIG. 1. Three-body scattering hypervolume D (green solid line) corresponding to the square-well potential as a function of the
dimensionless interaction strength V, = mV,R?/H>. The vertical lines indicate the interaction strengths at which two-body states become
bound: s-wave states (I = 0, red dashed lines) at V, = (77 /2)* and (37 /2)?, d-wave states (I = 2, orange dash-dotted lines) at V, ~ (4.49)>
and (7.73)%, and g-wave state (I = 4, purple dotted line) at V, &~ (6.99)2. Inset (a) displays the behavior of D for strongly repulsive potentials
as indicated by the black arrow. The horizontal blue dashed line represents the hard-sphere limit calculated by Ref. [18]. The other insets
(b)—(e) zoom in on the real and imaginary parts of D near several resonances that arise from three-body quasibound states at the three-particle

threshold.

expression equivalent to Eq. (6) has been derived in position
space by Ref. [53] that confirmed it for a Gaussian potential.

Attractive potentials. As the potential depth increases, two-
body states start to become bound resulting in a nonzero value
for the imaginary part of D. Figure 1 shows that this value
is much smaller than the magnitude of the real part in most
regimes. Close to the two-body s-wave potential resonances
that are indicated by the vertical red dashed lines in Fig. 1,
the pairwise interactions are strong (|a| > R). Here the scat-
tering hypervolume D scales as a* and its behavior becomes
log-periodic due to the Efimov effect as we will see below.
In between these two-body resonances where |a] < R, we
identify several resonances related to three-body quasibound
states that appear at the zero-energy threshold as indicated by
Figs. 1(b)-1(e). In the following paragraphs, we first analyze
the characteristics of these three-body resonances before pre-
senting our results in the strongly interacting regime.

The presence of the trimer resonances at \/\70 =3.8 and
4.45 [Figs. 1(b) and 1(c), respectively] depends critically on
the inclusion of the almost bound two-body d-wave state (ver-
tical orange dash-dotted line at \/VT) ~ 4.49) in our Weinberg
expansion of the two-body T operator. This suggests that
these trimer states are associated with this d-wave dimer state
in a similar way as the three-body state for van der Waals
potentials studied by Ref. [63].

In Fig. 1(d) we highlight small features at \/70 =57,
6.7, and 7.2. These are close to the point at which the first
g-wave dimer state gets bound (vertical purple dotted line).

By analyzing the eigenvalues of the kernel of the integral
equation (see Ref. [60]), we find that they are true trimer
resonances. These resonances vanish when the first g-wave
dimer state is removed from the Weinberg expansion. We do
not see any effects of the resonances at \/70 =5.7, 6.7, and
7.2 on the real part of D within our numerical accuracy. More
generally, our results suggest that trimer resonances in the
weakly interacting regime have a stronger effect on Im(D)
than on Re(D).

The next trimer resonance occurs at \/\70 =749 [see
Fig. 1(e)]. It vanishes when removing the second d-wave or
the second g-wave dimer state from our Weinberg expansion.

These two-body states get bound at \/\70 ~ 7.73 (vertical

orange dash-dotted line) and \/\70 ~ 10.42, respectively. So
both d-wave and g-wave effects play a significant role for this
trimer resonance.

Even though these trimer resonances in the weakly in-
teracting regime all originate from the nonzero partial-wave
components of the two-body interaction potential, the behav-
ior of D is not the same for all resonances. This suggests
that the behavior of the scattering hypervolume in the weakly
interacting regime depends on some three-body background
phase shift resulting from nonresonant pathways for three-
body scattering [6]. In particular, Fig. 1(c) shows a sharp min-
imum in —Im(D) (or equivalently in the three-body recom-
bination rate) near the trimer resonance peak at \/70 =4.45.
Such a sharp feature was also encountered by Ref. [53] for
a Gaussian potential supporting two s-wave dimer states. We
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suspect that both features arise from destructive interference
effects [6], since the minimum in Fig. 1(c) vanishes when
we exclude the almost bound two-body d-wave state in our
Weinberg expansion.

Our results presented in Fig. 1 can be compared to the
calculations of Ref. [53] for the scattering hypervolume cor-
responding to a Gaussian two-body potential. Even though
both results are very similar for repulsive potentials, they are
quite different for attractive interactions. The main difference
is the behavior of D when approaching the s-wave dimer
resonances (vertical red dashed lines), where Ref. [53] finds
additional trimer resonances that are different from the Efimov
resonances. Secondly, we find that D behaves smoothly across
the d-wave dimer resonances (vertical orange dash-dotted
lines) in contrast to the results of Ref. [53]. These differences
show that the details of the considered two-body potential play
a crucial role in the behavior of D across a d-wave dimer
resonance and on the presence of trimer states in the weakly
interacting regime.

We now discuss our results in the strongly interacting
regime (|a|/R >> 1). Here, the behavior of D is predicted
to follow a general form determined in Refs. [47,56,64—66]
and generalized in Refs. [4,6,67] by including the inelasticity
parameter n that describes the tendency to decay to deeply
bound dimer states. These limiting forms for D contain a
number of universal constants obtained in Refs. [47,67-70]
which we refine in this work (see Ref. [60]). In addition to
n, they also depend on the nonuniversal parameters a_ and a
that locate the three-body recombination maxima and minima,
respectively, and are completely determined by the interaction
between the three particles [4].

1680

o . . .
1 10 102 103 10

(a) a/R

The universal expressions for the real part of the scattering
hypervolume D are given by
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for a > 0. The imaginary part of D is given by the universal
formulas
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Im(D/a*) ~ — 1C, (A1 — ™)
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for a > 0. Here so ~ 1.00624 is the constant that sets the
periodicity in Efimov physics for identical bosons [2,3] and
we have defined the constant C = 647 (4w — 3+/3). The coef-
ficients by, c1, and Cy are universal in the sense that they do
not depend on the short-range form of the potentials [6]. These
constants were determined previously to be C_ =~ 4590 [67],
C, =~ 67.1177 [68-70], b_ = 3.16, c_ = 1.14, b, = 0.021,
and ¢, = 1.13 [47] (see Ref. [60] for the connection between
D and the quantity calculated in Ref. [47]).

We have redetermined the universal coefficients as C; =
67.118(5), by = 0.0226(5), ¢+ = 1.1288(5), b— = 3.153(5),

x10*
af . . .

ﬂ
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FIG. 2. Three-body scattering hypervolume D (green solid line) near the second potential resonance of the square-well potential for (a) a >
0 and (b) a < 0. The dashed curves give the analytic zero-range results given by Eqgs. (8), (9), (10), and (11) where we set a,./R = 1759,
by =0.0226, c, =1.1288,C; = 67.118,a_/R = —8396, b_ = 3.153, c_ = 1.140, C_ = 4590, and n = 0.068.
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and c_ = 1.140(2). This was done by analyzing the three-
body scattering hypervolume for a contact interaction with
a cutoff in momentum space (see Ref. [60] for details). We
find good agreement with the previously determined values
except for b, that deviates approximately 7% from Ref. [47].
However, this leads only to a deviation of 0.1% in the overall
value of D (see Ref. [60]).

The universal relations (8) and (9) have not been pre-
viously tested numerically for any local nonzero-range
two-body potential. Near the second two-body s-wave poten-

tial resonance of the square-well potential, i.e., \/\70 is close to
3 /2, we compare our results against the universal relations
in Fig. 2. Using our results for the universal constants, we
numerically confirm Egs. (8), (9), (10), and (11). For this
specific two-body resonance, we find that ay /R = 1759(5),
a_/R = —8396(1), and n = 0.068(1). Similar results for the
first potential resonance can be found in the Supplemental
Material [60].

Conclusion. By solving the AGS equations for the three-
body elastic scattering amplitude, we have studied the behav-
ior of the three-body scattering hypervolume D which is a
fundamental quantity of ultracold three-body collisions and
is needed for studying ultracold Bose gases beyond the LHY
correction. We have presented numerical calculations of D
for identical bosons with a variable nonzero-range potential
in the strongly interacting regime. Our results agree with the
universal predictions of Refs. [4,6,47,56,64—-67] and show
how finite-range effects start to play a role as the absolute

value of the scattering length is decreased. For repulsive
interactions, we have confirmed the hard-sphere limit from
Ref. [18] and the weak-interaction limit from Ref [53]. We
have also explored the weakly interacting regime for attractive
potentials supporting up to two s-wave dimer states and identi-
fied several three-body resonances related to trimer states that
depend strongly on d-wave and/or g-wave effects.

The approach outlined in this Rapid Communication is
very general and can be applied to other types of two-body
potentials as well, such as van der Waals potentials. It could
also be applied to mixtures, for which low-energy elastic
three-body scattering properties are completely unexplored.
Additionally, one could extend our approach to study three-
body scattering embedded in a many-body environment [9]
and determine how three-body correlations affect both station-
ary and dynamical observables of ultracold Bose gases for any
short-range two-body potential. In particular, one could make
quantitative predictions for the ground-state energy density of
a BEC and investigate stabilizing effects from the three-body
scattering hypervolume for small negative scattering lengths
including the formation of quantum droplets [38—40].
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