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Optical-lattice-based method for precise measurements of atomic parity violation
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We propose a method for measuring parity violation in neutral atoms. It is an adaptation of a seminal work
by Fortson [Phys. Rev. Lett. 70, 2383 (1993)], proposing a scheme for a single trapped ion. In our version, a
large sample of neutral atoms should be localized in an optical lattice overlapping a grid of detection sites, all
tailored as the single site in Fortson’s work. The methodology is of general applicability, but as an example,
we estimate the achievable signal in an experiment probing a nuclear spin independent parity violation on the
line 6s 2S1/2-5d 2D3/2 in 133Cs. The projected result is based on realistic parameters and ab initio calculations of
transition amplitudes, using the relativistic coupled-cluster method. The final result is a predicted spectroscopic
signature, evidencing parity violation, of the order of 1 Hz, for a sample of 108 atoms. We show that a total
interrogation time of 30 000 s should, together with existing theoretical data, suffice for achieving a precision in
the determination of the weak charge of Cs of the order of 0.1%—a sensitivity surpassing previously reported
determinations by at least a factor of 5.
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Parity nonconserving (PNC) interactions in atomic sys-
tems involve interplay between the weak and electromagnetic
forces [1], and its studies have implications for atomic, nu-
clear, and particle physics [2,3]. They enable explorations
of new physics beyond the standard model (SM) of particle
physics [4,5], probe the nuclear anapole moment (NAM)—
presumed to be a fundamental property of a nucleus [2,6,7]—
and test the role of electron correlation effects in atomic
systems [3]. For detection of PNC signatures in atomic transi-
tions, the underlying phenomena can be categorized as nuclear
spin dependent (NSD) or independent (NSI), providing means
to tailor experiments for specific purposes. Underlying causes
for parity violations are the exchange of a Z0 boson between
an electron and the nucleus, due to the weak interaction, and
the NAM. The Z0 current has both NSI and NSD contribu-
tions, whereas the spectral effects of the NAM are purely NSD
in character [2].

When choosing a system for an NSI PNC experiment,
an important consideration is that the PNC interaction scales
approximately as the third power of the nuclear charge [8]. As
a consequence, a heavy atom will greatly facilitate detection.
Secondly, extraction of the weak charge from PNC signatures
requires knowledge of the NSI transition amplitude and thus
it has advantages to choose a system amenable to accurate
computational efforts. These considerations make a heavy
alkali-metal system a good choice. One reported study—the
only claiming observation of a NAM—used Cs and the dipole
forbidden transition 6s 2S1/2-7s 2S1/2 [9]. However, the ob-
served NAM is at variance with predictions based on the shell
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model and nucleon-nucleon scattering experiments [10,11],
motivating a revisit of the subject. In another reported PNC
experiment the transition 6s2 1S0-5d6s 3D1 in Yb is used [12].

The PNC interaction induces mixing of states, resulting
in nonzero matrix elements between levels otherwise lacking
a dipole allowed transition. This transition amplitude is not
suitable for direct detection, and many works focus instead on
an interference between this and another excitation amplitude.
In [9] and [12], this pertained to Stark-induced magnetic
dipole (M1) resonances. Here we analyze a PNC amplitude
interfering with an electrical quadrupole transition (E2) on a
s-d spectral line in an alkali, and we complement a concrete
experimental scheme by showing that for Cs, the transition
6s-5d holds advantages for PNC experiments over 6s-7s [13].
Attempts to detect PNC amplitudes, using s-d transitions in
alkali systems have focused on ions. In a seminal work [14],
Fortson introduced a scheme with a single trapped Ba+ ion on
the line 6s 2S1/2-5d 2D3/2. The choice of a single ion limits the
statistics, but this is partly offset by the long-lived upper state
and the long storage time. Here, we adapt the scheme in [14]
to neutral atoms trapped in an optical lattice, thereby enabling
a substantial reduction of shot-noise limitations. We will
trap individual atoms periodically, and with auxiliary fields,
independent of the trapping light, we will follow the detection
idea of [14]. In order to demonstrate the feasibility of the sug-
gestion, we analyze a concrete example of a measurement of
NSI in Cs, including calculation of 6s 2S1/2-5d 2D3/2 transition
amplitude.

We suggest trapping atoms in a two-dimensional opti-
cal lattice, where each trapping site must coincide with a
detection field tailored to optimize a PNC signature [14].
The latter criterion is that a nodal plane from one standing
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FIG. 1. Energy levels corresponding to the lowest configurations
(6s, 6p, 5d , and 7s) in Cs I, including fine structure. The PNC
detection will be performed with two lasers tuned to the resonance
6s 2S1/2-5d 2D3/2 at λsd =689.5 nm. The optical lattice must operate
on the wavelength λol =λsd

√
2 = 975.1 nm to achieve overlap with

points suitable for detection.

wave crosses an antinodal one from a second one with the
same wavelength, resonant with 6s 2S1/2-5d 2D3/2 (λsd =689.5
nm)—see Grotrian diagram in Fig. 1. This takes advantage
of the fact that the oscillator strength of an E2 transition is
proportional to the square of the electric field gradient, while
that of the PNC induced E1 transition scales linearly with
intensity. For both, the standing wave configurations enhance
the excitation rates and associated light shifts at the sites
optimized for detection. The relevant Rabi frequencies for the

E2 and PNC excitations are

�E2 = − 1

2h̄

∑
i, j

(AE2)i, j

[
∂ Ei(r)

∂x j

]
r=0

and �PNC = − 1

2h̄

∑
i

(APNC)i Ei(r=0). (1)

The indices represent the Cartesian coordinates and the tensor
elements (AE2)i, j and (APNC)i are the E2 and PNC amplitudes.
The origin is chosen to be at the center of one of the good de-
tection volumes, and Ei is the electric field component along i.
With the transitions simultaneously driven, and provided that
the driving field is resonant, the overall light shifts are [15]

�E = h̄
√

|�E2 + �PNC|2

≈ h̄ �E2 + h̄ Re[�E2�
∗
PNC]

�E2
≡ WE2 + WPNC. (2)

Here, the pure PNC term has been neglected, as has contribu-
tions from M1 amplitudes.

A configuration that fulfills the criteria above is shown in
Fig. 2. The laser fields that drive the E2 and PNC excitation
amplitudes are, with coordinates and orientations as in the
figure,

EE2(r, t ) = EE2

2
√

2
(êx −êz )

{
exp

[
− iksd√

2
(êx +êz )·r

]

+ exp

[
iksd√

2
(êx +êz )·r + iπ

]}
eiωsdt + c.c.,

EPNC(r, t ) = EPNC

2
√

2
(êx +êz )

{
exp

[
− iksd√

2
(êx −êz )·r

]

+ exp

[
ik√

2
(êx −êz )·r

]}
eiωsdt + c.c. (3)

FIG. 2. Left: Proposed laser configurations. Red and blue arrows are cavity wave beam pairs, at angles of π/4 with the êx and êz axes,
which drive the E2 and PNC amplitudes. These fields have mutually orthogonal linear polarizations, and their common wavelength λsd is
resonant with the 6s-5d transition. Green arrows represent optical lattice beams, linearly polarized along êy and with wavelength λol =λsd

√
2.

Center: Schematic illustration of two overlapping orthogonal standing waves, resulting in points that are optimized for detection of PNC.
The PNC field is shown in blue and the E2 field in red. For both, antinodal planes are shown as full lines and nodal points as dotted lines.
The sites optimized for detection are ones where a PNC antinode coincides with an E2 node (indicated by purple circles). Right: Locations
in the xz plane of points optimized for PNC detection (purple “X” symbols) and optical lattice sites (green concentric, filled circles). For the
optical lattice, darker green represents higher irradiance.
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EE2 and EPNC are the electric field amplitudes, ωsd the angular
frequency, and ksd =ωsd/c the angular wave number. The
relative phase of π ensures that a nodal plane crosses the
origin. The light in Eq. (3) results in a two-dimensional lattice
of points amenable for PNC detection, as illustrated in Fig. 2.

The role of the optical lattice is to keep every atom lo-
calized in the xz plane, much tighter than λ 2

sd, centered at
one of the points tailored for PNC detection. Our proposed
configuration is four laser beams oriented along the êx and êz

axes:

Eol(r, t )= Eol

2
êy{exp[−ikol êx ·r] + exp[ ikolêx · r]

+ exp[−ikolêz ·r] + exp[ikol êz ·r]}eiωolt + c.c. (4)

The angular frequency needed to have the trapping sites coin-
cide with the points suitable for detection, defined in Eq. (2),
is ωol =ωsd/

√
2, and Eol is the amplitude per beam. The

temporal phases will be controlled interferometrically [16].
This leads to a light shift potential [16–18]:

U (r) = U0[cos2(kolx) + cos2(kolz)

+ 2 cos(kolx) cos(kolz)], (5)

where U0 is the light shift at irradiance maxima. With the cho-
sen frequency, the optical lattice, at λol =λsd

√
2 = 975.1 nm,

is detuned below the principal E1 resonances, 6s-6p. Thus, the
light shift will be negative, and the potential minima will be at
irradiance maxima. Laser cooled atoms will now be confined
around points in the xz plane that are commensurate with
the good detection points as illustrated in Fig. 2. There will
be many optimized detection points lacking a trapped atom,
but it is only the reverse requirement which is a necessary
condition. The chosen geometry carries the extra advantages
that it enables cancellations of contributions to the measured
PNC amplitude from the light shift induced by the optical
lattice, and from the first-order Zeeman shift. This will be
detailed in the forthcoming.

The temporal phases of all laser beams in Eqs. (3) and (4)
will be controlled interferometrically by electronic feedback
to all end mirrors of the beams in Fig. 2. The two lasers
running at λsd and λol do not have to be phase locked, since
a global phase drift in any of them will appear equally in all
interferometer arms. That means that all phase drifts before
the respective beams are split will cancel (see [19] or [20]).

As a concrete example, supporting the feasibility of the
suggestion, we consider a measurement of the NSI light shifts
of the magnetic substates MF =±1, ±3, and ±4 of the Cs
level 6s 2S1/2, F =4, as illustrated in Fig. 3. These should
be brought into resonance with states of the excited level
5d 2D3/2, F ′ =5, using lasers at λsd =689.5 nm. All included
sublevels will be shifted from their field-free energies due
to light shifts induced by the E1 interaction with the optical
lattice light, and the PNC E1 coupling and E2 interaction
induced by the driving fields. Added to that will be Zeeman
shifts, induced by a weak magnetic field that establishes the
quantization axis. Provided zero detunings of E2 and PNC
lasers, the total level dependent energy shifts, adjusted from

FIG. 3. Illustration of the suggested detection configuration. The
total induced level separation is measured between three pairs of
magnetic sublevels in 6s 2S1/2, F =4: h̄ ωrf,a =�E (+4)−�E (+3)
and h̄ ωrf,b =�E (−4)−�E (−3) by rf spectroscopy, and h̄ ωRaman =
�E (+1)−�E (−1) by Raman spectroscopy.

Eq. (2) will be

�E (MF ) = MF EZ + EqZ,M

+U0,M + WE2,M + WPNC,M, (6)

wherein EZ is the Larmor frequency in energy units; and
EqZ,M , U0,M , WE2,M, and WPNC,M respectively, the quadratic
Zeeman shift, optical lattice potential, and the E2 and PNC
light shifts for a specific Zeeman sublevel. For the nine
different Zeeman levels individually, the light shifts are

�E (+4) = 4 EZ + U0,4 + WE2,3 + WPNC,4,

�E (+3) = 3 EZ + EqZ,3 + U0,3 + WE2,3 + WPNC,3,

�E (+2) = 2 EZ + EqZ,2 + U0,2 + WE2,2 + WPNC,2,

�E (+1) = EZ + EqZ,1 + U0,1 + WE2,1 + WPNC,1,

�E (0) = EqZ,0 + U0,0 + WE2,0 + WPNC,0,

�E (−1) = −EZ + EqZ,−1 + U0,1 + WE2,1 − WPNC,1,

�E (−2) = −2 EZ + EqZ,−2 + U0,2 + WE2,2 − WPNC,2,

�E (−3) = −3 EZ + EqZ,−3 + U0,3 + WE2,3 − WPNC,3,

�E (−4) = −4 EZ + U0,4 + WE2,3 − WPNC,4. (7)

We consistently use êz as quantization axis. The optical
lattice field can then be decomposed in σ+ and σ− fields,
driving only �MF =±1 light shifts. This means that U0,M =
U0,−M [21]. For the E2 transitions, with geometry and polar-
izations as in Fig. 2, �MF =0 will dominate [15]. �MF =
±2 will contribute little, and �MF =±1 will be totally sup-
pressed. With the added magnetic field the contributions from
�MF =±2 may be further reduced for a laser tuned to �MF =
0. The E2 interaction is parity conserving, which means
that WE2,M =WE2,−M. Furthermore, the Clebsch-Gordan co-
efficients are such that WE2,±3 =WE2,±4. The selection rule
for M1 is �MF =±1. With our parameters, and the insignif-
icant M1 amplitude (shown later), M1 contributions can be
neglected.
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The sought after quantities are WPNC,M, and since the
PNC interaction is parity violating WE2,M =−WE2,−M. This
can be utilized in order to eliminate as many as possible of
the technical contributions to Eq. (6) and isolate the PNC
signature. We propose to measure the splittings between the
MF =±4 and MF =±3 with Ramsey rf spectroscopy:

h̄ ωrf,a = �E (+4) − �E (+3)

and h̄ ωrf,b = �E (−4) − �E (−3), (8)

and the energy difference between MF =1 and MF =−1 with
Raman spectroscopy (see Fig. 3):

h̄ ωRaman = �E (+1) − �E (−1). (9)

In the latter case, the light shift induced by the Raman beams
will cancel if the two beams have the same intensity. The
duration of the Ramsey interrogation periods will be set by
the radiative lifetime of the upper level, and state selective
detection will be done using 9.2 GHz microwave radiation and
induced fluorescence (see [15] for a detailed description). The
three spectroscopical results in Eqs. (8) and (9) can then be
combined as follows:

h̄(ωrf,a − ωrf,b − ωRaman)

= (WPNC,4 − WPNC,3 − WPNC,1) + EqZ

= h̄ωobs + EqZ . (10)

The last term is the total contribution from the quadratic
Zeeman shift:

EqZ = EqZ,−3 + EqZ,−1 − EqZ,1 − EqZ,3. (11)

It cancels for MF =±4, and for the remaining levels, the
contribution to the signal can be accurately determined by
performing the same spectroscopy as above, but without the
E2 and PNC driving fields. The remaining energy, h̄ωobs,
provides a measurement of the PNC transition amplitude,
APNC.

In order to estimate the achievable signal, we have cal-
culated APNC, AE2, and the amplitude due to M1 (AM1) of
the 6s 2S1/2-5d 2D3/2 line, using a relativistic coupled-cluster
(RCC) theory. Similar results were previously reported using
a sum-over-states approach [22]. The latter calculations are
here improved by solving the first-order perturbed equations
in the presence of PNC. In the RCC theory, we express the
initial and final states of the transition, without considering
the PNC interaction, as∣∣ 	 (0)

v

〉 = eT (0)[
1 + S(0)

v

]| 
v 〉. (12)

Here |
v〉=a†
v|
0〉 is the Dirac-Hartree-Fock (DHF) wave

function of the 5p6 closed-shell configuration, and v corre-
sponds to the respective valence orbitals of the initial and final
states. The RCC operators T (0) and S(0)

v excite electrons from
|
0〉 and |
v〉, respectively, to the virtual space. The M1 and
E2 matrix elements are determined in a similar approach as
in [22], but the accuracies are improved.

The APNC amplitude between states with valence orbitals i
and f can be evaluated as

APNC =
〈
	

(0)
f + 	

(1)
f

∣∣ D
∣∣ 	 (0)

i +	
(1)
i

〉
√〈

	
(0)
f

∣∣ 	 (0)
f

〉〈
	

(0)
i

∣∣	 (0)
i

〉 , (13)

where D is the E1 operator, and superscript 1 denotes the first-
order PNC perturbed wave functions with respect to the Dirac-
Coulomb (DC) Hamiltonian. In the sum-over-states approach
used in [22], the latter state is expressed as:

∣∣	 (1)
v

〉 =
∑
k �=v

∣∣	 (0)
k

〉 〈
	

(0)
k

∣∣HNSI
PNC

∣∣	 (0)
v

〉
E (0)

v − E (0)
k

, (14)

where HNSI
PNC represents the NSI PNC interaction Hamiltonian.

The sum is over all allowed intermediate eigenstates of the
atomic Hamiltonian Ha, with energies E (0)

k=i,f . This restricts
the sum to matrix elements containing only low-lying bound
states in the RCC theory, while contributions from the con-
tinuum are included using lower-order many-body methods.
To circumvent this, we have instead obtained first-order per-
turbed wave functions by solving an inhomogeneous equation
for a state involving the valence orbital v:(

Ha − E (0)
v

)∣∣	 (1)
v

〉 = (
E (1)

v − HNSI
PNC

)∣∣	 (0)
v

〉
. (15)

The first-order energy perturbation, E (1)
v , vanishes due to the

odd-parity of HNSI
PNC. In the RCC theory framework, this result

is obtained by
∣∣	 (1)

v

〉 = eT (0){
T (1)

[
1 + S(0)

v

] + S(1)
v

}|
v〉, (16)

where superscript 1 now means the first-order perturbed RCC
operators with respect to HNSI

PNC. The amplitude equations both
for the unperturbed and perturbed RCC operators are given
in [23,24].

We use several methods (in order to check the consistency):
DHF; RCC with a single and double excitations approxima-
tion (RCCSD); RCC with single, double, and triple excitations
(through Sv) approximation (RCCSDvT); and the approxima-
tion with all possible single, double, and triple excitations
(RCCSDT), employing the Dirac-Coulomb (DC) Hamiltonian
and single-particle orbitals generated by Gaussian-type or-
bitals (GTOs) [22]. We have estimated corrections from the
Breit interaction, nuclear structure, and lower-order quantum
electrodynamics (QED) effects due to the vacuum polariza-
tion and self-energy interactions, using the expressions given
in [25,26] in the RCCSD method. Results from different
methods and relativistic corrections to APNC, AM1, and AE2

amplitudes are given in Table I along with approximations of
errors. These uncertainties are determined by analyzing errors
stemming from the use of finite size GTOs and estimating
contributions from neglected higher level excitations.

Quantitative light shift values can be predicted by taking
into account geometric factors [27], and by assigning electric
field amplitudes to the standing waves in Eqs. (3). For a
realistic example, we have assumed laser powers at λsd of
3 W, coupled into cavities with enhancement factors of 100,
and focused to beam diameters of 0.5 mm. This will result
in electric field amplitudes of EE2 =EPNC ≈2×106 V/m,
(same as in [14]). Resulting Rabi frequencies are presented
in Table II. With parameters as above, the predicted signal is
ωobs/2π ≈ 0.9 Hz.

For Cs, a number density of 1012 cm−3 is attainable.
With E2 and PNC beam diameters as above, and estimating
the interaction volume as the cube of that, it is possible to
hold >108 atoms. The radiative lifetime of the upper state is
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TABLE I. Contributions to the overall 6s 2S1/2-5d 2D3/2 transition
amplitude from the M1, E2, and PNC interactions, with the DC
Hamiltonian derived by different methods. The M1 and E2 ampli-
tudes are in a.u., and the PNC one in −iea0[Qw/N]×10−11 (Qw,
weak charge; N , neutron number). Corrections from Breit and QED
interactions are computed with the RCCSD method and nuclear
structure corrections are estimated by varying the Fermi nuclear
charge distribution.

Method AM1 AE2 APNC

DC Hamiltonian
DHF ∼0 43.85 2.376
RCCSD 2.56 × 10−4 33.98 3.169
RCCSDvT 2.59 × 10−4 33.94 3.163
RCCSDT 2.80 × 10−4 33.89 3.165

Corrections
Breit 7.0 × 10−5 −0.04 −0.017
QED −3.0 × 10−5 0.02 −0.009
Nuclear structure ∼0 ∼0 −0.002

Final 2.8(2) × 10−4 33.9(1) 3.14(2)

909 ns [25]. This means that for a 10% sensitivity in ωobs,
the minimum total interrogation time is ≈30 ms. A more
ambitious benchmark is a comparison with [9]. Combining
experimental data from [9] with theory from [28] yields a
weak charge for Cs of Qw =72.58 with an uncertainty of
0.6%. In our case, Qw will be proportional to ωobs, which,
given the same quality of theoretical data as in [28], means
that a corresponding sensitivity would require a resolution
better than 5 mHz. An improvement of that to a precision
better than 1 mHz, will for the estimated parameters require a
total interrogation time of 30 000 s.

The minimum magnetic field necessary in order to tune
�MF =2 E2 transitions out of resonance is B=3 mT. This
means a total quadratic Zeeman shift contribution from
Eq. (11) of 2π×150 kHz. This can be accurately measured
by rf spectroscopy, and with the same technique, and added
screening, the field can be stabilized. The required level
of magnetic field control is 10−6. A small birefringence in
the optical viewports will lead to small circular polarization
components in the light, which will produce small imbalances
in the cancellations of optical lattice and E2 light shifts in
Eq. (10). However, by measuring the level shifts first with only
the optical lattice turned on, and then the optical lattice and the
E2 standing wave, these can be corrected for, and techniques
for quantifying induced ellipticity in situ have been reported
in, e.g., [29,30]. The atoms must be confined to a small

TABLE II. Calculated energy shifts for relevant �M =0 tran-
sitions on the spectral line 6s 2S1/2, F =4-5d 2D3/2, F =5, using the
amplitudes from Table I and electric field amplitudes of 2×106 V/m.

WE2/h WPNC/h

MF =1–M ′
F =1 −7.41 MHz −0.355 Hz

MF =3–M ′
F =3 −18.16 MHz −0.290 Hz

MF =4–M ′
F =4 −18.16 MHz −0.217 Hz

volume, where conditions for detection are met. To estimate
the achievable localization, we assume optical lattice lasers
at λol with 5 W per beam, collimated to diameters of 1 mm.
The dominating contributions to the optical lattice light shift
emanate from the D1 and D2 lines, and with above parame-
ters, the potential depth is U0 ≈h×1 MHz [31]. The optical
lattice loads from three-dimensional optical molasses, with
which Cs temperatures of 1 μK (corresponding to 10 kHz)
are routinely achieved. This gives a linear confinement in the
detection plane of the order of λol/30. The shortest separation
between two detection points is λ/(2

√
2), and a maximally

unfavorable point for detection will be at half that distance.
Our analyses of a predicted signal show that the proposed

experimental scheme is a fordable route for detection of
atomic PNC and NAM. The computed PNC amplitude in
Table I for the 6s 2S1/2-5d 2D3/2 line is about 3.5 times larger
than that for 6s 2S1/2-7s 2S1/2 [3]. The specific example with a
NSI effect in Cs is used for a feasibility study, but the scheme
is not limited to this. The proposal may be used also for NSD
experiments, other optical lattice geometries than the one in
Fig. 2 are possible, and the general experimental idea is appli-
cable also to other species than Cs. In terms of the potential
sensitivity to new physics beyond the SM, for the particular
suggested NSI measurement, a limitation is the theoretical
uncertainty in the calculated APNC in Table I of 0.6%. The
accuracy achieved in this calculation is a substantial improve-
ment over the previous calculations [13,22], and there is scope
for further improvements. This means that if a measured value
of the PNC light shift, with added experimental uncertainty,
would yield a value of Qw differing from the predicted value
with more than 0.6%, that would be an indication of new
physics. That translates to �Qw >0.44, which in turn would
mean a particle of mass >3.3 TeV/c2 [15].

Computations were carried out using Vikram-100 HPC of
Physical Research Laboratory, India. A part of this work was
supported by JSPS KAKENHI Grant No. JP19H05601.
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