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Enhanced excitation of a driven bistable system induced by spectrum degeneracy
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The nonequilibrium statistics and kinetics of a simple bistable system (resonantly driven nonlinear oscillator
coupled to reservoir) have been investigated by means of master equation for the density matrix and quasiclas-
sical Fokker–Planck equation in quasienergy space. We found that the system’s statistical and kinetic properties
drastically change when the quasienergy states become nearly degenerate and the occupation of the most excited
state is strongly enhanced. It has been revealed that, in nearly degenerate case, a critical quasienergy parameter
emerges. Below the critical quasienergy value the eigenstates are superpositions of the quasiclassical states from
different phase-space regions, while above this value the eigenstates correspond to only one particular region of
the phase space. We have also generalized Keldysh theory for ionization of atoms in the electromagnetic field
for bistable systems. It has been demonstrated that Keldysh parameter in the bistability region is large when
pumping intensity is smaller than the critical value. It has been shown by direct calculations that multiphoton
transition amplitude coincides with the tunneling amplitude. So, multiphoton transitions and tunneling between
the regions of the phase space are just the same effects. We also demonstrated that, for bistable systems, the
Keldysh parameter logarithmically depends on the external field amplitude.
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I. INTRODUCTION

Nowadays bistability is one of the most pronounced phe-
nomena in modern optics and electronics. It has broad ap-
plications in all-optical logic and memory performance. So
controllable changing of the occupation of different stable
states and the control of transition rates between them are
among the most important problems. The solution of these
problems relies on one’s knowledge of optimal perturbation
which transfers the system from one stable state to another.
Another problem is how to control the structure of stable
states by changing the system parameters such as external
field frequency and intensity.

In the pioneering works on bistability [1–3], the systems
of two-level atoms in a laser cavity under external pumping
were considered. It was shown that the intensity of light
transmitted through the cavity varies discontinuously under
changing of external pumping and exhibits a hysteresis cycle.
In later works, much effort was put into studying the effects of
quantum and thermal fluctuations and noise on the properties
of these bistable systems [4,5]. Also the spectrum of scattered
light was analyzed [6,7], as well as instabilities and chaotic
behavior [8]. Bistability has been widely studied in different
experimental setups: cold clouds of atoms inside the optical
cavity [9,10], exciton-polariton modes in microcavities with
external pumping [11], fiber ring cavities [12], and meso-
scopic Josephson junction array resonators [13] in the external
field, etc.

The results of many of these experiments can be un-
derstood by investigating bistable single-mode systems with
Kerr-like nonlinearity. The resonance response of a bistable

single-mode system with a Kerr-like nonlinearity to the
external field is described by a model of a driven nonlinear
oscillator interacting with dissipative environment [14]. This
model also describes an atomic system with several energy
levels coupled to the cavity mode after adiabatically excluding
atomic variables [15–17].

Moreover, the model of a driven nonlinear oscillator is a
minimal model of a bistable driven system out of equilibrium.
In the quasiclassical limit, its statistics and kinetics can be de-
scribed by a Fokker–Planck equation (FPE) [18]. By means of
a FPE, it is possible to find the stationary distributions, relax-
ation rates, and the occupations of two classical stable states
of the oscillator. In the classical case, the noise-induced transi-
tions between the stable states can also be described in terms
of probability distributions of the first passage time through
the saddle point. Moreover, for small damping constant, the
ratio between the occupation probabilities of the stable states
obtained from Fokker–Planck equation is close to the ratio
of the mean first passage times through the saddle point.
The first passage times can be calculated by direct numerical
simulation of the stochastic equation of motion for slowly
varying amplitudes, as in Refs. [19,20]. This happens because
the first passage times are exponentially large compared with
the inverse damping constant describing the first (fast) stage
of relaxation in each region of the phase space. After crossing
the saddle point from one of the stable states, the system
undergoes the fast relaxation towards another stable state.

Previously, the nonequilibrium statistics and relaxation
kinetics at different temperatures were studied numerically
for the quantum oscillator by using the rate equation [21,22].
Also for the quantum oscillator the exact Glauber–Sudarshan
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function of the steady state was obtained [14] in the case of
zero bath temperature.

In the described model of the bistable driven system, it
has been shown [18] that there exist different regions of the
classical phase space with degenerate energies. Among the
quantum effects, the effects of tunneling transitions between
these regions are of particular interest.

For proper treatment of tunneling effects, a fully quantum-
mechanical analysis is necessary. In the quasiclassical limit,
the kinetic equation of Fokker-Planck type requires the ad-
ditional tunneling term which leads to a nonzero flow of
the probability distribution. As mentioned in Refs. [23,24],
tunneling increases the population of the higher-amplitude
state, which is also a squeezed state. It also increases the
relaxation rate to the stationary distribution. From the qua-
siclassical point of view, tunneling can lead to hybridization
of quasiclassical states from different regions of the classical
phase plane. It can be shown to be very strong in the case
of integer or half-integer detuning-nonlinearity ratio, when
the quasiclassical states from the different regions of the
phase space become degenerate. This also corresponds to
the multiphoton resonance between the real energy levels
of the driven system. The hybridization of the quasienergy
states from different regions of the phase space in the case of
multiphoton resonance can strongly change the kinetics of the
considered system. With hybridization, the kinetics drastically
differ from the nondegenerate case investigated previously
[23] and are not studied yet.

In the case of strong hybridization between the states
from different regions of the phase plane, the transition rate
between them can be explained by a generalization of Keldysh
theory for ionization of atoms in an electromagnetic field [25]
for bistable systems. The Keldysh theory explains the inter-
play between tunneling and multiphoton ionization. However,
for bistable systems the correspondence between multiphoton
transitions and tunneling effects is not clear. To understand
it, one should define the Keldysh parameter γK as the ratio
of “tunneling time” to the period of motion along the classical
trajectory. It will be demonstrated that, when the field intensity
is much smaller than the critical value defining the range
of bistability, the Keldysh parameter is large, γK � 1, and
tunneling probability is just the same as the probability of
multiphoton excitation. It will be also shown that γK logarith-
mically depends on the strength of the external field f while
in the case of ionization of atoms it is proportional to f −1.

II. THE SIMPLE MODEL OF BISTABLE DRIVEN SYSTEM

The Hamiltonian of a driven resonant mode with Kerr-like
nonlinearity in the rotating-frame approximation reads

Ĥ = −�â†â + α

2
(â†â)2 + f (â + â†). (1)

Here � is the detuning between the driving force and the reso-
nant oscillator frequency, α is the blueshift due to nonlinearity,
and f is proportional to the amplitude of the driving force.

In the classical limit, one should replace the operators â,
â† in Eq. (1) with classical field amplitudes a, a∗ to obtain
the classical Hamiltonian. The classical phase portrait of the
system is shown in Fig. 1: the classical trajectories in the a

FIG. 1. The phase portrait of the nonlinear oscillator with Hamil-
tonian (1) where the operators â, â† are replaced by c numbers. The
parameters are � = α = 1,

√
β/βcrit = 0.3. The stationary points 1,

2, and S are shown by black dots. The separatrix is denoted by a thick
black line. It divides the phase plane into regions which are shown by
numbers 1, 2, 3. In the inset, the dependence of amplitude stationary
values on β is shown for � = α = 1. The blue solid (gray dashed)
curves correspond to the stable states (unstable states).

plane are given by the contour lines of the classical Hamilto-
nian [see surface plot of the Hamiltonian function H (a, a∗) in
Fig. 2(b)]. Each classical trajectory corresponds to a certain
quasienergy value ε. The only dimensionless parameter gov-
erning the system classical dynamics is α f 2/�3 ≡ β, which
can be treated as the rephasing rate of the nonlinear driven
oscillator [26]. This parameter can also be identified with
the Dicke cooperation parameter determining the typical rate
of the intensity growth of a superradiance pulse. Bistability
appears when 0 < β < βcrit ≡ 4/27; see inset of Fig. 1.

For the quantum Hamiltonian, there exists another dimen-
sionless parameter m ≡ 2�/α. The quasiclassical limit is
acquired at large m.

A key feature of the driven nonlinear oscillator is the pres-
ence of two stable stationary states, which means bistability.
Another important feature is the presence of a self-intersecting
trajectory called separatrix, which divides the phase plane
into regions 1, 2, and 3 and passes through the unstable
stationary point S. The regions 1 and 2 contain the stationary
states with smaller and larger amplitude, respectively. The
quasienergies of the states 1, 2, S are denoted by ε1, ε2 and
εsep, and they always obey the inequality ε2 < εsep < ε1. In
further discussion, we also use the dimensionless quasienergy
defined as E = αε/�2, E1 = αε1/�

2, E2 = αε2/�
2, Esep =

αεsep/�
2.

The states of the quantum Hamiltonian in the limit of large
numbers of excitation quanta correspond to a discrete set of
classical trajectories on the phase portrait. The corresponding
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FIG. 2. (a) The quasienergy ranges containing quasienergy states with different structure are shown. The dark green thick line schematically
denotes the Hamiltonian function H (a, a∗) at Im a = 0. Its extrema correspond to the stationary states 1, 2, and S. Also a quantum state which
is a superposition of two quasiclassical states is schematically shown by a blue dashed line. (b) A surface plot of the Hamiltonian function
H (a, a∗) is shown together with the classical phase portrait of the system. The dark green line corresponds to the intersection of the surface
with the vertical plane Im a = 0. The blue dashed lines are the intersection of the surface with a horizontal plane. They correspond to a pair of
classical trajectories with the same quasienergy from regions 1 and 3.

energies can be obtained from the Bohr–Sommerfeld quanti-
zation rule.

In the considered system, various sources of noise are pos-
sible including different parametric sources or interaction with
dissipative environment. We investigate the nonequilibrium
statistics of the system in the presence of fluctuations caused
by interaction with the environment, which can be described
by the following interaction Hamiltonian:

Hint = ξ̂ †â + ξ̂ â†, (2)

where ξ̂ , ξ̂ † are the operators of random force with correlation
functions defined as

〈ξ̂ (t )ξ̂ †(t ′)〉 = γ (N + 1)δ(t − t ′),

〈ξ̂ †(t )ξ̂ (t ′)〉 = γ Nδ(t − t ′), (3)

where N is the number of noise quanta and γ is the damping
caused by the interaction with the environment. The kinetics
of the quantum bistable driven oscillator in the limit of weak
coupling with the environment can be treated in the diagonal
approximation for the density matrix. In this approximation,
one obtains the rate equation dealing with probabilities Pn of
occupation of the nth quasienergy state:

dPn

dt
=

∑
n′

wnn′Pn′ − wn′nPn,

wnn′ = γ [(N + 1)|〈n|â|n′〉|2 + N |〈n′|â|n〉|2]. (4)

If each quasienergy state can be uniquely attributed to one of
the regions of the phase space, in the limit of large number of
excitation quanta the rate equation transforms to the classical
Fokker–Planck equation in the quasienergy space:

∂Pi(E )

∂t
= 1

Ti(E )

∂Ji(E )

∂E
,

Ji(E ) = ϑKi(E )Pi(E ) + QDi(E )
∂Pi

∂E
, (5)

where Ti(E ) is the period of motion along the classical tra-
jectory, the coefficients Ki(E ) and Di(E ) are the drift and
diffusion coefficients in quasienergy space. The coefficients
Ti(E ), Ki(E ), and Di(E ) are defined in Appendix A. The
dimensionless parameters ϑ, Q are defined as ϑ = γ /� and

Q = ϑα(N + 1/2)/�. The probability densities Pi(E ) are the
continuous limits of Pn, where the probabilities Pn are consid-
ered as functions of dimensionless quasienergy E ≡ αεn/�

2,
and i denotes the region of the phase space according to Fig. 1.
The function P2(E ) is defined for E2 < E < Esep, P1(E ) for
Esep < E < E1, and P3(E ) for E > Esep.

However, as the quasienergy states in regions 1 and 3
can have same energies (see Fig. 2), it is possible that the
true quasienergy states are superpositions of the quasiclassical
states from regions 1 and 3 due to quantum tunneling. So
the classical Fokker–Planck equation should be generalized to
take this effect into account. It will be shown that hybridiza-
tion of quasiclassical states from regions 1 and 3 strongly
modifies the nonequilibrium statistics and kinetics of the
system.

III. THE STRUCTURE OF QUASIENERGY STATES

In this section, we consider the model quasiclassically,
although the results obtained here are valid beyond the quasi-
classical approximation. Within the quasiclassical approach,
the eigenstates of the quantum Hamiltonian correspond to a
discrete set of trajectories which are obtained by using the
Bohr–Sommerfeld rule:

1

2π

∮
pdq = 2πn. (6)

The variables q, p are the canonical coordinate and mo-
mentum defined by a = q+ip√

2
and a∗ = q−ip√

2
. For the states

from region 2, the value of quasienergy uniquely defines
the classical trajectory. However, if a state has quasienergy
εsep < ε < ε1, it can lie either in region 1 or region 3. There-
fore, if the quasienergies of some states obtained from the
Bohr–Sommerfeld rule are close enough, the true eigenstates
of the quantum Hamiltonian can be superpositions of the
quasiclassical states due to quantum tunneling.

Let the set of quasiclassical states from regions 1 and
3 be |n1〉, |n3〉 with corresponding quasienergies εn1 , εn3 . If
for some n, n′ the quasienergies are almost equal, εn1 = εn′

3
,

the quasiclassical states |n1〉 and |n′
3〉 form superpositions.

Formally, for each n, n′ it is possible to find the parameters
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FIG. 3. The dependency of the quantum driven nonlinear oscil-
lator quasienergy levels on m. Different behavior of levels above
and below Esep is evident: for Esep < E < E1, there are two families
of almost-intersecting (anticrossing) lines which correspond to the
quasiclassical states from regions 1 and 3. All anticrossings occur at
integer values of m: the blue dashed line corresponds to m = 16. For
E2 < E < Esep, there is only one family of lines which corresponds
to the quasiclassical states from region 2.

β, m such that εn1 = εn′
3
. In principle, these values of β and

m could be different for different pairs n, n′. However, a
special feature of the Hamiltonian (1) is that the degeneracy
of the quasiclassical states occurs exactly at integer values
of m for all β in the region of bistability. Therefore, at each
integer value of m all quasiclassical states from regions 1
and 3 can be grouped in pairs so that within each pair the
values of quasienergy are equal. When m is close to an integer,
the states still can be grouped in pairs with close values of
quasienergies. This is clearly seen from the exact diagonal-
ization of the Hamiltonian (1). In Fig. 3, the eigenvalues of
Hamiltonian (1) are shown as functions of m at constant β. It
can be seen that, for Esep < E < E1, there exist two families
of lines which correspond to the states from regions 1 and 3.
The anticrossings of these lines indicate the degeneracy of the
quasiclassical states. It is evident that all these anticrossings
occur exactly at integer values of m.

To put the statements of the previous paragraph on the
theoretical ground, let us first consider the case f = 0. At f =
0, the Hamiltonian commutes with the number of excitation
quanta operator a†a, and eigenstates have the form |n〉 with
corresponding quasienergies

ε (0)
n = −�n + α

2
n2 = 2�2

α

n

m

( n

m
− 1

)
,

m ≡ 2�

α
. (7)

At integer m, it is clear that all quasienergy levels split into
pairs with same energy, as ε (0)

n = ε
(0)
m−n.

Let us proceed to the case f > 0. Let us consider the pair
of states |n〉 and |m − n〉, n < m/2 which are degenerate at
f = 0. From the quasiclassical point of view, these states
corresponds to circular trajectories on the phase plane with
different radii. From the Bohr–Sommerfeld rule, it follows

that the values of adiabatic invariant 1
2π

∮
pdq for these states

are −n and m − n. Then let us switch on the external field adi-
abatically. After that, the quasienergies of the states change,
but the values of the adiabatic invariant remain the same. The
corresponding trajectories lie in regions 1 and 3, respectively,
unless f is so large that they merge into a single trajectory
from region 2. Therefore the quasienergies of the resulting
states are ε1(−n, β ) and ε3(m − n, β ), where the energies are
understood as functions of the adiabatic invariant.

For the considered model, it is possible to prove the identity

ε1(−n, f ) = ε3(m − n, f ), (8)

or, equivalently,

n3(ε, f ) − n1(ε, f ) = m. (9)

This happens because n1(E , f ) and n3(E , f ) have an analytic
expression through the same elliptic integral with different
contours (see Appendix A). With the same reasoning, it is also
easy to verify that the classical periods of the trajectories from
regions 1 and 3 with equal quasienergies are the same [27].
Thus, in the quasiclassical limit the energies of the states with
numbers n and m − n obtained from Bohr–Sommerfeld rule
remain the same even at finite f . This supports the statement
that the degeneracy of the quasiclassical states from regions 1
and 3 happens simultaneously for all states at integer values
of m.

To find the eigenstates in the case when the quasiclassical
states from regions 1 and 3 are degenerate, it is necessary
to find the tunneling amplitude, which can also be obtained
quasiclassically. For that, one should consider the motion
of the system in the classically forbidden area. The quasi-
classical tunneling exponent equals half of the action of a
classical closed trajectory in imaginary time. The resulting
amplitude is

ωR(E ) ∼ 1

T (E )
e−Stunn (E ), (10)

Stunn(E ) = 1

2

∮
pimdq = m

2

∫ s2

s1

acosh

{
E + s2

2 − s4

8√
2βs

}
sds,

(11)

where pim is defined from the equation H (q, ipim ) = ε. When
β 
 βcrit ,

Stunn(E ) = m

2
ln

1

β

√
1 + 2E + O(1). (12)

For nearly degenerate states, when En ≈ Em−n, the tunneling
exponent takes the form

Stunn(En) = m

2
ln

1

β

(
1 − 2n

m

)
, (13)

which is especially convenient for comparison with the multi-
photon transition amplitude obtained by perturbation theory.

The eigenstates with account for tunneling between the
nearly degenerate eigenstates can be found from an effective
two-level Hamiltonian for two near-degenerate quasiclassical
states. It has the form

Hn =
(

εn1 −ωn
R−ωn

R εn3

)
, (14)
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where εn1 and εn3 are the quasienergies of the quasiclassical
states |n1〉, |n3〉, and ωn

R is the tunneling amplitude. When m
slightly deviates from an integer, m = m0 + δm, the difference
of quasiclassical energies is

δεn = εn1 − εn3 = − 2πδm

T (En)
. (15)

The eigenstates of the effective Hamiltonian are

|n+〉 = cn|n1〉 + sn|n3〉,
|n−〉 = −sn|n1〉 + cn|n3〉. (16)

where the coefficients cn, sn are defined by the ratio between
ωR and δεn:

cn ≡ cos θn, sn ≡ sin θn,

tan 2θn = 2ωR

δεn
= 1

πδm
e−Stunn (En ). (17)

Because of exponential dependence of ωR on E , the coef-
ficients cn and sn have a step-like dependence on n. When
ωR(En) 
 δεn, sn ≈ 0, cn ≈ 1, and the eigenstates correspond
to distinct trajectories in the regions 1 and 3 of the phase por-
trait. On the contrary, when ωR(En) � δεn, sn ≈ cn ≈ 1/

√
2,

and the states are very close to symmetric and antisymmetric
superpositions of trajectories. These alternatives are separated
by the critical value of quasienergy Ec for which ωR(Ec) ≈
δε(Ec). Combining this with Eq. (15), one gets the equation
for Ec:

1

πδm
e−Stunn (Ec ) = 1. (18)

The resulting structure of quasienergy states is schematically
depicted in Fig. 2. Below Esep, there are only states from
classical region 2. Between Esep and Ec, the states from
regions 1 and 3 form superpositions and, above Ec, the states
from regions 1 and 3 do not hybridize.

IV. THE SYMMETRY OF THE HAMILTONIAN

The quasiclassical arguments of the previous section are
valid only in the leading order in the quasiclassicity parameter
m. In particular, the quasienergy values of the system can
be expanded in asymptotic series in 1/m, and the Bohr–
Sommerfeld rule gives only the leading term of these se-
ries. Therefore additional arguments are needed to explain
the simultaneous anticrossings of the quasienergy levels at
integer m.

The rigorous proof can be given by using the perturbation
theory in f for the quantum Hamiltonian (1). At f = 0, the
Hamiltonian commutes with n̂ = a†a, so the quasienergies
of the Hamiltonian (1) are given by Eq. (7). At small f ,
one can use the perturbation theory to find the corrections
to the energy of the state |n〉. For example, the second-order
correction is

δε (2)
n = f 2

α

(m + 1)

(m − 2n)2 − 1
. (19)

The perturbative correction ε (2)
n is symmetric with respect

to replacement n → m − n. This is in agreement with the
quasiclassical arguments of Sec. III: it was shown that the

changes of quasiclassical quasienergy due to adiabatic change
of f are the same for states |n〉 and |m − n〉. This statement
is not only valid in the quasiclassical framework but also
holds exactly in the second order of perturbation theory.
Moreover, we obtained a rigorous proof that the same holds
for higher orders k of perturbation theory, ε (k)

n = ε
(k)
m−n up to

order m − 2n. The complete proof is given in Appendix B.
For integer m one should utilize the degenerate perturbation
theory which also takes into account multiphoton transitions
between the states |n〉 and |m − n〉. These transitions occur
only at order m − 2n, and up to this order, the nondegenerate
perturbation theory remains valid. Therefore, the quasienergy
splitting between the states |n〉 and |m − n〉 occurs only at the
order m − 2n.

V. THE GENERALIZATION OF KELDYSH THEORY FOR
IONIZATION OF ATOMS IN ELECTROMAGNETIC FIELD

Splitting between the quasienergy states and the transitions
between the regions of the phase space can be treated not
only as tunneling between the regions of the phase space
but also in (m − 2n)th order of perturbation theory in f , as
mentioned in Sec. IV. Both approaches lead to just the same
effects. Such behavior can be understood in the frame of
Keldysh theory for ionization of atoms in an electromagnetic
field generalized for bistable systems with a discrete spec-
trum. Transition amplitude depends on Keldysh parameter
γK ≡ Tim(E )/T (E ) where Tim is the tunneling time, which
is defined as Tim ≡ (α/�2)∂E Stunn, where Stunn(E ) is the
tunneling action defined by Eq. (12). The tunneling time has
the meaning of the half period of motion along the closed
trajectory in the imaginary time. From the expression (13),
we obtain that Tim(E ) ∼ �−1 ln 1

β
. The period in the real

time is always ∼�−1 unless the quasienergy is close to Esep.
So, γK ∼ ln 1

β
� 1 for β 
 βcrit . In this limit, the tunneling

amplitude coincides with (m − 2n)-order perturbation theory
multiphoton transition amplitude. Indeed, as was shown in
Ref. [23], the multiphoton transition amplitude reads

ωn,m−n
R = Vn,n+1 · · ·Vm−n−1,m−n(

ε
(0)
n − ε

(0)
n−1

) · · · (ε (0)
n − ε

(0)
m−n−1

) ∝ �β
m
2 −n, (20)

where V̂ = f (â + â†). This coincides with the expression
ωR(E ) ∝ �e−Stunn (E ) where Stunn(E ) is defined by Eq. (13).
According to both formulas, ωR ∼ �β

m
2 −n. Moreover,

not only the power-law dependence on β coincides but
also the numerical coefficient which is accurately derived in
Appendix C. Therefore, tunneling and multiphoton transitions
are just the same effects. Also let us note that, for bistable
driven systems, the Keldysh parameter γK logarithmically
depends on the external field amplitude f whereas in the
case of ionization of atoms by strong electromagnetic field,
γK ∼ f −1.

VI. THE EFFECT OF DEGENERACY ON KINETICS

The fact that the eigenstates of the quantum driven
nonlinear oscillator can be superpositions of quasiclassical
states from regions 1 and 3 has a strong effect on kinetics
described by the rate equation. When each state can be
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uniquely attributed to a single region of the phase space,
in the limit of large number of excitation quanta the rate
equation transforms to the classical Fokker–Planck equation
in quasienergy representation. However, this is not the case
when m is close to an integer. The actual eigenstates are the
superpositions of the quasiclassical states from regions 1
and 3, which breaks the crucial assumption under which the
Fokker–Planck equation is derived.

However, even when m is close to integer, there exists a
quasiclassical limit of the rate equation corresponding to large
m which has also the form of the classical Fokker–Planck
equation in the quasienergy space. It is obtained under the
assumption that the occupations P+

n and P−
n of states |n+〉

and |n−〉 [see Eq. (16)] still depend smoothly on n. The rate
equation in terms of Ps

n , s = ±, takes the form

∂Ps
n

∂t
=

∑
n′s′

wss′
nn′Ps′

n′ − ws′s
n′nPs

n , (21)

where the transition probabilities wss′
nn′ between the states |ns〉,

|n′
s′ 〉 are defined by the general formula (4), and the states |ns〉

are defined by Eq. (16). In Eq. (21), it is possible to perform
a gradient expansion of P±

n . To perform such a procedure,
it is convenient to rewrite Eq. (21) in a slightly different
form:

∂P+
n

∂t
=

∑
n′

W +
nn′P+

n′ − W +
n′nP+

n + w+−
nn′ P−

n′ − w−+
nn′ P−

n′ ,

∂P−
n

∂t
=

∑
n′

W −
nn′P−

n′ − W −
n′nP−

n + w−+
nn′ P+

n′ − w+−
nn′ P+

n′ , (22)

with the newly defined coefficients W +
nn′ = w++

nn′ + w−+
nn′ and

W −
nn′ = w−−

nn′ + w+−
nn′ . They are expressed via matrix elements

between the states from regions 1 and 3 as

W +
nn′ = (N + 1)

(
c2

n′
∣∣an1n′

1

∣∣2 + s2
n′
∣∣an3n′

3

∣∣2) + N
(
c2

n′
∣∣an′

1n1

∣∣2 + s2
n′
∣∣an′

3n3

∣∣2)
,

W −
nn′ = (N + 1)

(
s2

n′
∣∣an1n′

1

∣∣2 + c2
n′
∣∣an3n′

3

∣∣2) + N
(
s2

n′
∣∣an′

1n1

∣∣2 + c2
n′
∣∣an′

3n3

∣∣2)
,

w+−
nn′ = (N + 1)

(
c2

ns2
n′
∣∣an1n′

1

∣∣2 + s2
nc2

n′
∣∣an3n′

3

∣∣2 − 2cncn′snsn′ Re an1n′
1
a∗

n′
3n3

)
+ N

(
c2

ns2
n′
∣∣an′

1n1

∣∣2 + s2
nc2

n′
∣∣an′

3n3

∣∣2 − 2cncn′snsn′ Re a∗
n′

1n1
an3n′

3

)
,

w−+
nn′ = (N + 1)

(
s2

nc2
n′
∣∣an1n′

1

∣∣2 + c2
ns2

n′
∣∣an3n′

3

∣∣2 − 2snsn′cncn′ Re an1n′
1
a∗

n′
3n3

)
+ N

(
s2

nc2
n′
∣∣an′

1n1

∣∣2 + c2
ns2

n′
∣∣an′

3n3

∣∣2 − 2snsn′cncn′ Re a∗
n′

1n1
an3n′

3

)
. (23)

Using the rate equations in the form (22), it is easy to un-
derstand the structure of the quasiclassical limit of Eqs. (22).
Following the derivation of the Fokker–Planck equation which
was described in detail in Ref. [23], it is clear that, after gra-
dient expansion, the terms

∑
n′ W ±

nn′P±
n′ − W ±

n′nP±
n transform to

the expressions 1
T

∂
∂E [ϑK±P± + QD± ∂P±

∂E ] where K±(E ) and
D±(E ) describe the drift and the diffusion correspondingly in
quasienergy space. The terms ±(w+−

nn′ P−
n′ − w−+

nn′ P+
n′ ) describe

tunneling transitions between the states |n+〉 and |n−〉. Thus,
the whole system of equations takes the form

∂P±

∂t
= 1

T

∂J±
∂E

+ �±
tunn, (24)

where

J± = ϑK± + QD± ∂P±

∂E
, (25)

and �
+(−)
tunn are the terms responsible for tunneling:

�
+(−)
tunn (E ) ≡

∫ E1

Esep

dE ′T (E ′)[w+−(−+)
EE ′ P−(+)(E ′)

− w
−+(+−)
E ′E P+(−)(E )]. (26)

The system (24) is exactly the Fokker–Planck equation
with the tunneling term from Ref. [23]. The features of
Eqs. (24) can be understood from the structure of the eigen-
states which was described in Sec. III; see Eq. (16) and Fig. 2.

As was mentioned in Sec. III, the hybridization of the qua-
siclassical states from different regions of the phase portrait
is strong for quasienergies below Ec and it is very small
for quasienergies above Ec. This defines the behavior of the
coefficients K±(E ), D±(E ), and terms �±

tunn(E ) in Eq. (24),
which is different for E < Ec and E > Ec. For E > Ec there
is almost no hybridization of states from regions 1 and 3.
Therefore, the drift and diffusion coefficients of the Fokker–
Planck equation K± = K1,3, D± = D1,3 and the tunneling
transition rate is small: �±

tunnT 
 1. On the contrary, for
E > Ec the actual eigenstates are symmetric and antisymmet-
ric superpositions of the quasiclassical states from different
regions. Using the expressions (23) and keeping in mind that,
in the considered case sn ≈ cn ≈ 1/

√
2, it is obvious that the

drift and diffusion coefficients for |n±〉 states are K+ ≈ K− ≈
1
2 (K1 + K3), D+ ≈ D− ≈ 1

2 (D1 + D3), and the tunneling rates
are large and almost equal: �+

tunnT ≈ �−
tunnT ∼ 1.

From the considerations of the previous paragraph, it is
easy to obtain the stationary distribution. As for E < Ec, the
drift and diffusion coefficients and tunneling transition rates
are almost equal for states |n±〉 and the tunneling transition
rate is large; the stationary probability densities P+ and P−
are almost equal, too, P+ ≈ P− ≈ P̄. Thus, the stationary
probability density P̄ is obtained from the condition of zero
flow J±(E ) and is given by the expression

P̄(E ) = exp

{
−ϑ

Q

∫ E

Esep

K1 + K3

D1 + D3
dE ′

}
, Esep < E < Ec. (27)
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FIG. 4. The distribution functions at
√

β/βcrit = 0.2, Nth = 4,
m = 30 + δm for different small δm. The exact quantum distribu-
tions are denoted by red circles, green crosses, blue diamonds, and
black triangles for δm = 10−1, 10−4, 10−8, 0. The quasiclassical
approximations of distribution functions given by Eqs. (27) and
(29) are shown with red solid, green dashed, blue dotted, and black
dash–dotted lines for different values of δm, correspondingly. The
orange arrows indicate the position of critical quasienergy Ec(δm).

For Ec < E < E1, the tunneling term in Eq. (24) is small,
and the stationary distributions P+(P−) can be obtained by
perturbation theory in �±

tunn as was done in Ref. [23].
Let us define

P±(E ) = P±
0 (E ) + δP±(E ), (28)

where P+(−)
0 (E ) are stationary distributions without the tun-

neling term and δP+(−) are the first-order corrections caused
by the tunneling terms. Then,

P+
0 (E ) = P̄(Ec) exp

{
−ϑ

Q

∫ E

Ec

K1

D1
dE ′

}
, Ec < E < E1,

P−
0 (E ) = P̄(Ec) exp

{
−ϑ

Q

∫ E

Ec

K3

D3
dE ′

}
, Ec < E < ∞.

(29)

The coefficients in Eqs. (29) are defined by the continuity
condition at E = Ec. The tunneling corrections have the form

δP+ = −P+
0

∫ E

Esep

dE ′

QD1(E ′)P+
0

∫ E ′

E1

�+
tunn(E ′′)T (E ′′)dE ′′,

δP− = P−
0

∫ E

Esep

dE ′

QD3(E ′)P−
0

∫ ∞

E ′
�−

tunn(E ′′)T (E ′′)dE ′′, (30)

where �±
tunn are expressed by Eqs. (26) with P±

0 (E ).
In Fig. 4, the distribution functions obtained from analyti-

cal formulas (29) and (30) are compared with those obtained
by numerical solution of Eqs. (21) and (22) for different values
of δm. It is evident that the critical quasienergy Ec shifts
towards Esep with increasing δm, according to Eq. (18). Also
it can be seen that, for exactly degenerate quasienergy levels
δm = 0, the system remains close to the stable state 2, which

FIG. 5. The ratio of probability densities in the stationary states
1 and 2 at

√
β/βcrit = 0.2, Nth = 4, m = 30 + δm. The exact value

obtained from transition matrix diagonalization for the quantum
oscillator is compared with analytical formula (31). On the inset, the
dependence of probabilities ratio P2(E2)/P1(E1) on m is shown on a
linear scale for the same parameters. At integer values of m, there are
exponentially narrow dips.

is squeezed [23]. In this case, the states corresponding to
the regions 1 and 3 are equally occupied and the occupation
probabilities are exponentially small.

The ratio between the probability densities in two stable
stationary states is

Q

ϑ
ln

P2(E2)

P1(E1)
=

∫ Esep

E2

K2(E ′)
D2(E ′)

dE ′ +
∫ Ec

Esep

K1(E ′)+K3(E ′)
D1(E ′)+D3(E ′)

dE ′

+
∫ E1

Ec

K1(E ′)
D1(E ′)

dE ′ + ln

[
1 + δP+

P+
0

]
. (31)

The tunneling correction for E > Ec does not lead to any
qualitative effects because it is of order α/� compared
with P±

0 .
In Fig. 5, the analytical formula (31) is compared with the

numerical result for the dependence of P1(E1)/P2(E2) on δm.
The analytical formula fits the numerical result quite well.
However, the discreteness of the quasienergy levels manifests
itself in smooth steps in the dependence P1(E1)/P2(E2) on δm
which are not reproduced by Eq. (31). These steps can be
explained by the fact that the crossover energy εc can take
only discrete values. Thus, for

e−Stunn (En ) < δm < e−Stunn (En+1 ), (32)

the effective position of Ec remains the same. When δm ≈
e−Stunn (En+1 ), the value of Ec abruptly changes from En to En+1.
This explains the presence of steps in Fig. 5. The width of
the steps on the logarithmic scale is Stunn(En) − Stunn(En+1) ≈
2πTim(En)/T (En). In the latter expression, we recognize the
previously defined Keldysh parameter γK . For n much smaller
than m and β 
 βcrit , γK ∼ ln 1

β
.

In the inset in Fig. 5, the dependence of probabilities
ratio P1(E1)/P2(E2) on m is shown on a linear scale for
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√
β/βcrit = 0.2. For the nondegenerate case, when m is

far from an integer, the state with smaller amplitude and
quasienergy E1 is the most probable. However, when m be-
comes close to an integer, the occupation of the state with
quasienergy E1 abruptly drops, and the value at the minima
is exponentially small for large m (see the dips on the inset
of Fig. 5). The width of the dips on the linear scale is also
exponentially small.

VII. CONCLUSIONS

We considered the nonequilibrium statistics and kinetics of
the model of resonantly driven quantum nonlinear oscillator
interacting with a dissipative environment. We found that the
nonequilibrium statistics and kinetics are strongly modified
when quasienergy states are nearly degenerate which occurs
at integer or half-integer detuning-nonlinearity ratio. In partic-
ular, the occupation of the classical stable state with smaller
amplitude is strongly reduced. Thus, in the case of exactly
degenerate quasienergy levels, the system always occupies the
state with higher amplitude, which is squeezed.

The coefficients of the Fokker–Planck equation, which
describes the kinetics in the quasiclassical limit are very
sensitive to the structure of eigenstates of the system’s Hamil-
tonian. We found that, in the case of integer or half-integer
detuning-nonlinearity ratio, which corresponds to the exact
multiphoton resonance between the genuine energy levels of
the unperturbed nonlinear oscillator, the quasienergy states
from different regions of the phase space simultaneously
hybridize and form symmetric and antisymmetric superposi-
tions. This fact can be proven by applying a special symmetry
transformation to the Hamiltonian. Also, we revealed that,
when the quasienergy levels of the system are nearly degen-
erate, a important critical quasienergy parameter εc emerges.
Below εc, all quasienergy states are superpositions of the
quasiclassical states from regions 1 and 3, and above εc, the
quasienergy states correspond to either region 1 or 3. We
found out that the coefficients of the Fokker–Planck equation
which describes the quasiclassical kinetics of the oscillator in
the almost-degenerate case have different behavior above and
below εc. In particular, the tunneling term is large below εc

and exponentially small above εc. Also, the drift and diffusion
coefficients are not affected by tunneling above εc whereas be-
low εc they are strongly modified. The distribution functions
and the ratio between occupations of the classical stable states
calculated analytically fit well the numerical results.

We generalized Keldysh theory for ionization of atoms
in electromagnetic field for bistable systems. It was demon-
strated that Keldysh parameter defined as the ratio of tun-
neling time to the quasiclassical period of motion along the
phase trajectory is large in the bistability region for external
field intensity smaller than the critical value. So the multipho-
ton transition and tunneling between different regions of the
phase space can be treated as the same effects. This fact was
proved by direct calculation of transition amplitude using both
tunneling and perturbation theory approach. Also we revealed
that the Keldysh parameter for the considered system depends
logarithmically on the amplitude f of the external field. In
contrast, in the case of multiphoton ionization of atoms, the

Keldysh parameter is inversely proportional to the amplitude
of the external field.
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APPENDIX A: THE COEFFICIENTS OF THE CLASSICAL
FOKKER–PLANCK EQUATION

The coefficients of the classical FPE are defined as line
integrals along the classical trajectories of the nonlinear oscil-
lator:

Ki(E ) = i

2

∮
ada∗ − a∗da,

Di(E ) = i

2

∮
∂H

∂a
da − ∂H

∂a∗ da∗,

Ti(E ) =
∫

da∗daδ(E − H (a∗, a)). (A1)

The classical trajectory is a contour line of the classical
Hamiltonian

Hcl = −�|a|2 + α

2
|a|2 + f (a + a∗), (A2)

where a = q+ip√
2

, and q, p form a pair of canonically conjugate
variables. The index i denotes the region of the phase space
according to Fig. 1. The coefficient Ki(E ) is proportional to
the adiabatic invariant of the trajectory defined as

ni(E , f ) = 1

2π
Ki(E ) = 1

2π

∮
pdq. (A3)

The expressions (A1) and (6) can be rewritten as two-
dimensional integrals in the p, q plane with a Dirac δ func-
tion, as in expression for Ti. Then, it is convenient to use
variables q, t instead of q, p where t = q2 + p2. Then the
coefficients are transformed to one-dimensional integrals by
t . Now let us focus on the expression for adiabatic invariant:

ni(E , f ) = m

2

∮
Ci

dt

4π

3t2/16 − t/4 + E/2√
2 f 2t − (

E + t
2 − t2

8

)2
. (A4)

Using this expression, we will prove the identity of Eq. (9).
The contour of integration in Eq. (A4) depends on the region
of the phase space in which the trajectory lies. In the range
of energies corresponding to region 2 of the phase space, the
polynomial has only two real roots, and the contour of inte-
gration encloses them. In the range of energies corresponding
to region 1, there are four real roots: t1 < t2 < t3 < t4 (see
Fig. 6). The range t1 < t < t2 (t3 < t < t4) corresponds to the
trajectories from region 1 (3). Thus, the contour of integration
for n1 (n3) encloses t1 and t2 (t3 and t4).

By deformation of the contour, it is easy to show that
n3(ε, f ) − n1(ε, f ) is expressed through the residue of inte-
grand (A4) on infinity. Expanding the integrand of Eq. (A4)
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FIG. 6. The contours of integration in Eq. (A4) corresponding to
n1(ε, f ) (left contour) and n3(ε, f ) (right contour) are shown on the
complex plane of t . The difference n3 − n1 is expressed as an integral
over the outer contour (dashed line).

in t−1, one gets the desired identity:

n3(ε, f ) − n1(ε, f ) = m = 2�

α
. (A5)

APPENDIX B: THE PROOF OF THE SYMMETRY OF
THE PERTURBATIVE CORRECTIONS

Here we prove that the perturbation theory corrections in
f to the quasienergies ε (0)

n of the eigenstate with n excita-
tion quanta of the model (1) at f = 0 are symmetric with
respect to replacement n → m − n. This fact was mentioned
in Refs. [22] and [27], but the authors did not give any proof
of this fact.

For several low-order corrections, this can be verified by
straightforward calculation, as for the second-order correction
(19):

ε (2)
n = f 2

α

(m + 1)

(m − 2n)2 − 1
. (B1)

However, it is necessary to clarify what the expression ε
(k)
m−n

means for noninteger m because the corrections ε (k)
n are de-

fined only for integer n, which has the meaning of the number
of excitation quanta. Thus, for noninteger m, the identity
ε (k)

n = ε
(k)
m−n holds only for formal expressions. Up to now, we

did not give any meaning to ε (k)
ν for noninteger ν except as an

analytic continuation of perturbation theory formulas.
However, it is in fact possible to give direct meaning to εν

and ε (k)
ν for noninteger ν. For that, we should formally assume

that the Hamiltonian (1) acts on the space of all possible real
“numbers of excitation quanta” ν with operators a, a† defined
as follows:

〈ν|a|ν + 1〉 = 〈ν + 1|a†|ν〉 = √
ν. (B2)

Then, for f = 0 each state |ν〉 is an eigenstate with energy
ε (0)
ν = ν(m − ν). For f �= 0, they become coupled with |ν ±

1〉, |ν ± 2〉, . . . , |ν ± k〉, . . . . If none of the states |ν ± k〉 are
degenerate with ν (equivalently, 2ν − m is noninteger), the
amplitudes of |ν ± k〉 remain small at small f , and it is
possible to define continuous f -dependent energy εν ( f ). This

is the energy of the eigenstate which evolves from |ν〉 after
adiabatic switching of the perturbation. For integer 2ν − m,
the energy εν ( f ) cannot be defined that way because of
degeneracy between |ν〉 and |m − ν〉.

The series of perturbation theory for εν in the cases of
integer and noninteger ν are completely identical because of
definition (B2). Thus, the claim that ε (k)

n = ε
(k)
m−n follows from

the even more general statement εν = εm−ν .
We prove the identity εν = εm−ν in several steps. First, it

is obvious from the previous considerations that εν ( f ) is an
eigenvalue of the operator

Hν = α

2

∑
σ−ν∈Z

σ (σ − m)|σ 〉〈σ |

+ f
√

σ (|σ − 1〉〈σ | + |σ 〉〈σ − 1|), (B3)

which corresponds to the state |ν〉. Analogously, εm−ν ( f )
arises from the operator Hm−ν . For convenience in the later
discussion, we change the numeration of basis vectors in
Hm−ν so that |σ 〉 becomes |m − σ 〉. After such relabeling,

Hm−ν = α

2

∑
σ−ν∈Z

σ (σ − m)|σ 〉〈σ |

+ f
∑ √

m − σ (|σ + 1〉〈σ | + |σ 〉〈σ + 1|). (B4)

Both Hν and Hm−ν act on a single space with a set of basis
vectors |σ 〉 with such σ that σ − ν is integer. We should
emphasize that Hν and Hm−ν are substantially different and
could not be transformed to each other by any permutation of
eigenvectors.

However, there exists a nontrivial linear operator T which
transforms Hν to Hm−ν :

Hν = T Hm−νT −1. (B5)

It has the form

T = UTU ′−1, (B6)

where

U =
∑

σ

√
�(σ + 1)|σ 〉〈σ |,

U ′ =
∑

σ

√
�(m − σ )|σ 〉〈σ |,

T = exp
2 f

α

∑
|σ 〉〈σ + 1|. (B7)

The identities (B5)–(B7) are checked by direct calculation.
The existence of the operator T is possible only because of

special form of εν = α
2 ν(m − ν). For any other dependence

of εν on ν, no analogous operator can be found this way. So
the symmetry property expressed by T is a special feature of
Kerr-like nonlinearity.

The equivalence of Hamiltonians Hν and Hm−ν proves that
the energies εν ( f ) and εm−ν ( f ) are equal when 2ν − m is
not integer. However, we are interested in the case of integer
m and integer numbers of excitation quanta. For this case,
one should utilize degenerate perturbation theory to find the
energies. Nevertheless, the corrections to energies of |n〉 and
|m − n〉 obtained by degenerate perturbation theory are just
the same as in nondegenerate perturbation theory up to the
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order f |m−2n|. This happens because the leading contribution
to composite matrix element (multiphoton Rabi frequency)
between |n〉 and |m − n〉 is a product of |m − 2n| matrix
elements of the perturbation V̂ [see Eqs. (20) and (C1)]. For
a series of nondegenerate perturbation theory the identity for
kth-order corrections ε (k)

n = ε
(k)
m−n holds even for integer m

and n if k < 2|m − 2n|. For k � 2|m − 2n|, the corrections
of nondegenerate perturbation theory do not make sense be-
cause of a zero in the denominator, which is a manifestation
of degeneracy. This means that the degeneracy of |n〉 and
|m − n〉 is lifted only in the order |m − 2n|, and the energy
splitting happens only due to multiphoton Rabi oscillations.
The leading term at small f is �εn,m−n = 2ωn,m−n

R .

APPENDIX C: THE IDENTITY OF TUNNELING
SPLITTING AND MULTIPHOTON

TRANSITION AMPLITUDE

The multiphoton Rabi splitting between the quasienergy
states |n〉 and |m − n〉 is given by

ωn,m−n
R = Vn,n+1 · · ·Vm−n−1,m−n(

ε
(0)
n − ε

(0)
n−1

) · · · (ε (0)
n − ε

(0)
m−n−1

)
= α

(
2 f

α

)m−2n 1

(m − 2n − 1)!2

√
(m − n)!

n!
. (C1)

At large values of n, m, it is possible to approximate the
factorials by using the Stirling formula. One then gets the

following expression for ωn,m−n
R :

ln
ωn,m−n

R

�
= m

2

[
(1 − r) ln

1

β
+ (1 − r)(2 ln 2 − 3)

+ 4(1 − r) ln (1 − r)

− 1

2
([2 − r) ln (2 − r) − r ln r]

]
, (C2)

where r = 2n/m. In this form, it is easy to compare it with
tunneling splitting given by Eqs. (10) and (11). At small β,
the tunneling action (11) can be approximated as

Stunn = m

2

[√
1 + 2E ln

2

β
+

∫ x2

x1

ln
E + x2

2 − x4

8

x
xdx

]
,

x1,2 =
√

2 ∓ 2
√

1 + 2E . (C3)

For small external force the quasienergy E is related with
number of excitation quanta by the formula E = 2n

m ( n
m − 1) =

r2/2 − r. Evaluating the integral in Eq. (C3) and substituting
the expression for E via r, it is easy to obtain that, with
the current approximations, Stunn = ln (ωn,m−n

R /�). Thus, for
β 
 βcrit perturbation theory is consistent with the tunneling
approach.
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