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Highly degenerate photonic flat bands arising from complete graph configurations
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Inspired by complete graph theory, we demonstrate that a metallic claw “meta-atom” structure can carry a high
number of nearly degenerate resonant modes. A photonic metacrystal composed of a lattice of such meta-atoms
exhibits a large number of flat bands that are squeezed into a narrow frequency window, and these flat bands
can be designed to locate in a wide complete three-dimensional band gap. The degeneracy dimension (Nf )
of the flat bands is determined by the number of branches (Nb) of the metallic claw with Nf = Nb–3, which
is geometrically related to the complete graph theory. Different from those flat bands emerging from special
lattice arrangements (e.g., kagome lattice), the isolated flat bands here are insensitive to lattice perturbations.
The proposed mechanism offers a platform for realizing various dispersionless phenomena and a paradigm to
realize high density of states and spectra compressing.
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I. INTRODUCTION

Flat bands [1–5] refer to the fact that spectral bands
are dispersionless or nearly so and their energy spectrum
E (�k) is almost independent of momentum �k. In photonics,
the realization of flat bands has been long pursued [6] for
enhancing light-matter interaction with slow light [7–9] and
wave localization [10,11], or it offers platforms for other ap-
plications such as distortion-free imaging and pulse buffering
in nonlinear optics [12,13]. Typically, flat bands are found
in the Dice [1], Lieb [3], kagome [14,15], and other lat-
tices [16,17] due to destructive interference, where fine-tuned
nearest- and next-nearest neighboring hopping parameters
are the key factors. Researchers have used waveguide arrays
[10,18–23], dielectric-plasmonic resonators [24–32], and fine-
tuned photonic crystals [33–35] to realize photonic flat bands,
where high dielectric contrast or exact lattice symmetry are
required. However, these mechanisms inspired by analogies
with “frustrated” condensed matter systems [5,36,37] exhibit
many limitations in the photonic regime where photonic bands
usually arise from multiple coherent scattering rather than the
hopping of local atomic orbits. Moreover, realization of full
three-dimensional flat bands [38] is very challenging using
such lattice arrangement.

In this paper, we propose the realization of isolated three-
dimensional (3D) photonic flat bands, which locate in a wide
complete band gap [39,40]. The number of flat bands can be
determined by a simple arithmetic formula and can be control-
lably large. More importantly, this large number of flat bands
can be squeezed into a narrow frequency window, leading to
an extremely high density of states (DOS). The flat bands
emerge from local resonances enabled by connectivity of the
metallic claw structure, and can be described by graph theory.
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As the existence of the flat bands does not depend on crys-
talline symmetry, they are more robust against imperfections.

Recently, geometric aspects of physics have attracted a
lot of attention. In photonics, various topological photonic
semimetals and insulators [41] have been theoretically pro-
posed and experimentally verified. Their properties are char-
acterized by integers and are stable against local perturbations.
For example, the number of edge states of photonic the
Haldane model [42,43] is directly related to its bulk integer
Chern number defined in momentum (parameter) space [44].

Here, the real space geometry of the meta-atom generates
interesting physics. We will start with the metallic claw struc-
ture, then use effective electric circuit theory to explain the
underlying connectivity relation between any two branches,
and finally find the complete graph configuration [45] and
predict the large number of degenerate flat bands.

II. RESULTS: METALLIC CLAW STRUCTURE AND
PHOTONIC FLAT BAND

The metallic claw structure with C4 rotation symmetry is
shown in Fig. 1(a). Each meta-atom consists of two perpen-
dicularly placed split ring resonators (SRRs) which touch each
other on the top, forming a four-branch claw. The claw metal-
lic structure has length l = 1.95 mm, gap g = 0.615 mm, and
diameter r = 0.21 mm as indicated in Fig. 1(a). The whole
metacrystal is formed by arranging the claw structure in a
simple 3D cubic lattice with lattice constant a = 3.5 mm. In
the simulation, we assume the hosting material is air and
regard metallic components as perfect electric conductors
(PECs), which is a good approximation in microwave, tera-
hertz, and even far-infrared bands. Figure 1(b) schematically
shows the effective electric circuit describing the underlying
connectivity relation of the metallic claw structure [46,47].
We have effectively introduced the capacitance C′ (between
next-nearest neighbor branches) to distinguish with C arising
from those nearest neighbor branches.
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FIG. 1. Schematic view of metallic clawlike structures and flat
bands. (a) Geometry of the clawlike metallic structure with C4

rotation symmetry with length l = 1.95 mm, gap g = 0.615 mm, and
diameter r = 0.21 mm, as the building block of a simple cubic pho-
tonic crystal with lattice constant a = 3.5 mm. (b) Effective electric
circuit with inductors (L) and capacitors (C and C′). (c) Complete
graph K4 with four vertices and six edges. (d) Three-dimensional first
Brillouin zone (FBZ). Black solid lines show the paths followed by
energy bands in (f). (e) Isolated flat band (surface with red edge)
located in a complete band gap with kz = 0. The fourth quadrant has
been cut to show the sectional view for clarity. (f) Photonic band
structure along a specific path as indicated in (d), with normalized
density of states (DOS) shown in the right panel. The sharp peak in
DOS stems from the flat band (red line, left panel) while zero DOS
corresponds to the complete band gap.

The computer simulation technology (CST) simulated pho-
tonic band structures and density of states (DOS) [48] are
shown in Figs. 1(e) and 1(f) with the first Brillouin zone (FBZ)
depicted in Fig. 1(d). There is a 3D band gap between the
second and fourth bands, inside which lies a third band that
is flat throughout the 3D FBZ and has no crossing with other
bulk bands. We dubbed it an isolated flat band. The isolated
flat band has almost vanishing dispersion among the full 3D
FBZ, while the flat bands found in many previous works are
typically dispersionless in some particular planes or along
some particular directions. As the flat band lies in a gap with
the width of 1.73 GHz at around 25 GHz, it cannot hybridize
with the dispersive states and spans an orthogonal state space
by itself.

We note that most photonic crystals and metamaterials
are designed using symmetry as a tool and as such, high
degeneracy comes from a combination of the point group
of the meta-atom and the space group of the lattice. Here,
the high degeneracy arises from finding correspondence to a
complete graph. The flat bands arise from local resonances of
the metallic claw structure (which carries the spectral charac-
teristics of a complete graph Laplacian matrix) being different
from those enabled by a special lattice arrangement (such as
the Lieb lattice). The analysis using complete graph theory
applies to that of one single meta-atom (an individual metallic
claw). When a lattice of metallic claws is used to construct a
crystalline lattice arrangement, the collective excitation of the
degenerate modes gives rise to the flat bands. From analyzing
the complete graph configuration of the metallic claw, we find
the relation between number of branches Nb and number of
flat bands Nf is Nf = Nb − 3.

III. RELATIONSHIP WITH COMPLETE GRAPH

From a mathematical standpoint, graphs are mathematical
structures used to model pairwise relations between objects.
The connectivity between the branches in the metallic claw
structure can be analyzed by applying graph theory. More
specifically, any two branches of the claw structure are cou-
pled electromagnetically together by an effective capacitance
as shown in Fig. 1(b). Mathematically speaking, the effective
capacitors can be considered as the edges in a graph. Here,
we specifically design a structure that has a connectivity that
corresponds to the complete graph, where each pair of graph
vertices is connected by an edge, as shown in Fig. 1(c) [com-
pared with Fig. 1(b)]. There are six almost equally effective
capacitors (2C′ + 4C) in total between four branches for the
K4 case [Figs. 1(a)–1(c)].

Figure 1(c) shows a simple complete graph K4, where
each pair of graph vertices (red dots) is connected by an
edge (black and blue lines). There are n vertices and n(n−1)

2
undirected edges in a complete graph Kn. Mathematically,
each complete graph Kn is precisely characterized by a
Laplacian matrix. For example,

L(K4) =

⎡
⎢⎣

3 −1 −1 −1
−1 3 −1 −1
−1 −1 3 −1
−1 −1 −1 3

⎤
⎥⎦, (1)

where each entry indicates the connection conditions, such as
Lii = 3 being the degree of vertex i and Li j = −1 when i �= j.
From a physics viewpoint, each entry of the matrix can also
be read as the hopping term in a tight-binding model, such as
Lii indicating the on-site energy. Interestingly, the spectra of
the Laplacian matrix are given by

Lspec(Kn) =
[

0, n, . . . , n︸ ︷︷ ︸
n−1

]
, (2)

which are highly degenerate except for the first 0-eigenvalue
state with eigenvector [1, . . . , 1]1 ×n. The flat bands of
our metacrystal arise from the n − 1 nonzero degenerate
eigenvalues.
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However, this type of pairwise relation is not that easy to
realize in practice as each hopping is required to be almost
equally valued. In many physical systems in nature, in par-
ticular electronic systems, the hopping coefficient typically
drops off quickly with distance (such as exponentially). Our
work benefits from the special clawlike design, where the
gap distance g as shown in Fig. 1(a) can be arbitrarily small
theoretically without changing the size of the unit cell. Finally,
the capacitors (C and C′) approach the same value.

The complete graph configuration can be fully understood
through local potential orbitals by analyzing the equiva-
lent electric circuit consisting of capacitors and inductors
[Fig. 1(b)]. Following Chua’s circuit notation [49,50], the
Lagrangian of the circuit reads

L = C

2
[(ϕ̇1 − ϕ̇2)2 + (ϕ̇2 − ϕ̇3)2 + (ϕ̇3 − ϕ̇4)2

+ (ϕ̇4 − ϕ̇1)2]

+ C′

2
[(ϕ̇1 − ϕ̇3)2 + (ϕ̇2 − ϕ̇4)2]

− 1

2L

(
ϕ2

1 + ϕ2
2 + ϕ2

3 + ϕ2
4

)
, (3)

where ϕm indicates local potential on the branch m as shown in
Fig. 1(b). Without loss of generality, we have assumed ϕ0 = 0.
The Euler-Lagrange equation of motion is then

I1= d

dt

∂L
∂ϕ̇1

− ∂L
∂ϕ1

=C(2ϕ̈1− ϕ̈2 − ϕ̈4) + C′(ϕ̈1 − ϕ̈3)+ 1

L
ϕ1,

(4)
where I1 indicating external current has been set to 0 as our
system is source free. In the same way, one can obtain I2,3,4 =
0 and expressing in the matrix form, we get

H� = 1

Lω2
�, (5)

where H represents the capacitor matrix as

H =

⎡
⎢⎣

2C + C′ −C −C′ −C
−C 2C + C′ −C −C′
−C′ −C 2C + C′ −C
−C −C′ −C 2C + C′

⎤
⎥⎦, (6)

and �T = [ϕ1, ϕ2, ϕ3, ϕ4]. The capacitor matrix H shows a
strong resemblance to the Laplacian matrix as mentioned
above [Eq. (1)]. Different from the ideal complete graph
K4, there are two sets of weighted edges C and C′ which
are slightly different with C > C′ (C′ has comparably bigger
separation).

The condition of det(ω2H − 1
L I4 × 4) = 0 gives a nonzero

solution to Eq. (5) as

ω3 = 1

2
√

CL
, �T

3 = 1

2
[−1, 1,−1, 1]e−iωt ,

ω4 = 1√
2(C + C′)L

, �T
4 = 1√

2
[0,−1, 0, 1]e−iωt ,

ω5 = 1√
2(C + C′)L

, �T
5 = 1√

2
[−1, 0, 1, 0]e−iωt , (7)

where �4 and �5 are degenerate states representing the two
orthogonal dipole moments (px,y) of two independent SRRs.
In order to be consistent with the band structure simulated
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FIG. 2. Electric and magnetic field of the pz orbital at � with
frequency of 65.48 GHz (the sixth mode).

[Fig. 1(f)], here we start labeling the modes from the third,
counting the two bands below the complete band gap. In
addition, the eigenmode with four branches oscillating in
phase is similar to the pz orbital excitation with electric and
magnetic field as shown in Fig. 2.

Here, the most interesting mode, �3, shows the symmetry
of a dx2−y2 orbital and is orthogonal to the px,y orbitals (�4,5).
The flat band of the photonic crystal is the Bloch state com-
prising this �3 mode. It is easy to find ω3 < ω4,5 (C > C′),
which indicates the flat band locates in the complete band
gap. This mode arises only when the two SRRs touch each
other. The other four bands (including the first and second, and
fourth and fifth bands) can be realized by two separated SRRs
following the electromagnetic effective media theory (Fig. 6;
see Appendix A) [51,52], where the nonzero bianisotropic
term opens the complete band gap. Combining the resonance
frequencies from Fig. 1(f) with Eq. (7), one can approximately
extract the effective products of LC and LC′ [46].

The CST simulated electric and magnetic field distribu-
tions of the flat band (the third band) at � are shown in Fig. 3,
which corroborates with our circuit prediction (for other
high-symmetry k points see Fig. 4). At �, electromagnetic
eigenfields on the cutting plane z = 0 oscillate symmetrically.

E H(a) (b)

FIG. 3. Eigenfields at � of the isolated flat band for the C4

metallic claw structure. The direction of the arrow refers to the
direction of the electric (magnetic) field while its size represents
the local intensity. The eigenfields are in good agreement with our
theoretical prediction.
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FIG. 4. Eigenfields of the isolated flat band for the C4 metallic
claw structure. The direction of the arrow refers to the direction
of the electric (magnetic) field while its size represents the local
intensity. The eigenfields are in good agreement with our theoretical
prediction.

At X , M, and A, the electromagnetic eigenfields remain almost
the same, which further indicates the flatness of the isolated
band (derived from �3), and the mode profiles are very
similar for different momentum �k. The flat band with complete
graph configuration is robust. When randomly changing our
K4 structure with breaking the C4 rotation symmetry, but
preserving the complete graph configuration, the flat band
always survives as shown in Fig. 8 (see Appendix C).

Similar to the spectra of a Laplacian matrix [Eq. (2] there
are three nonzero eigenvalues in the claw structure shown in
Fig. 1(a), two of them being the dipole modes (px,y), leaving
one degree of freedom to contribute to the flat band. For claws
with more branches, we can predict a general relation between
the number of flat bands (Nf ) and number of branches (Nb)
as Nf = Nb − 3. The dimension of the flat-band subspace
gets bigger with an increasing number of branches, squeezing
more and more flat bands into a narrow band of frequency.

Schematically, Fig. 7 shows the local orbitals giving rise
to the flat bands with number of branches increasing from
Nb = 3 to 6. Without going through a tedious derivation of
the Lagrangian [see Appendix B, Eqs. (B1)–(B4)], all of
them can be simply solved using the corresponding Laplacian
matrix of a weighted complete graph as shown in the first
column, where edges with different colors represent different
weights. In realistic metallic claw structures, the different
weights correspond to different capacitances between pairs
of branches. The level of degeneracy of those flat bands is
simply determined by the differences of those capacitances.
Although it is hard to make the capacitances exactly the same
in practice, a symmetrical design can make the differences
smaller. In the second column, we explicitly provide the
potential distributions of the dipole excitations where red and
light blue indicate, respectively, positive and negative poten-
tial distributions with the size representing the amplitude. The
blue arrows show the dipole magnitude and directions defined
as �p = ∑

i riϕi, which are known to be “radiative modes” and
heavily dispersive with the momentum k. The third column
shows higher-multipole excitations. Different from the dipole
excitations, the higher-multipole orbitals consist of alternating
positive and negative potentials; thus the sum of potential dis-
tributions vanishes as

∑
i riϕi = 0. The modes are effectively

“whispering gallery modes” which are known to have very
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FIG. 5. The relation between number of branches Nb and degen-
eracy of flat bands (FB) Nf . The left column (a,c,e,g) shows metallic
claw structures with different Nb, with its top view presented in the
top left inset. The right column (b,d,f,h) presents the corresponding
band structure and DOS from 20 to 30 GHz. When Nb increases,
the shape of the dispersive band remains almost unchanged. Further-
more, the flat bands remain at essentially the same frequency as Nf

increases, squeezing many bands into a narrow frequency window.

high fidelity, and hence they couple weakly. The dimension of
higher-multipole orbitals determines the number of flat bands
(Nf ). For the K3 case, there is no higher-multipole excitation,
which agrees well with the geometric prediction of Nf =
Nb − 3. From K4 on, the number of higher-multipole modes
increases linearly with the number of branches as indicated
by the orange arrow in Fig. 7.

In order to verify those predictions, we show in Fig. 5 the
evolution of the band structure as the number of branches
changes. In the left inset, we show the metallic claw structures
with the number of branches ranging from Nb = 3 to 6. These
claws are arranged in a simple cubic lattice to build the
photonic metacrystal. For simplicity, we also assume all claw
structures possess CNb rotation symmetry in each unit cell,
although it is not compatible with the simple cubic Bravais
lattice when Nb �= 4. The orientation of the claw structure
within the unit cell does not affect the existence of the flat
bands. In the right column, the corresponding band structures
and DOS [48] for different Nb are shown. We have normalized
the DOS [48] within the interval of 01 to reveal the contrast
between the flat bands and dipolar pass bands. In order to
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clearly count the number of isolated flat bands and to check
more details, different line styles are used and indicated in the
figure. We find that the bands will become flatter when each
unit cell gets bigger (keeping the size of the claw structure
the same). Therefore, the small dispersions of the flat bands
originate from the weak coupling of the localized modes
between neighboring meta-atoms. However, when the lattice
constant gets too big, the gap will close as the Bragg scattering
of the dipolar modes becomes too weak to sustain a complete
gap. In that limit, the flat bands will intersect with the dipolar
band manifold and no longer exist in a clean absolute gap.

As predicted above, we observe a Nf = Nb − 3 rule for
the claw structures. When Nb = 3, there is no flat band even
though the band-gap width is larger than 1.4 GHz [52]. The
DOS peak at the frequency corresponds to the lower boundary
of the band gap. Isolated flat bands emerge when Nb > 3,
and all are confined inside a narrow frequency window (from
24.24 to 24.53 GHz for the structural parameters specified in
Fig. 1). The number of flat bands inside the band gap increases
with the number of branches in the claw, and the correspond-
ing DOS in the flat-band frequency window grows dramati-
cally, which can potentially facilitate applications that require
a high photonic DOS. The K20 case is shown in Figs. 9(a) and
9(b) (see Appendix D) to further illustrate this phenomenon.
In particular, there are 17 flat bands in total as one can check
in Fig. 9(c), confirming again the Nf = Nb − 3 rule.

IV. DISCUSSION

A unique feature of the metallic claw design, as the realiza-
tion of a complete graph, is that the dimension of the flat-band
set depends on the number of branches and as such, we can
arbitrarily enlarge the flat-band subspace without shifting their
operating frequency. As the spectral property of a complete
graph is mainly determined by geometry and connectivity,
the structural details of the meta-atoms are unimportant, and
hence the flat bands and the related phenomena are robust
even if the real samples deviate from the theoretical design
(Fig. 10; see Appendix E). On the other hand, their very
high DOS and the high-Q factors of the high-order orbitals
render these complete-graph-inspired systems sensitive to en-
vironmental external fields, making them good platforms for
information sensing. In addition, the local resonances arising
from the complete graph configuration behave similarly to
conventional spherical orbitals (s, p, d , f , etc.); for example
the number of degenerate modes increases with the num-
ber of branches (angular momentum for spherical orbitals).
However, there are some counterintuitive differences, which
include the resonances being protected by an underlying con-
nectivity relationship (rather than rotation symmetries) and
different higher multiples share the same resonance frequency.
To some extent, we propose another mechanism of local
orbitals with graph theory.

V. CONCLUSION

In conclusion, we have designed clawlike metallic meta-
atoms inspired by complete graph theory. We investigated
photonic crystals composed of these meta-atoms and found
isolated flat bands confined in a narrow frequency window.
Different from previous works based on lattice geometry, the
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with a complete band gap. (a–c) Geometry of two separated SRRs.
(d) shows the simulated band structure; (e) shows the band structure
from effective media theory. The shadow regions give the qualitative
comparison.

flat-band mode is insensitive to structural and lattice param-
eter perturbations. We found a simple relation governing the
number of flat bands (Nf ), which can easily be understood
by mapping to the corresponding weighted complete graph.
The highly degenerate flat bands and the associated high DOS
persist even if the lattice (translation symmetry) is destroyed
as the phenomena originate from internal degrees of freedom
of the metallic claws.

C′
C″

C

Dipole Higher-multipole

K3
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K5

K6

Complete 
Graph

FIG. 7. Complete graph analogy of the metallic clawlike struc-
tures. The left column illustrates equivalent complete graph circuits
of different Nb (the number of branches for each “claw”), while the
middle and the right columns show their corresponding eigenpoten-
tial distributions. Red (light blue) disk represents positive (negative)
electric potential, and its radius represents the absolute value of
each potential. The number of eigenstates increases with Nb. For
each single clawlike metallic structure, there are two noncollinear
dipole excitations. Higher-multipole excitations appear when Nb �
4, concomitant with the emergence of flat bands. The number of flat
bands (Nf ) varies with Nb as Nf = Nb − 3.
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APPENDIX A: ELECTROMAGNETIC EFFECTIVE
MEDIA ANALYSIS

As shown in Figs. 6(a)–6(c), we consider two separated
SRRs. For brevity, we neglect the Ohmic loss and the intra-
and interlayer interactions. The corresponding constitutive
matrices of omega-type bianisotropic metamaterials are [51]

D = ↔
εE + i

↔
γ H

B = ↔
μH − i

↔
γ

t
E , (A1)

where
↔
ε,

↔
μ, and

↔
γ are the permittivity, permeability, and

magnetoelectric tensors, respectively. Their explicit forms are

↔
ε=

⎡
⎣ε 0 0

0 ε 0
0 0 1

⎤
⎦,

↔
μ=

⎡
⎣μ 0 0

0 μ 0
0 0 1

⎤
⎦,

↔
γ =

⎡
⎣ 0 γ 0
−γ 0 0
0 0 0

⎤
⎦,

(A2)

and

ε = 1+ l2

L

1

ω2
0 − ω2

, μ= 1+ A2

L

ω2

ω2
0 − ω2

, γ = lA

L

ω

ω2
0 − ω2

,

(A3)

where l and A indicate effective length and area of SRR; ω0 =
1/

√
LC indicates the resonance frequency of SRR with L/C

being the effective inductance/capacitance. We have set light
velocity c = 1 during the derivation.

The bianisotropic term γ opens the complete band gap as
shown in Fig. 6(d) [52]. The band structure plotted with ef-
fective parameters l = 1, A = 1, L = 2, and ω0 = 1 is shown
in Fig. 6(e), which qualitatively shows similar features to
Fig. 6(d).

Obviously, one cannot expect the flat band (resonance
mode) from the lattice of two separated SRRs. However, it
supports the complete band gap due to the nonzero bian-
isotropic term [52].

APPENDIX B: EQUIVALENT ELECTRIC
CIRCUIT MODEL

Using similar derivation techniques as shown in Eqs. (3)–
(6) in the main text, the dynamic matrices for K3 − K6 are
explicitly given as (with notations consistent with Fig. 7)

H3 =
⎡
⎣2C −C −C

−C 2C −C
−C −C 2C

⎤
⎦, (B1)

H4 =

⎡
⎢⎣

2C + C′ −C −C′ −C
−C 2C + C′ −C −C′
−C′ −C 2C + C′ −C
−C −C′ −C 2C + C′

⎤
⎥⎦, (B2)

H5 =

⎡
⎢⎢⎢⎣

2C + 2C′ −C −C′ −C′ −C
−C 2C + 2C′ −C −C′ −C′
−C′ −C 2C + 2C′ −C −C′
−C′ −C′ −C 2C + 2C′ −C
−C −C′ −C′ −C 2C + 2C′

⎤
⎥⎥⎥⎦, (B3)

and

H6 =

⎡
⎢⎢⎢⎢⎢⎣

C0 −C −C′ −C′′ −C′ −C
−C C0 −C −C′ −C′′ −C′
−C′ −C C0 −C −C′ −C′′
−C′′ −C′ −C C0 −C −C′
−C′ −C′′ −C′ −C C0 −C
−C −C′ −C′′ −C′ −C C0

⎤
⎥⎥⎥⎥⎥⎦, (B4)

with C0 = 2C + 2C′ + C′′.

APPENDIX C: ROBUSTNESS OF FLAT BAND WITH
COMPLETE GRAPH CONFIGURATION

We randomly change our K4 structure with breaking the
C4 rotation symmetry, but preserving the complete graph
configuration to test the robustness of flat bands. We use
four different random ranges as [–10°, +10°], [–20°, +20°],

[–30°, +30°] and [–40°, +40°]. Each range randomly outputs
four rotation angles. We then impose the four angles upon
each original K4 branch [Fig. 8(a)] in order. The results
are shown in Fig. 8, where the flat bands remain almost
unchanged. One can claim it is the underlying connectivity
nature of metallic claw structure that enables the flat bands,
namely, a complete graph configuration. We even consider an
extreme case, as shown in Figs. 8(k) and 8(l), where one still
can see a flat band. Certainly, with imposing high symmetry
onto the claw structure, the flat band will have some nice
features, such as locating in a wider complete band gap.

APPENDIX D: FLAT BANDS FOR METALLIC CLAWS
WITH MANY BRANCHES: THE K20 CASE

We calculate the band structure for the case where there
are 20 branches for a metallic claw, as shown in Figs. 9(a)
and 9(b). Figure 9(c) shows the set of degenerate isolated
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flat bands locating in the band gap ranges from 25.1 to
25.8 GHz. In contrast with those dispersive dipolar bands,
these flat bands give rise to very high DOS as these bands
are squeezed into a narrow bandwidth. According to the
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FIG. 9. K20 metallic claw provides 17 isolated flat bands. (a)
Metallic claw structure when Nb = 20. (b) Set of isolated flat bands
and the corresponding high density of states (DOS). (c) There are 17
flat bands in total within the range from 25.1 to 25.8 GHz.

geometric principle, we predict that there should be Nf =
Nb − 3 = 17 isolated flat bands in the band gap, which has
been confirmed by zooming in the view to 25.1–25.8 GHz
[Fig. 9(c)].

APPENDIX E: ROBUSTNESS AGAINST VARIOUS
PERTURBATIONS

One of the distinctive features of the metallic claw struc-
ture is the stability under variation of structural details. As
demonstrated in Fig. 10(a), there is an isolated flat band
in the band gap between the second band and the fourth
band when the length of cross section r reduces from 0.21
to 0.18 mm. The band structures of r = 0.18 mm are ba-
sically identical with those of r = 0.21 mm. Figure 10(b)
shows the situation when the lattice constant increases from
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FIG. 10. Contrast of band structure under lattice distortions. (a)
r = 0.18 mm (yellow dashed lines) and r = 0.21 mm (black solid
lines). (b) a = 4 mm (red dashed line) and a = 3.5 mm (black solid
lines).
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3.5 to 4 mm, which is also quite a big change for the
lattice (keeping the size of the metallic structure the same).
The trend of the band structure is unaltered, as the distance
between branches in adjacent unit cells is increased, resulting

in weaker coupling between adjacent unit cells, and isolated
flat bands remain essentially unchanged. This is because the
flat bands arise from the local resonance of the metallic claw
structure.

[1] B. Sutherland, Localization of electronic wave functions due to
local topology, Phys. Rev. B 34, 5208 (1986).

[2] M. Arai, T. Tokihiro, T. Fujiwara, and M. Kohmoto, Strictly
localized states on a two-dimensional Penrose lattice, Phys.
Rev. B 38, 1621 (1988).

[3] E. H. Lieb, Two Theorems on the Hubbard Model, Phys. Rev.
Lett. 62, 1201 (1989).

[4] A. Ramachandran, A. Andreanov, and S. Flach, Chiral flat
bands: Existence, engineering, and stability, Phys. Rev. B 96,
161104 (2017).

[5] D. Leykam, A. Andreanov, and S. Flach, Artificial flat band
systems: From lattice models to experiments, Adv. Phys.: X 3,
1473052 (2018).

[6] D. Leykam and S. Flach, Perspective: Photonic flatbands, APL
Photonics 3, 070901 (2018).

[7] T. Baba, Slow light in photonic crystals, Nat. Photonics 2, 465
(2008).

[8] J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, and T. F.
Krauss, Systematic design of flat band slow light in photonic
crystal waveguides, Opt. Express 16, 6227 (2008).

[9] S. A. Schulz, J. Upham, L. O’Faolain, and R. W. Boyd, Photonic
crystal slow light waveguides in a kagome lattice, Opt. Lett. 42,
3243 (2017).

[10] S. Mukherjee, A. Spracklen, D. Choudhury, N. Goldman, P.
Öhberg, E. Andersson, and R. R. Thomson, Observation of a
Localized Flat-Band State in a Photonic Lieb Lattice, Phys. Rev.
Lett. 114, 245504 (2015).

[11] W. Maimaiti, S. Flach, and A. Andreanov, Universal d = 1 flat
band generator from compact localized states, Phys. Rev. B 99,
125129 (2019).

[12] R. W. Boyd, Material slow light and structural slow light:
Similarities and differences for nonlinear optics [Invited],
J. Opt. Soc. Am. B 28, A38 (2011).

[13] Z. Chen, M. Segev, and D. N. Christodoulides, Optical spatial
solitons: Historical overview and recent advances, Rep. Prog.
Phys. 75, 086401 (2012).

[14] L. Santos, M. A. Baranov, J. I. Cirac, H.-U. Everts, H.
Fehrmann, and M. Lewenstein, Atomic Quantum Gases in
Kagomé Lattices, Phys. Rev. Lett. 93, 030601 (2004).

[15] A. Mielke, Exact ground states for the Hubbard model on the
kagome lattice, J. Phys. A: Math. Gen. 25, 4335 (1992).

[16] H. Tasaki, Ferromagnetism in the Hubbard Models with Degen-
erate Single-Electron Ground States, Phys. Rev. Lett. 69, 1608
(1992).

[17] H. Tasaki, Hubbard model and the origin of ferromagnetism,
Eur. Phys. J. B 64, 365 (2008).

[18] A. Szameit and S. Nolte, Discrete optics in femtosecond-laser-
written photonic structures, J. Phys. B: At., Mol. Opt. Phys. 43,
163001 (2010).

[19] A. Crespi, G. Corrielli, G. D. Valle, R. Osellame, and S. Longhi,
Dynamic band collapse in photonic graphene, New J. Phys. 15,
013012 (2013).

[20] D. Guzmán-Silva et al., Experimental observation of bulk and
edge transport in photonic Lieb lattices, New J. Phys. 16,
063061 (2014).

[21] R. A. Vicencio, C. Cantillano, L. Morales-Inostroza, B. Real,
C. Mejía-Cortés, S. Weimann, A. Szameit, and M. I. Molina,
Observation of Localized States in Lieb Photonic Lattices,
Phys. Rev. Lett. 114, 245503 (2015).

[22] S. Xia et al., Demonstration of flat-band image transmission
in optically induced Lieb photonic lattices, Opt. Lett. 41, 1435
(2016).

[23] S. Endo, T. Oka, and H. Aoki, Tight-binding photonic bands in
metallophotonic waveguide networks and flat bands in kagome
lattices, Phys. Rev. B 81, 113104 (2010).

[24] F. Morichetti, C. Ferrari, A. Canciamilla, and A. Melloni, The
first decade of coupled resonator optical waveguides: bringing
slow light to applications, Laser Photonics Rev. 6, 74 (2012).

[25] Y. Nakata, T. Okada, T. Nakanishi, and M. Kitano, Observation
of flat band for terahertz spoof plasmons in a metallic kagome
lattice, Phys. Rev. B 85, 205128 (2012).

[26] M. Hafezi, S. Mittal, J. Fan, A. Migdall, and J. M. Taylor, Imag-
ing topological edge states in silicon photonics, Nat. Photonics
7, 1001 (2013).

[27] T. Jacqmin, I. Carusotto, I. Sagnes, M. Abbarchi, D. D
Solnyshkov, G. Malpuech, E. Galopin, A. Lemaître, J. Bloch,
and A. Amo, Direct Observation of Dirac Cones and a Flatband
in a Honeycomb Lattice for Polaritons, Phys. Rev. Lett. 112,
116402 (2014).

[28] F. Baboux, L. Ge, T. Jacqmin, M. Biondi, E. Galopin, A.
Lemaître, L. Le Gratiet, I. Sagnes, S. Schmidt, H. E. Türeci,
A. Amo, and J. Bloch, Bosonic Condensation and Disorder-
Induced Localization in a Flat Band, Phys. Rev. Lett. 116,
066402 (2016).

[29] Y. Nakata, Y. Urade, T. Nakanishi, F. Miyamaru, M. Wada
Takeda, and M. Kitano, Supersymmetric correspondence in
spectra on a graph and its line graph: From circuit theory to
spoof plasmons on metallic lattices, Phys. Rev. A 93, 043853
(2016).

[30] S. Kajiwara, Y. Urade, Y. Nakata, T. Nakanishi, and M. Kitano,
Observation of a nonradiative flat band for spoof surface plas-
mons in a metallic Lieb lattice, Phys. Rev. B 93, 075126 (2016).

[31] S. Klembt et al., Polariton condensation in S- and P-flatbands in
a two-dimensional Lieb lattice, Appl. Phys. Lett. 111, 231102
(2017).

[32] X.-Y. Zhu et al., Z2 topological edge state in honeycomb lattice
of coupled resonant optical waveguides with a flat band, Opt.
Express 26, 24307 (2018).

[33] H. Takeda, T. Takashima, and K. Yoshino, Flat photonic bands
in two-dimensional photonic crystals with kagome lattices,
J. Phys.: Condens. Matter 16, 6317 (2004).

[34] C. Xu et al., Design of full-k-space flat bands in photonic
crystals beyond the tight-binding picture, Sci. Rep. 5, 18181
(2015).

043841-8

https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevB.34.5208
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevB.38.1621
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevLett.62.1201
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1103/PhysRevB.96.161104
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1080/23746149.2018.1473052
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1063/1.5034365
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1038/nphoton.2008.146
https://doi.org/10.1364/OE.16.006227
https://doi.org/10.1364/OE.16.006227
https://doi.org/10.1364/OE.16.006227
https://doi.org/10.1364/OE.16.006227
https://doi.org/10.1364/OL.42.003243
https://doi.org/10.1364/OL.42.003243
https://doi.org/10.1364/OL.42.003243
https://doi.org/10.1364/OL.42.003243
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevLett.114.245504
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1103/PhysRevB.99.125129
https://doi.org/10.1364/JOSAB.28.000A38
https://doi.org/10.1364/JOSAB.28.000A38
https://doi.org/10.1364/JOSAB.28.000A38
https://doi.org/10.1364/JOSAB.28.000A38
https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1088/0034-4885/75/8/086401
https://doi.org/10.1103/PhysRevLett.93.030601
https://doi.org/10.1103/PhysRevLett.93.030601
https://doi.org/10.1103/PhysRevLett.93.030601
https://doi.org/10.1103/PhysRevLett.93.030601
https://doi.org/10.1088/0305-4470/25/16/011
https://doi.org/10.1088/0305-4470/25/16/011
https://doi.org/10.1088/0305-4470/25/16/011
https://doi.org/10.1088/0305-4470/25/16/011
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1103/PhysRevLett.69.1608
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1140/epjb/e2008-00113-2
https://doi.org/10.1088/0953-4075/43/16/163001
https://doi.org/10.1088/0953-4075/43/16/163001
https://doi.org/10.1088/0953-4075/43/16/163001
https://doi.org/10.1088/0953-4075/43/16/163001
https://doi.org/10.1088/1367-2630/15/1/013012
https://doi.org/10.1088/1367-2630/15/1/013012
https://doi.org/10.1088/1367-2630/15/1/013012
https://doi.org/10.1088/1367-2630/15/1/013012
https://doi.org/10.1088/1367-2630/16/6/063061
https://doi.org/10.1088/1367-2630/16/6/063061
https://doi.org/10.1088/1367-2630/16/6/063061
https://doi.org/10.1088/1367-2630/16/6/063061
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1103/PhysRevLett.114.245503
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1364/OL.41.001435
https://doi.org/10.1103/PhysRevB.81.113104
https://doi.org/10.1103/PhysRevB.81.113104
https://doi.org/10.1103/PhysRevB.81.113104
https://doi.org/10.1103/PhysRevB.81.113104
https://doi.org/10.1002/lpor.201100018
https://doi.org/10.1002/lpor.201100018
https://doi.org/10.1002/lpor.201100018
https://doi.org/10.1002/lpor.201100018
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1103/PhysRevB.85.205128
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1038/nphoton.2013.274
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.112.116402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevLett.116.066402
https://doi.org/10.1103/PhysRevA.93.043853
https://doi.org/10.1103/PhysRevA.93.043853
https://doi.org/10.1103/PhysRevA.93.043853
https://doi.org/10.1103/PhysRevA.93.043853
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1103/PhysRevB.93.075126
https://doi.org/10.1063/1.4995385
https://doi.org/10.1063/1.4995385
https://doi.org/10.1063/1.4995385
https://doi.org/10.1063/1.4995385
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1364/OE.26.024307
https://doi.org/10.1088/0953-8984/16/34/028
https://doi.org/10.1088/0953-8984/16/34/028
https://doi.org/10.1088/0953-8984/16/34/028
https://doi.org/10.1088/0953-8984/16/34/028
https://doi.org/10.1038/srep18181
https://doi.org/10.1038/srep18181
https://doi.org/10.1038/srep18181
https://doi.org/10.1038/srep18181


HIGHLY DEGENERATE PHOTONIC FLAT BANDS … PHYSICAL REVIEW A 100, 043841 (2019)

[35] N. Myoung, H. C. Park, A. Ramachandran, E. Lidorikis, and
J.-W. Ryu, Flat-band localization and self-collimation of light
in photonic crystals, Sci. Rep. 9, 2862 (2019).

[36] D. L. Bergman, C. Wu, and L. Balents, Band touching from
real-space topology in frustrated hopping models, Phys. Rev. B
78, 125104 (2008).

[37] S. Flach, D. Leykam, J. D. Bodyfelt, P. Matthies, and A. S.
Desyatnikov, Detangling flat bands into Fano lattices, EPL 105,
30001 (2014).

[38] C. Weeks and M. Franz, Flat bands with nontrivial topology in
three dimensions, Phys. Rev. B 85, 041104 (2012).

[39] D. Green, L. Santos, and C. Chamon, Isolated flat bands and
spin-1 conical bands in two-dimensional lattices, Phys. Rev. B
82, 075104 (2010).

[40] G. Tarnopolsky, A. J. Kruchkov, and A. Vishwanath, Origin of
Magic Angles in Twisted Bilayer Graphene, Phys. Rev. Lett.
122, 106405 (2019).

[41] T. Ozawa et al., Topological photonics, Rev. Mod. Phys. 91,
015006 (2019).

[42] F. D. M. Haldane and S. Raghu, Possible Realization of Di-
rectional Optical Waveguides in Photonic Crystals with Broken
Time-Reversal Symmetry, Phys. Rev. Lett. 100, 013904 (2008).

[43] S. Raghu and F. D. M. Haldane, Analogs of quantum-Hall-
effect edge states in photonic crystals, Phys. Rev. A 78, 033834
(2008).

[44] L. Lu, J. D. Joannopoulos, and M. Soljačić, Topological pho-
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