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High-order exceptional points of counterpropagating waves in weakly deformed microdisk cavities
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In a recent publication [Phys. Rev. A 98, 023851 (2018)] the authors reported on a systematic approach
based on perturbation theory to generate non-Hermitian degeneracies, so-called exceptional points, in weakly
deformed microdisk cavities by coupling modes of different angular momentum. In the present paper we extent
this approach to fully asymmetric boundary deformations. This allows us to increase the order of the exceptional
point and create modes with interesting angular momentum patterns where a nonuniform clockwise and
counterclockwise propagation is present. Furthermore, we combine the perturbation theory of weakly deformed
microdisks with the coupled-mode theory to explain possible measurements of transmission and reflection
spectra via a waveguide attached to the cavity.
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I. INTRODUCTION

Open quantum and wave systems exhibit interesting
and unconventional effects associated with non-Hermitian
physics. One among those phenomena which in the last years
attracted enormous scientific attention is exceptional points
(EPs) [1–3]. These are points in parameter space at which
two or more complex eigenvalues (frequencies) of a non-
Hermitian Hamiltonian and simultaneously also the corre-
sponding eigenstates (modes) coalesce. Exceptional points
have been observed and experimentally realized in a variety
of systems such as microwave cavities [4,5], optical mi-
crocavities [6–8], acoustic cavities [9], optical lattices [10],
coupled atom-cavity systems [11], nonuniformly pumped
lasers [12], and exciton-polariton billiards [13]. Especially,
optical whispering-gallery cavities are of great interest to
study non-Hermitian physics and EPs [14]. In such cavities
clockwise (CW) and counterclockwise (CCW) propagating
waves are trapped for very long times. Due to boundary
deformations or external perturbations, a scattering between
both propagation directions is present. If these systems do
not possess a mirror reflection symmetry, e.g., because of
an asymmetric boundary deformation, the scattering process
from one propagation direction is in general more pronounced
than that in the reversed process. As a consequence of this
asymmetric backscattering the optical modes are not standing
waves but (partially) copropagating traveling waves [15,16].
In its most extreme case at an EP the backscattering in only
one direction, e.g., from CW to CCW, is present and the mode
itself becomes a purely CCW propagating wave [17,18].

On the other hand, it has been shown recently [19] that
EPs can also occur in the spectrum of extremely weak de-
formed microdisks with symmetric backscattering. Here, an
adjustment of the refractive index and a very weak symmetric
boundary deformation is sufficient to coalesce modes with
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different angular momentums. The formation of these EPs is
very well described by perturbation theory [20].

The frequencies around an EP of second order (EP2) have
the characteristic topology of a complex square root. Hence,
slight parameter variations around the EP2 can be amplified
to a large response in the (complex) frequency splitting. For
applications this mechanism thus qualifies sensors based on
EPs to be very sensitive [21–23]. In recent years EPs of
higher order where more than two modes coalesce have been
considered [24–30]. Here, also the frequency splittings behave
like a root of higher order in parameter space, which leads to
a further improvement of the sensor’s sensitivity [30].

In this paper we combine the two approaches, asymmetric
backscattering and quasidegenerate mode pairs, to generate
such an EP of high order. More precisely, we show that a
small but fully asymmetric boundary deformation is capable
to achieve an EP of fourth order (EP4) where four modes
coalesce. Moreover, we combine the derived perturbative
description of the deformed cavity with coupled-mode the-
ory. This allows us to explain typical experimental situations
where the transmission and reflection spectra of a deformed
cavity is measured via an attached waveguide.

The paper is organized as follows. In Sec. II we give a
review of the quasi-two-dimensional microdisk cavity. The
extension of the perturbation theory to quasidegenerate modes
in a fully asymmetric deformed microdisk is discussed in
Sec. III. Two example deformations for an EP4 are presented
in Sec. IV. In Sec. V the cross section for plane-wave scat-
tering is shown, and in Sec. VI transmission and reflection
coefficient measurements via an attached waveguide are dis-
cussed. A summary is given in Sec. VII.

II. REVIEW ON MODES IN A CIRCULAR CAVITY

Optical microdisk cavities are well described within
a quasi-two-dimensional approximation. Here, Maxwell’s
equations reduce to a scalar mode equation [31],

[� + n2k2]ψ = 0, (1)
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FIG. 1. Scaled real part of the dimensionless complex frequency
of mode (solid blue curve) (m, lm ) = (22, 1) and (dashed red curve)
(p, lp) = (18, 2). The insets show the corresponding intensity pat-
terns |ψ |2 in a circular cavity with nopt = 2.105 094 8.

where Re (ψe−iωt ) represents the z component of the electric
or magnetic field for transverse magnetic (TM) or transverse
electric (TE) polarization, and ω is the complex frequency.
The finite height of the cavity is taken into account by n
being the effective refractive index. At the cavity’s interface
the wave function ψ and its scaled normal derivative ζ−2∂νψ

are continuous with ζ = 1 (n) for TM (TE) polarization.
The modes are described by the (dimensionless) complex
frequency x ≡ kR = ωR/c; R is the radius of the microdisk
and c is the speed of light in vacuum. The quality factor is
thus given by Q = −Re x/(2Im x).

In case of a circular cavity the rotational symmetry can be
exploited to determine the frequencies of the modes (for TM
polarization) as roots of

Sm(x) = n
J ′

m

Jm
(nx) − H ′

m

Hm
(x). (2)

Here, Jm and Hm are Bessel and Hankel functions of the first
kind and order m. The derivative with respect to the argument
is denoted by a prime (′). Note that the roots of Sm are doubly
degenerate for m �= 0, reflecting the equivalence of CW and
CCW propagation in the circular cavity.

The wave function ψ is given in polar coordinates by

ψm(r, φ; x) = χm(φ)

{
Jm (nkr)
Jm (nx) r � R
Hm (kr)
Hm (x) r > R

. (3)

For the angular dependency χm(φ) it is convenient to distinct
two sets of basis functions: the traveling-wave basis with
χm(φ) = eimφ with m = 0,±1,±2,±3, . . . and the stand-
ing wave basis with χm(φ) ∈ {cos(mφ), sin(mφ)} with m =
0, 1, 2, 3, . . . . In both cases m is called the azimuthal mode
number.

The solutions of Sm(x) = 0 for fixed m corresponding to
well-confined whispering-gallery modes can be labeled with
the radial mode number lm reflecting the number of the wave
function’s local maxima in radial direction. Note that besides
these modes with large Q factors there exist also modes with
very short lifetimes, called external modes [32–35], which
will be omitted here.

The complex frequencies x depend on the refractive index
n. This is shown for the modes (m, lm) = (22, 1), (p, lp) =
(18, 2) in Fig. 1. Via a fine-tuning of the refractive index
to n = nopt = 2.105 094 8, the modes can be driven into a
quasidegeneracy at which their two frequencies

xm = 12.499 61 − i1.159 38 × 10−7, (4)

xp = 12.499 61 − i3.393 72 × 10−4, (5)

have the same real part but differ in the imaginary parts.
Such quasidegeneracies are the starting point to achieve EPs
of second order (EP2) in microdisks with extremely weak
deformation [19,20].

III. PERTURBATION THEORY FOR QUASIDEGENERATE
MODES IN FULLY ASYMMETRIC MICRODISKS

In the following we consider TM polarized fields in a
weakly deformed circular cavity whose boundary shape is
given in polar coordinates by

r(φ) = R[1 + λ f (φ)], (6)

where f (φ) is the deformation function and λ is a formal
perturbation parameter which is set to unity afterwards. In
contrast to Refs. [20,32], we here explicitly allow asymmet-
ric deformations f (φ) �= f (−φ). A perturbation theory for
a pair of CW and CCW propagating modes without addi-
tional quasidegeneracies in such fully asymmetric cavities
was discussed in Ref. [36]. In contrast, here we assume two
mode pairs (m, lm) and (p, lp) with m �= p whose frequencies
have (almost) the same real parts; cf. Fig. 1. Similar to
Refs. [20,32], a zeroth-order ansatz for the wave function in
the deformed cavity is given by the linear superposition of the
modes in a traveling-wave basis as

ψ (r, φ; x) =
∑

q∈{±m,±p}
aq ψq(r, φ; x), (7)

where aq are the complex amplitudes, and x = xm(1 + δx) is
the frequency of the mode in the deformed disk. In the same
spirit as Ref. [32] we find that the aq and δx are determined by
the system of equations (see Appendix A)

(sq − δx)aq =
∑
w �=q

Aw−q aw (8)

with q,w ∈ {±m,±p}. The relevant complex Fourier har-
monics of the deformation function are

Aq = 1

2πR

∫ 2π

0
f (φ)eiqφ dφ. (9)

Furthermore, sq is given by

s±m = Sm(xm)

xm(n2 − 1)
− A0, (10)

s±p = Sp(xm)

xm(n2 − 1)
− A0. (11)

In order to linearize the system of equations (8) the derivative
of Sm is expanded as [32]

∂Sm

∂x
(x) = −(n2 − 1) − Sm(x)

x

− Sm(x)

[
Sm(x) + 2

H ′
m

Hm
(x)

]
, (12)
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with Sm(xm) = 0 and Sp(xm) = (n2 − 1)(xp − xm). Hence, the
frequency x and the amplitudes aq of the mode in the de-
formed microdisk are determined by the eigenvalue problem

ĤTW

⎛
⎜⎝

am

ap

a−p

a−m

⎞
⎟⎠ = x

⎛
⎜⎝

am

ap

a−p

a−m

⎞
⎟⎠. (13)

Here, ĤTW is the complex non-Hermitian matrix

ĤTW =

⎛
⎜⎜⎜⎝

xm

xp

xp

xm

⎞
⎟⎟⎟⎠ − xm

×

⎛
⎜⎜⎜⎝

A0 Ap−m A−p−m A−2m

Am−p A0 A−2p A−m−p

Am+p A2p A0 A−m+p

A2m Ap+m A−p+m A0

⎞
⎟⎟⎟⎠, (14)

which can be regarded as the Hamiltonian in traveling-wave
basis (TW). Note that ĤTW can be transformed in the standing-
wave basis (SW) via

ĤSW = B−1ĤTWB̂ (15)

with

B̂ = 1√
2

⎛
⎜⎜⎜⎝

1 0 0 i

0 1 i 0

0 1 −i 0

1 0 0 −i

⎞
⎟⎟⎟⎠. (16)

From Eq. (9) it follows that A−q = A∗
q. Thus, ĤTW divided

by xm has complex conjugate off-diagonal elements which
are transformed to real ones in the standing-wave basis as re-
quired by reciprocity [37,38]. Note that the diagonal elements
of ĤTW and ĤSW are complex.

IV. EXCEPTIONAL POINTS OF FOURTH ORDER

In this section we use the perturbation theory to find
boundary deformations which exhibit EPs of fourth order. In
order to obtain explicit results we specify a set of deformation
functions given by

f (φ) = d0 + 2ε1 cos[(m − p)φ] + 2ε2 sin[(m − p)φ]

+ 2δ1 cos[(m + p)φ] + 2δ2 sin[(m + p)φ]

+ 2σ1 cos(2mφ) + 2σ2 sin(2mφ)

+ 2κ1 cos(2pφ) + 2κ2 sin(2pφ), (17)

which allows us to tune the matrix elements of Ĥ via the
nine independent real-valued deformation parameters S =
(ε1/2, δ1/2, σ1/2, κ1/2, d0). However, note that the Hamiltonian
ĤTW in Eq. (14) has additional symmetries with respect to
the counterdiagonal such that the existence of an EP4 is a
priori not guaranteed. Explicitly, ĤTW with the deformation

TABLE I. The table shows the dimensionless boundary parame-
ters [see Eq. (17)] of EP4s arising from the modes (m, lm ) = (22, 1),
(p, lp) = (18, 2) in a cavity with refractive index n = 2.105 094 8.

Parameter×105 S1 S2

ε1 0.07484865 −0.17533632
ε2 0.04058464 −1.34058502
δ1 1.34424557 0.02222206
δ2 −0.14201596 −0.07988964
σ1 0.03243218 −0.01165198
σ2 −0.07854319 0.08194345
κ1 −0.04812878 −0.03233445
κ2 −0.07003218 0.07619043
d0 7.14211250 −0.12310027

(17) reads

ĤTW =

⎛
⎜⎝

xm

xp

xp

xm

⎞
⎟⎠ − xm

×

⎛
⎜⎝

d0 ε1 − iε2 δ1 − iδ2 σ1 − iσ2

ε1 + iε2 d0 κ1 − iκ2 δ1 − iδ2

δ1 + iδ2 κ1 + iκ2 d0 ε1 − iε2

σ1 + iσ2 δ1 + iδ2 ε1 + iε2 d0

⎞
⎟⎠.

(18)

In order to efficiently search for an EP4 the normalized
eigenvectors �a(i) of ĤTW with

∑
q |a(i)

q |2 = 1, i = 1, . . . , 4, are
obtained numerically. From these eigenvectors a deformation-
dependent auxiliary function measuring the nonorthogonality
of all four eigenvectors can be defined as

g(S ) =
∑
i �= j

(
1 −

∣∣∣∣∣∑
q

a( j)∗
q a(i)

q

∣∣∣∣∣
)2

. (19)

At an EP4 all four eigenvectors are collinear, i.e., g = 0. Since
g � 0 holds for all deformations, one can search for minimas
of the auxiliary function with g(S ) ≈ 0 numerically. In the
following we present two example systems with an EP4, S1

and S2. The corresponding deformation parameters are listed
in Table I. In both examples modes with the mode numbers
(m, lm) = (22, 1) and (p, lp) = (18, 2) (see Fig. 1) coalesce.

At the obtained EP4s there exists only one eigenvalue
of the matrix (18) for each system: xEP = 12.498 701 −
i1.697 44 × 10−4 for system S1 and xEP = 12.499 629 −
i1.697 44 × 10−4 for system S2.

The corresponding boundary deformations are shown in
Fig. 2. Note that the overall deformation is in both cases of the
order 10−5R, i.e., it is extremely weak. This is self-consistent
with the perturbation theory and ensures that the modes are
still well-confined whispering-gallery modes in the deformed
cavity.

In order to verify that the system is indeed at an EP4, an
additional random deformation is applied. Within the pertur-
bation theory this can be realized by selecting a vector R
of nine randomly chosen deformation parameters from the

043837-3



JULIUS KULLIG AND JAN WIERSIG PHYSICAL REVIEW A 100, 043837 (2019)

0 π 2π
3

6

9

12

φ

10
5
f
(φ

)

(a)

0 π 2π

−4

0

4

φ

10
5
f
(φ

)

(b)

FIG. 2. Dimensionless boundary deformation function f (φ) [see
Eqs. (6) and (17)] for (a) system S1 and (b) system S2 (see Table I).

interval [−1, 1]. Thus the new deformation is

S1/2(ε) = S1/2 + εR, (20)

where ε sets the strength of the additional deformation that
drives the system away from the EP4. In Fig. 3 the frequency
dynamics with ε is shown for S1. For small ε the four complex
frequencies approach xEP. The difference |x − xEP| scales with
a quartic root over many magnitudes up to ε ≈ 10−6. Such
a scaling is expected for an EP4 [1]. If the EP should be
utilized for sensing operations, it would require fabrication
of the boundary of the cavity with an accuracy according to
ε < 10−6 to benefit from the quartic root scaling. Such an
accuracy seems to be beyond today’s limitations, which are
of the order 10−4 [39,40]. However, the presented method to
achieve an EP4 is not restricted to such small deformations.
With a suitable choice of another initial mode pair one can
find an EP4 also for larger deformations as presented in
Appendix B.
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FIG. 3. In (a) and (b) the (red curves) dynamics of the complex
frequencies x is shown vs the perturbation strength ε [see Eq. (20)]
at the EP4 of S1. In (c) the corresponding (red curves) differences of
the frequencies to xEP are compared to a (black dashed curve) quartic
root. All axes are in dimensionless units.
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FIG. 4. The (a) real and (b) imaginary parts of the dimensionless
complex frequencies x are shown in the κ1-κ2 parameter plane around
the EP4 of system S1. A black dot marks EP4. The coloring is
according to the value along the z axis from (small) blue to (large)
red.

For the EP4 of system S1 the quartic root topology of the
frequencies can also be seen in Fig. 4. Here, the two deforma-
tion parameters κ1 and κ2 are varied. As a consequence of the
root topology, the modes interchange if the system parameters
are varied stroboscopically along a closed loop that encloses
the EP4 [4,24,41,42]. Hence, a mode needs to be traced along
four passes of such a closed loop in parameter space to get
back the initial intensity pattern. Note that different behavior
occurs if the parameters are varied dynamically in the system
[43].

The corresponding mode patterns at the EP4 are shown in
Figs. 5(a) and 5(c). From previous works it is known that
the mode at an EP2 in a fully asymmetric cavity becomes
completely propagating waves in either CW or CCW direction
due to asymmetric backscattering [17,18,44]. Here, at the
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FIG. 5. Mode intensity patterns at EP4 for (a) [(c)] system S1

[S2]. In (b) [(d)] the corresponding angular momentum patterns, see
Eq. (23), are shown.

EP4 of system S2 the same phenomenon happens, i.e., there
exists one mode with purely CCW propagation and without a
CW propagating counterpart. At first glance this is surprising
because the Hamiltonian ĤTW in Eq. (18) has symmetries such
that it can be written as

ĤTW =
(

� K̃
K �̃

)
, (21)

with complex 2 × 2 matrices �, �̃, K , and K̃ . Thus the off-
diagonal blocks describing the conversion of intensity from
CW to CCW and vice versa as well as the diagonal blocks
have the same (Frobenius-) norm, i.e., ‖K‖ = ‖K̃‖ and ‖�‖ =
‖�̃‖, which is counterintuitive to the two-mode approxima-
tion for asymmetric backscattering [15,16,21]. However, it
is still possible that the vector ψEP = (ψCCW, ψCW)ᵀ with
ψCCW �= 0 and ψCW = 0 is an eigenvector of ĤTW, namely,
if ψCCW is in the kernel of K , i.e., KψCCW = 0, which means
that there is effectively no backscattering from CCW to CW
propagation for ψEP.

In contrast, for system S1 the situation is different. Here,
the mode at the EP4 exhibits CW as well as CCW propagating
components, and hence it is neither a standing wave nor a
wave with a single preferred propagation direction. In order
to see this more directly, the current (Poynting vector) can be
computed as

�j = ( jx, jy) ∝ Im (ψ∗ �∇ψ ). (22)

The Poynting vector is proportional to the momentum density
of the fields. Therefore, at each point in space an angular
momentum can be associated to ψ via

Lz = x jy − y jx, (23)

14000 23000 32000
−2

3

8

MBEM

R
e(

x
−

x
E
P
)1

05

(a)

14000 23000 32000
−3

0

3

MBEM

Im
(x

−
x

E
P
)1

05

(b)

(c)

FIG. 6. (a) Real and (b) imaginary part of the difference of
numerically computed dimensionless frequencies x and the pertur-
bation theory prediction xEP for system S1. MBEM is the number of
boundary elements. In (c) the intensity mode patterns calculated with
BEM are shown.

with Lz < 0 (Lz > 0) indicating CW (CCW) propagation. For
both systems S1/2 the angular momentum patterns of the
modes are shown in Figs. 5(b) and 5(d). The mode of system
S1 exhibits two ringlike structures. Close to the cavity’s
boundary the mode propagates in CCW direction whereas
in the inner shell it is propagating clockwise. Such global
counterpropagating behavior has so far not been observed
in deformed microdisk cavities. In Ref. [20], however, local
vortex structures with different propagation directions have
been observed at EPs of third order in cavities with a mirror
reflection symmetry.

In order to test the results from the perturbation theory, we
also performed full numerical simulations using the bound-
ary element method (BEM) [45]. The perturbation theory
provides approximations for solutions of the mode equation
(1) and on the other hand, full numerical simulations have
small errors du to finite discretizations, e.g., of the cavity’s
boundary. Thus, the deformation predicted for the EP4 is
not exactly the one where full numerical simulations would
show an EP4. Therefore, with the BEM we can calculate
four modes very close in the complex plane. As shown in
Fig. 6 for system S1, depending on the number of boundary
elements the numerical results for the complex frequencies
slowly converge, with an overall difference of the order 10−5,
to the predictions from the perturbation theory. As can be seen
in Fig. 6(c), the corresponding numerically calculated mode
patterns are all similar and in good agreement to the prediction
from perturbation theory [see Fig. 5(a)]. This is quantified by
the pairwise overlap

S[ψ1, ψ2] =
∣∣ ∫

cavity ψ∗
1 ψ2 d2r

∣∣√∫
cavity |ψ1|2 d2r

∫
cavity |ψ2|2 d2r

, (24)

which is larger than 0.95 for the modes ψBEM, i calcu-
lated with BEM in Fig. 6(c). Additionally, the modes show
the characteristic self-orthogonality [29,46] at the EP with
S[ψ∗

BEM, i, ψBEM, i] < 0.05 for i = 1, .., 4. This confirms that
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FIG. 7. Cross section for plane waves with dimensionless wave
number kR ∈ R of (red curves) system S2 and (light gray curves) a
circular cavity for different refractive indexes.

the deformation predicted by the perturbation theory is indeed
very close to an EP4. Note that an example where the pertur-
bation theory is applied to a generic deformation without an
EP is discussed in Appendix C.

V. PLANE-WAVE SCATTERING

A method to measure optical modes is the scattering cross
section σ (�k) with incident plane waves given by a real-valued
wave vector �k = k(1, 0). As described in Ref. [45], the cross
section can be calculated with the BEM from the differential
scattering amplitude f (θ, �k) using the optical theorem

σ (k) = 2

√
π

k
Im [(1 − i) f (θ = φ, �k)]. (25)

It is known that the cross section can have a Fano-type profile
if the system is at an EP [47–49]. This is shown for the
system S2 (at the EP4) in Fig. 7(a). By slightly increasing the
refractive index of the cavity, the non-Hermitian degeneracy
is lifted such that individual modes arise from the EP4. As
shown in Figs. 7(a)–7(f) the refractive index change has two
effects on the cross section: (i) the resonant frequencies show
an overall shift with increasing n and (ii) the Fano-type profile
is split into a very narrow peak for two modes with a high
Q factor and a relatively broad peak for two modes with a
lower Q factor. As an example, the Q factor of the modes
corresponding to the broad (narrow) peak in a microdisk
with refractive index n = 2.124 [cf. Fig. 7(f)] are around
23 500 (1 130 000). Note that an overall frequency shift is also
observable in the circular cavity, whereas the splitting into
distinct peaks of the cross section for such small refractive

S+
→ S+

←

S−
← S−

→κm,p

amapa−m a−p

FIG. 8. Illustration of a microdisk cavity coupled to a waveguide.

index changes can only be observed in the deformed cavity at
the EP.

VI. TRANSMISSION AND REFLECTION SPECTRA VIA
AN ATTACHED WAVEGUIDE

In contrast to the free plane-wave scattering in experiment,
often a waveguide is placed next to the cavity to measure
the transmission or reflection spectra as illustrated in Fig. 8.
However, such a waveguide also disturbs the cavity modes
such that the spectra measured via the waveguide and the one
from plane waves are not identical. In this section we combine
the perturbation theory from Sec. III with the coupled-mode
theory [50–52] that describes the interaction of the cavity with
an attached waveguide. This allows us to predict the reflection
and transmission spectra of the deformed microdisk measured
via a waveguide.

A. Coupled-mode theory

In coupled-mode theory the time-dependent amplitudes
�a = (am, ap, a−p, a−m)ᵀ of the propagating waves with the
relevant angular momentum (m, p,−p,−m) in the microcav-
ity are described by a Schrödinger-type equation

i
d

dt
�a(t ) = ĤTW�a(t ) + i �P(t ), (26)

where �P is an effective pump term from the power input to the
cavity via the waveguide modes. It can be written as

�P(t ) = �κCCWS+
→(t ) + �κCWS+

←(t ). (27)

Here, S+
→ (S+

←) are the amplitudes of the waveguide modes,
and �κCCW (�κCW) are vectors with coefficients describing the
coupling from the waveguide and the propagating waves
inside the cavity if the system is excited from the left (right).
The coupling coefficients depend on the specific system setup,
e.g., the distance of the waveguide to the cavity or the defor-
mation of the cavity close to the waveguide. For simplicity
we assume that the coupling is determined by only two cou-
pling coefficients κm,p such that �κCCW = (κm, κp, 0, 0)ᵀ and
�κCW = (0, 0, κp, κm)ᵀ. This means from the left waveguide
port excites only CCW propagating waves whereas via an
excitation from the right waveguide port only CW propagating
waves inside the cavity are excited. This can be achieved
by placing the waveguide sufficiently away from the cavity,
backscattering due to the cavity-waveguide coupling being
neglected.
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If the (dimensionless) excitation frequency is ωe ∈ R, the
amplitudes of the fields in the waveguide can be written as
S±

�(t ) = s±
�e−iωet with constants s±

�. Thus inside the cavity
the amplitudes are given by �a(t ) = �ce−iωet with constants �c.
Inserting this ansatz into Eq. (26) yields

i(ĤTW − ωe1̂)�c = �P0 (28)

with �P0 = (κms+
→, κps+

→, κps+
←, κms+

←)ᵀ. A formal solution
of this equation is given in terms of the Green’s function
Ĝ(ωe) = (ωe1̂ − ĤTW)−1 as

�c = iĜ(ωe) �P0 + �cH , (29)

where �cH is the solution of the homogeneous system with van-
ishing �P0. Since we assume the excitation via the waveguide
only we can neglect the term �cH here. An advantage of the
perturbation theory is that it directly provides the Hamiltonian
ĤTW via Eq. (14). Therefore also the Green’s function Ĝ(ωe)
is directly accessible. In the particular case of an EP4 Green’s
function it can be written explicitly as [53]

Ĝ(ωe) = 1̂
ωe − xEP

+ M̂1

(ωe − xEP)2

+ M̂2

(ωe − xEP)3
+ M̂3

(ωe − xEP)4
, (30)

with M̂k = (ĤTW − xEP1̂)k . Here, the terms involving M̂k with
k � 1 can lead to a non-Lorentzian behavior in the spectra
[48,54]. However, note that in the following it is sufficient to
evaluate (ωe1̂ − ĤTW)−1 numerically.

In order to obtain the transmission and reflection spectra,
the outgoing waveguide amplitudes s−

� need to be calculated.
In the coupled-mode theory these coefficients are given by

s−
← = s+

← − �κ†
CW�c, (31a)

s−
→ = s+

→ − �κ†
CCW�c. (31b)

Putting in the solution (29) for �c we can calculate the trans-
mission coefficient tL(tR) for excitation from the left (right) as
well as the corresponding reflection coefficients rL(rR) as

tL = s−
→

s+→

∣∣∣∣
s+←=0

= 1 − i�κ†
CCWĜ(ωe)�κCCW, (32a)

rL = s−
←

s+→

∣∣∣∣
s+←=0

= −i�κ†
CWĜ(ωe)�κCCW, (32b)

tR = s−
←

s+←

∣∣∣∣
s+→=0

= 1 − i�κ†
CWĜ(ωe)�κCW, (32c)

rR = s−
→

s+←

∣∣∣∣
s+→=0

= −i�κ†
CCWĜ(ωe)�κCW. (32d)

Note that reciprocity requires tL = tR, which is fulfilled due to
the choice of �κCW and �κCCW. The strategy to obtain explicit
results is the following. First, we simulate numerically a
circular cavity and an attached a waveguide with a certain
width and distance to the cavity. From these simulations we
deduce the coupling parameter κm/p and the frequency shifts
of the modes in the circular cavity due to the presence of the

26.3106 26.3122 26.3138 26.3154
0.0

0.5

1.0

nωe

|tL/R|2

FIG. 9. Transmission spectrum of a circular cavity coupled to a
waveguide. The fully numerically computed spectrum is shown as a
black curve. The red dashed curve is the result of Eq. (33) with the
fitted parameters (35). The light green curve is the result of Eq. (33)
for unshifted frequencies xm/p and (κm, κp) = (0.000 37, 0.019).

waveguide. Afterwards we can apply Eqs. (32) to get results
for arbitrary weakly deformed microdisks.

B. Circular microdisk coupled to a waveguide

For the special case of a circular disk with no deformation
the Hamiltonian ĤTW is diagonal as can be seen from Eq. (14)
such that the reflection and transmission coefficients from
Eqs. (32a)–(32d) can be simplified to

tL/R = 1 − i

( |κm|2
ωe − x̃m

+ |κp|2
ωe − x̃p

)
, (33)

rL/R = 0. (34)

However, due to the interaction of the attached waveguide
with the circular cavity the complex frequencies of the modes
x̃m/p are not exactly the ones from the bare circular cavity xm/p

[see Eqs. (4) and (5)] computed as roots of Eq. (2). In order to
get x̃m/p as well as the coupling parameters κm/p we simulate
the transmission spectrum of the circular cavity attached to a
waveguide using COMSOL MULTIPHYSICS 5.4 and apply a fit of
|tL/R|2 using Eq. (33), see Fig. 9. In the example a waveguide
of width 0.03R is placed 0.32R away from the cavity. A very
good agreement of Eq. (33) with the simulation is obtained for

κm ≈ 2.370 691 × 10−3, (35a)

κp ≈ 2.356 105 × 10−2, (35b)

x̃m ≈ 12.499 610 − i5.353 616 × 10−6, (35c)

x̃p ≈ 12.499 842 − i6.153 160 × 10−4. (35d)

Note that the slight shift of the complex frequencies due to
the waveguide is crucial since adjusting κm/p only (see green
curve in Fig. 9) is not sufficient to reproduce the simulated
transmission spectra.

C. Weakly deformed microdisks coupled to a waveguide

With the computed waveguide coupling coefficients of the
circular cavity we can now apply Eqs. (32) to predict the trans-
mission and the reflection spectra of a deformed microdisk.
For system S1 (S2) the results are shown in Fig. 10 (Fig. 11).
For both systems in general a very good agreement to full
numerical simulations is obtained for the transmission as well
as the reflection spectra. The transmission spectra in both
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26.308 26.310 26.312 26.314
0.0

0.5

1.0

nωe

|tL/R|2
(a)

26.308 26.314
0.0

0.4

0.8

nωe

|rL|2 (b)

26.308 26.314
0.0

0.4

0.8

nωe

|rR|2 (c)

FIG. 10. (a) Transmission spectrum and (b)/(c) reflection spectra
for excitation from left/right of the cavity S1 coupled to a waveguide.
The fully numerically computed spectra is shown as a black curve.
The light green curve is the result of Eqs. (32) with the coupling
parameters (35).

cases show a Fano-type profile which is slightly asymmetric
in comparison to the cross section for plane waves. In system
S1 the peak in the transmission is slightly less pronounced,
as predicted by the perturbation theory. However, the shift
of the overall spectrum in nωe via the deformation is in both
cases predicted accurately by Eqs. (32). What is remarkable is
the asymmetric backscattering [15,16,18] in system S2. Here,
the reflection coefficient for excitation from the left almost
vanishes, whereas it is finite for excitation from the right. This
is in good agreement with the fact that the mode of system S2

at the EP4 is a pure CCW propagating wave, see Figs. 5(c) and
5(d). For both systems the reflection coefficient tends to be

26.3106 26.3122 26.3138 26.3154
0.0

0.5

1.0

nωe

|tL/R|2
(a)

26.3106 26.3154
0.0

0.1

0.2

nωe

|rL|2 (b)

26.3106 26.3154
0.0

0.1

0.2

nωe

|rR|2 (c)

FIG. 11. (a) Transmission spectrum and (b)/(c) reflection spectra
for excitation from left/right of the cavity S2 coupled to a waveguide.
The fully numerically computed spectra is shown as black curve.
The light green curve is the result of Eqs. (32) with the coupling
parameters (35).

slightly underestimated, which might be due to an enhanced
cavity-waveguide coupling due to the deformation [55].

VII. SUMMARY

In this paper we have extended the perturbation theory for
quasidegenerate modes in weakly deformed cavities to fully
asymmetric deformations. This allows us to tune the defor-
mation such that four modes, i.e., the clockwise and coun-
terclockwise components for two different mode numbers,
coalesce into one single mode. Such deformations mark an
exceptional point of fourth order in parameter space. Explic-
itly we discussed two example deformations where the modes
at the exceptional points have interesting properties: In the one
example the mode exhibits regions of pure clockwise as well
as pure counterclockwise propagation, whereas in the other
example the mode is a purely counterclockwise propagating
wave. Such more complicated propagating wave patterns
might find applications for orbital-angular-momentum lasers.
Additionally, we discussed the cross section of plane-wave
scattering and measurements of transmission and reflection
spectra via a waveguide attached to the cavity. For the later
we used coupled-mode theory in combination with the per-
turbation theory to describe the observed behavior of the
transmission and reflection coefficient.

Our approach is so far restricted to TM polarized fields.
A generalization to TE polarization is a challenging future
task due to the more complicated boundary conditions. In the
TE case already the perturbation theory for well-separated
modes in a microcavity with mirror-reflection symmetry is
much more difficult [56] and reveals pitfalls [57]. Moreover, a
proper treatment of quasidegenerate modes in asymmetrically
deformed cavities is not known so far for TE polarized fields.
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APPENDIX A: DERIVATION OF THE PERTURBATION
THEORY

In this Appendix we comment on the derivation of the
perturbation theory for quasidegenerate modes of the circular
cavity. At such a quasidegeneracy with Re xm = Re xp the
expansion coefficients aq in Eq. (7) with q ∈ {±m,±p} are
of zeroth order in the perturbation parameter λ. Therefore,
even for extremely weak deformations it is important to chose
the correct linear combination of the unperturbed modes. In
order to construct this linear combination and the frequency
x in the deformed cavity the boundary conditions at the
dielectric interface are evaluated in a series of the perturbation
parameter λ (see Ref. [32] for more details). The first order of
the boundary condition for the normal derivative ∂�νψ1 = ∂�νψ2

results in the equation

∂r[ψ1 − ψ2]
∣∣
(R,φ) = −λ f (φ) ∂2

r [ψ1 − ψ2]
∣∣
(R,φ). (A1)
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With the ansatz (7) the derivatives can be calculated as

∂r[ψ1 − ψ2]|(R,φ) = k
∑

p

apSp(x)χp(φ) (A2)

∂2
r [ψ1 − ψ2]|(R,φ)

= − k

R

∑
p

ap[x(n2 − 1) + Sp(x)]χp(φ). (A3)

Inserting these derivatives in Eq. (A1), introducing Ap−q via
Eq. (9), and using the orthogonality of χp(φ) = eipφ yields

Sq(x)aq = λ
∑

p

Ap−q[x(n2 − 1) + Sp(x)]ap. (A4)

Because of the prefactor λ the terms in the sum need to
be evaluated for x = x0. Therefore, we can neglect the term
Sp(x0) in the sum as from the continuity of the wave function
along the cavity’s interface following

0 = [ψ1 − ψ2]|(r(φ),φ) (A5)

= [ψ1 − ψ2]|(R,φ)︸ ︷︷ ︸
=0

+λ f (φ) ∂r[ψ1 − ψ2]|(R,φ)︸ ︷︷ ︸
∼∑

p apSp(x0 )

. (A6)

Thus, by setting λ formally to 1 and expanding to x = x0(1 +
δx) we get

Sq[x0(1 + δx)]aq =
∑

p

x0(n2 − 1)Ap−qap, (A7)

which is the equivalent equation to Refs. [20,32]. Next, we
explicitly use the series expansion of Sq around x0 as

Sq[x0(1 + δx)] ≈ Sq(x0) + x0δx
∂Sq

∂x
(x0), (A8)

with the leading order of the derivative from Eq. (12), i.e.,
∂Sq/∂x = −(n2 − 1). Therefore, it yields

[Sq(x0) − x0δx(n2 − 1)]aq =
∑

p

(n2 − 1)x0Ap−qap , (A9)

which is equivalent to Eq. (8) for x0 = xm.

APPENDIX B: EXAMPLE FOR AN EXCEPTIONAL POINT
WITH A LARGER BOUNDARY DEFORMATION

In this Appendix we present another example where an EP
of fourth order can be achieved with a larger deformation via
a suitable choice of the initial modes in the circular cavity.
Here, we choose the modes (m, lm) = (14, 2) and (p, lp) =
(11, 3), which have a quasidegeneracy for the refractive in-
dex n = 2.602 536 8 with xm = 8.376 42 − i4.887 00 × 10−5,
xp = 8.376 42 − i8.299 17 × 10−3. Hence, in the complex
frequency plane these modes are more separated than the
modes from Eqs. (4) and (5). Applying the optimization
for the deformation parameters reveals an EP of fourth or-
der for (d0, ε1, ε2, δ1, δ2, σ1, σ2, κ1, κ2) ≈ 10−4 (0.031 95,
0.010 12, 0.978 26, 0.069 57, −4.729 86, 0.004 18, −0.958 80,
−0.024 02, 0.958 51) with xEP ≈ 8.3764 − i0.0042. These
deformation parameters are about a magnitude larger than the
ones from Table I. The corresponding intensity and angular
momentum patterns of the mode at EP4 are shown in Fig. 12.

−1.2 0.0 1.2
−1.2

0.0

1.2

x/R

y/R

(a)

−1.2 0.0 1.2x/R

(b)

CW 0 CCWLz0 max|ψ|2

FIG. 12. Mode (a) intensity and (b) angular momentum patterns
of the mode at the EP4 described in Appendix B.

APPENDIX C: DEFORMATIONS WITHOUT
EXCEPTIONAL POINTS

The presented perturbation theory for quasidegenerate
modes in a weakly deformed fully asymmetric cavity is not re-
stricted to deformations of the form (17). It can be applied also
to generic deformations by calculating the matrix elements of
the Hamiltonian (14) via Eq. (9). In this Appendix we present
results and limitations of this approach for a circular cavity
with two asymmetric notches. The boundary of the cavity is
defined in polar coordinates by

r(φ)

R
= 1 −

∑
ν,l

εν exp
[ − (φ − φν + 2π l )2/

(
2σ 2

ν

)]
, (C1)

where εν , σν , and φν are parameters for the depth, width, and
angular position of the notch ν ∈ {1, 2}. The sum over l ∈ Z
ensures r(φ) to be a 2π -periodic function. In the following the
parameters (ε1, σ1, ε2, σ2, φ2) = (0.02, 0.04, 0.015, 0.02, 0)
are fixed and φ1 ∈ [0.3π, 0.4π ] is varied. We consider
the quasidegenerate modes (m, lm) = (22, 1) and (p, lp) =

12.499

12.515

Re x

(a)

0.3π 0.4π

10−4

10−3

φ1

−Im x

(b)

FIG. 13. The (a) real and (b) imaginary part of the mode’s
frequencies in an asymmetric cavity with two notches [see Eq. (C1)].
The angular position φ1 of one notch is varied. Numerically com-
puted values from BEM are shown as dots. Reliable (inaccurate)
predictions from the perturbation theory are represented by solid
(dashed) curves.
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(12, 2) [see Eqs. (4) and (5)] in a cavity with refractive
index n = 2.105 094 8. As shown in Fig. 13 the results from
the perturbation theory for the real part of the frequencies
are in very good agreement to full numerical simulations
with BEM results. However, the perturbation theory cannot
describe the change in the imaginary part of the frequencies
for all the modes. Only for the mode with the lowest losses
a prediction of the imaginary part of the frequency fits [see

solid curve in Fig. 13(b)]. Note that it is already known
from Refs. [32,36,58] that the first-order corrections in the
perturbation theory are not sufficient to predict the imaginary
part of the frequencies well. In the same spirit the Hamiltonian
(14) cannot describe loss channels arising from a coupling
between modes other than (m, lm), (p, lp). However, these
loss channels become important for arbitrary deformations,
whereas they are suppressed for boundaries of the form (17).

[1] T. Kato, Perturbation Theory for Linear Operators (Springer,
New York, 1966).

[2] W. D. Heiss, Phys. Rev. E 61, 929 (2000).
[3] M. V. Berry, Czech. J. Phys. 54, 1039 (2004).
[4] C. Dembowski, H.-D. Gräf, H. L. Harney, A. Heine, W. D.

Heiss, H. Rehfeld, and A. Richter, Phys. Rev. Lett. 86, 787
(2001).

[5] C. Dembowski, B. Dietz, H.-D. Gräf, H. L. Harney, A. Heine,
W. D. Heiss, and A. Richter, Phys. Rev. E 69, 056216 (2004).

[6] S.-B. Lee, J. Yang, S. Moon, S.-Y. Lee, J.-B. Shim, S. W. Kim,
J.-H. Lee, and K. An, Phys. Rev. Lett. 103, 134101 (2009).
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