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Probability of radiation of twisted photons in an inhomogeneous isotropic dispersive medium
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The general formula for probability to record a twisted photon produced by a charged particle moving in
an inhomogeneous isotropic dispersive medium is derived. The explicit formulas for probability to record a
twisted photon are obtained for the radiation of a charged particle traversing a dielectric plate or an ideally
conducting foil. It is shown that, in the case when the charged particle moves along the detector axis, all the
radiated twisted photons possess a zero projection of the total angular momentum and the probability of their
radiation is independent of the photon helicity. The radiation produced by helically microbunched beams of
charged particles is also considered. The fulfillment of the strong addition rule for the projection of the total
angular momentum of radiated twisted photons is demonstrated. Thus the helical beams allow one to generate
coherent transitions and Vavilov-Cherenkov radiation with large projections of the total angular momentum. The
radiation produced by charged particles in a helical medium is studied. Typical examples of such a medium are
metallic spirals and cholesteric liquid crystals. It is shown that the radiation of a charged particle moving along
the helical axis of such a medium is a pure source of twisted photons.
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I. INTRODUCTION

The use of media with nontrivial permittivity is the most
common method to generate twisted photons [1–14]. How-
ever, as a rule, the medium is employed only as a converter
of plane-wave photons to twisted ones. We investigate in the
present paper a direct means for production of twisted photons
by charged particles moving in an inhomogeneous dispersive
medium. As far as a homogeneous medium is concerned,
the theory of radiation of twisted photons is known in this
case (see the description of the Vavilov-Cherenkov process in
[15,16]). However, the detectors of twisted photons [17–22]
or the objects that should be irradiated by them [23–26] are
usually positioned outside the medium. When the twisted
photons escape from the medium, the form of their peculiar
phase front can be destructed. Therefore, to describe properly
the production of twisted photons by charged particles moving
in inhomogeneous media, the corresponding theory has to be
constructed.

The classical and quantum theories of radiation by particles
propagating in dispersive media are well elaborated (see, e.g.,
[27–50]). So we adapt these theories for the description of
radiation of twisted photons. Recall that the twisted photons
are the states of the electromagnetic field that possess a
definite energy, unique projections of the momentum and
of the total angular momentum onto the detector axis, and
a well-defined helicity. First of all, we develop QED in an
inhomogeneous dispersive medium with twisted photons and
derive the general formula for the probability to record a
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twisted photon created by a classical current. The range of
applicability of such a theory is of course the same as for
the corresponding theory of radiation of plane-wave photons.
Then, employing this formalism, we investigate several rep-
resentative examples [38,40,45,48,51,52] to demonstrate the
main features of twisted photon radiation by charged particles
in a medium. Our primary goal is to describe the distribution
of radiation of twisted photons by charged particles over the
projections m of the total angular momentum onto some axis
(the detector axis), to establish its general properties, and to
find situations when this distribution has a desired form, for
example, when it is concentrated at a certain value of m.
Notice that this objective cannot be achieved in the plane-
wave basis of photon mode functions. Namely, we consider
the radiation of twisted photons by a charged particle moving
uniformly along a straight line intersecting a dielectric plate
or a metal foil. With the aid of the results of [53,54], we
investigate the coherence of such a radiation created by par-
ticle beams and the conditions when transition and Vavilov-
Cherenkov (VC) radiations can be used as a pure bright source
of twisted photons. In particular, we show that the helically
microbunched beams [55–64] with a certain helix pitch and
transverse size produce coherent twisted transition and VC ra-
diations with large projection of the total angular momentum.
Note that coherent transition and VC radiations of plane-wave
photons were discussed in many works (see, e.g., [44,65–
70]). As for helically microbunched beams, they were used to
generate twisted photons by undulators [56,57,59–61] and by
hitting metal foils [55,58]. The peculiarities of twisted photon
radiation produced by particle bunches of different profiles
can also be employed for the diagnostics of the particle beam
structure [55,58,71].

Another pure source of twisted photons that we study in the
present paper is a helical medium. Typical examples of such
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a medium are metallic helical ribbons [13], cholesteric liquid
crystals [7,9,72], and helically arranged dielectrics. Usually,
the helical media are used to convert ordinary plane-wave
photons to twisted ones. We however consider the direct
process of radiation by charged particles moving in such a
medium. It turns out that a charged particle moving uniformly
along the helical axis of such a medium is a pure source
of twisted photons. Its radiation obeys the selection rules
that are pertinent to ideal helical undulators [53,73–83] or
to scattering on helical targets [82]. This fact has a simple
explanation in terms of transition scattering of the permittivity
wave on the charged particle. This source can be employed to
generate twisted photons with energies up to the x-ray spectral
range. Of course, there are other pure sources of twisted
photons such as undulators and laser waves where the twisted
photons are produced directly by charged particles [56,57,59–
61,73–81,83–86]. The hard twisted photons with energies of
the order of hundreds of MeV can be generated by inverse
Compton scattering of low-energy twisted photons [87,88] or
in channeling [89,90].

The paper is organized as follows. In Sec. II we develop
the QED in an inhomogeneous dispersive medium. In Sec. III
we find the probability to record a twisted photon by a
detector in a vacuum and obtain the general formula for the
radiation probability of twisted photons by classical currents.
In Sec. IV we obtain the general formula for the probability
to record a twisted photon created by a charged particle
moving in a homogeneous medium and reproduce the known
results for VC radiation of twisted photons in such media. In
Sec. V we apply the general theory to particular examples. In
Secs. V A and V B we consider the radiation of twisted
photons by a charged particle or a beam of them that traverses
a dielectric plate. In Sec. V C transition radiation by a charged
particle hitting a metal foil is investigated. The radiation
produced by charged particles in helical media is studied in
Sec. V D. In Sec. VI we summarize the results. The evaluation
of the incoherent and coherent interference factors [53,54]
for Gaussian helically microbunched beams is given in the
Appendix.

We work in a system of units such that h̄ = c = 1 and
e2 = 4πα, where α ≈ 1/137 is the fine-structure constant.
The notation from [81] is vastly employed.

II. QUANTUM ELECTROMAGNETIC
FIELD IN A MEDIUM

For the reader’s convenience and concordance of notation,
in this section we develop the QED in an inhomogeneous
transparent isotropic dispersive medium. As regards the ho-
mogeneous medium, such a construction is well known (see,
e.g., [30–37,39,40,42,43,45,47,50]). We suppose that the spa-
tial dispersion is negligible, the magnetic permeability μ = 1,
and the permittivity ε(k0, x) > 0. In particular, Im ε(k0, x) =
0, where k0 ∈ R is found from solution of the Maxwell
equations (1), i.e., it is “on shell.” The absence of absorption
is a necessary requirement for quantum field theory to be
unitary. The generalization to the case of a medium with small
absorption will be given below. The procedure developed
below is analogous to the one used in [81] for the description

of radiation of twisted photons by classical currents in a
vacuum.

The free Maxwell equations in a medium have the form
(see, e.g., [36,42,43])[

k2
0ε(k0, x) − ĥ2

]
Ai(k0, x) = 0, ∂i[ε(k0, x)Ai(k0, x)] = 0,

(1)

where Ai(k0, x) is the Fourier transform of the vector potential
and we have introduced the Maxwell Hamiltonian (the curl
operator)

ĥi j := εik j∂k . (2)

The second condition in (1) is the generalization of the
Coulomb gauge such that the Fourier transform of the electric
field strength Ei(k0, x) = −ik0Ai(k0, x). If the solution to the
first equation in (1) is found, then it satisfies the second
equation in (1) provided k0 �= 0. Further, we assume that
the electromagnetic field obeys boundary conditions such
that k0 > 0. In addition, we suppose that ε(k0, x) �= 1 in the
region M of a finite volume. The rest of the space possessing
an infinite volume will be denoted by �. Since we assume
Im ε(k0, x) = 0 on shell then, for these values of k0 [42],

ε(k0, x) = ε(−k0, x). (3)

Introducing the operator

ˆ̃h2(k0) := ε−1/2ĥ2ε−1/2, (4)

we cast Eqs. (1) into an explicitly self-adjoint form(
k2

0 − ˆ̃h2
)
Ãi(k0, x) = 0, ∂i[ε

1/2(k0, x)Ãi(k0, x)] = 0, (5)

where Ãi(k0, x) = ε1/2(k0, x)Ai(k0, x). The operators entering
Eqs. (5) remain unchanged under the replacement k0 → −k0.

It is not difficult to find the general solution of Eqs. (5) for
real k0 such that Im ε(k0, x) = 0. Let us pose the eigenvalue
problem

ˆ̃h2(k0)ψ̃α (k0) = χ2
α (k0)ψ̃α (k0), χα (k0) � 0, (6)

where α marks the eigenvalues χ2
α (k0). The operator on the

left-hand side of (6) is self-adjoint in the Hilbert space of
complex vectors ψ̃i(k0; x) subject to the condition

∂i[ε
1/2(k0)ψ̃i(k0)] = 0, (7)

with the standard scalar product

〈ϕ̃, ψ̃〉 =
∫

dx ϕ̃∗
i (x)ψ̃i(x). (8)

The eigenfunctions (6) constitute a complete orthonormal set.
The completeness relation reads∑

α

ψ̃αi(k0; x)ψ̃∗
α j (k0; y)

= δ⊥
i j (k0; x, y)

= {δi j − ε1/2(k0, x)∂i�
−1
ε ∂ jε

1/2(k0, y)}δ(x − y), (9)

where �−1
ε is the inverse to the operator �ε := ∂iε(k0, x)∂i.

Taking the complex conjugate of (6), we see that the complete
set contains the function ψ̃∗

α along with ψ̃α corresponding to
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the same eigenvalue χ2
α but with a different quantum number

α′(α). Alternatively,

ψ̃∗
α (k0) = ψ̃α′(α)(k0),

χα (k0) = χα′(α)(k0), α′(α′(α)) = α, (10)

and α′(α) = α for real-valued ψ̃α (k0). In particular, it follows
from this property that the left-hand side of (9) is real.

If the permittivity is discontinuous on some closed hy-
persurface �, then the standard boundary conditions for the
electromagnetic field strength on � become

[ψτ ] = 0, [(ĥψ )τ ] = 0, (11)

where the square brackets denote a discontinuity jump of the
corresponding function on the hypersurface � and the index
τ means that only components tangent to � of the complex
vector ψ should be taken. It is implied in (11) that the surface
charge and the current density are absent on �. The conditions
(11) entail in particular that [36]

[ĥψ] = 0, [εψn] = 0, (12)

where n denotes the vector component normal to �. The
boundary conditions (11) are consistent with Eqs. (5) in

the sense that they make the operator ˆ̃h2 self-adjoint in the
space of divergence-free complex vector fields obeying (11).
The corresponding boundary terms (the singular current) for
the fields defined in the region bounded by the surface �

have the form (118). The fields defined from the outside of �

result in the same singular current but with the opposite sign
(ni → −ni). The fulfillment of boundary conditions (11) leads
to cancellation of the singular currents. Note that the boundary
conditions on the surface of an ideal conductor look like

ψτ = 0, (13)

and ψ = 0 inside the conductor. The operator ˆ̃h2 is self-
adjoint on account of these boundary conditions.

Assuming that the operator (4) does not have zero eigen-
values, the complete set (6) allows one to write the quantum
field satisfying (5):

ˆ̃Ai(t, x) =
∑

α

[
âα f 1/2

α ψ̃αi(k0α; x)e−ik0αt

+ â†
α f 1/2

α ψ̃∗
αi(k0α; x)eik0αt

]
. (14)

Here

[âα, âβ ] = [â†
α, â†

β ] = 0, [âα, â†
β ] = δαβ, (15)

the on-shell condition takes the form

k2
0α = χ2

α (k0α ), k0α > 0, (16)

and the normalization coefficients fα > 0 are found from the
requirement that the residue of the propagator of the field (14)
is equal to unity. The quantum field Âi(x) is obtained from
(14) in an obvious manner

Âi(t, x) =
∑

α

[
âα f 1/2

α ψαi(k0α; x)e−ik0αt

+ â†
α f 1/2

α ψ∗
αi(k0α; x)eik0αt

]
, (17)

where ψαi(k0α; x) = ε−1/2(k0α; x)ψ̃αi(k0α; x).

The commutator Green’s function is written as

G̃i j (t, x; t ′, y) :

= [ ˆ̃Ai(t, x), ˆ̃Aj (t
′, y)]

=
∑

α

fα[ψ̃αi(k0α; x)ψ̃∗
α j (k0α; y)e−ik0α (t−t ′ ) − c.c.]. (18)

On the other hand, the retarded Green’s function for the
operator (5) is

G−
i j (t, x; t ′, y)=

∫
dk0

2π

∑
α

ψ̃αi(k0; x)
e−ik0(t−t ′ )

k2
0 − χ2

α (k0)
ψ̃∗

α j (k0; y),

(19)

where the integration contour over k0 runs a little bit higher
than the real axis. Taking into account that

G−
i j (t, x; t ′, y) = −iθ (t − t ′)G̃i j (t, x; t ′, y) (20)

and evaluating (19) for t > t ′ by residues, we obtain
[40,42,45,91–93]

f −1
α = [

k2
0 − χ2

α (k0)
]′

k0=k0α
= 2k0α[1 − χ ′

α (k0α )], (21)

where k0α is the solution of (16). For the quantum theory to be
unitary, the right-hand side of (21) must be positive for k0α >

0. Note that this condition is fulfilled for a homogeneous
isotropic medium due to the inequalities that hold for the
permittivity ε(k0) and its derivative (see Sec. 84 in [42] and
Sec. IV below).

We define

δ̄i j (x, y) :=
∑

α

ψ̃αi(k0α; x)ψ̃∗
α j (k0α; y). (22)

As long as k0α = k0α′(α) and the relations (10) hold, we have

δ̄∗
i j (x, y) = δ̄i j (x, y). (23)

The operator δ̄ is the identity on the space of solutions to the
Maxwell equations (5) in the sense that∫

dy δ̄i j (x, y) ˆ̃Aj (t, y) = ˆ̃Ai(t, x). (24)

Furthermore, it follows from (10) that

G̃i j (t, x; t, y) = [ ˆ̃Ai(t, x), ˆ̃Aj (t, y)] = 0. (25)

By analogy with quantum field theory in a vacuum, one can
introduce the canonical momentum

ˆ̃πi(t, x) : = − i

2

∑
α

[
âα f −1/2

α ψ̃αi(k0α; x)e−ik0αt

− â†
α f −1/2

α ψ̃∗
αi(k0α; x)eik0αt

]
. (26)

Then

[ ˆ̃Ai(t, x), ˆ̃π j (t, y)] = iδ̄i j (x, y), [ ˆ̃πi(t, x), ˆ̃π j (t, y)] = 0.

(27)

The last property follows from the relations (10). The evo-
lution operator of the electromagnetic field in the pres-
ence of the external conserved classical current is given by
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(see, e.g., [94])

Ût2,t1 = Û 0
t2,0Ŝt2,t1Û

0
0,t1 ,

Ŝt2,t1 = T exp

[
−i

∫ t2

t1

dx Âi(x) ji(x) − i
∫ t2

t1

dt VCoul

]
, (28)

where Û 0
t2,t1 is the evolution operator of a free electromagnetic

field (17) and VCoul is the energy of Coulomb self-interaction
of the current. In the case at hand, this energy gives only the
contribution to the common phase of transition amplitudes,
and we do not take it into account anymore. It is noteworthy,
however, that this phase is divergent in the infrared limit, if
the system possesses an uncompensated charge [94,95].

III. RECORDING PHOTONS IN A STATIONARY STATE

Having constructed quantum field theory in a medium, we
ought to define what we mean under the twisted photon and its
recording by the detector. We follow the postulate of quantum
theory that a detector allows one to measure the projection
of quantum state to a given state, i.e., the probability to
find a quantum system in a given state. This given state is
determined by the structure of the detector. The concrete form
of the detector will not be relevant for us. It is only needed
that the detector projects the quantum state to the state close
to a vacuum twisted photon. Notice that the detectors were
elaborated that allow one to decompose the electromagnetic
field in terms of twisted photons even at a single-photon level
[18–21].

Suppose that the detector of twisted photons is located in
the region �, which has an infinite volume, and ε(k0, x) =
1 in it. Let ψ̃α (k0α; x) be a complete set of solutions to
the Maxwell equations described in the preceding section.
Using these mode functions, we construct the wave packets
ϕβ such that (i) ϕβ ≈ ϕ0β in the vicinity of the detector
of twisted photons, where ϕ0β are the modes corresponding
to twisted photons in a vacuum [see the explicit expression
in [81,87,88,96–99] and (55)], and (ii) ϕβ are sufficiently
narrow with respect to the energy quantum number, i.e., they
are composed of the mode functions ψ̃α (k0α; x) with small
dispersion of energy �k0α . It is the photon state ϕβ which
is assumed to be recorded by the detector. These conditions
imply in particular that the detector is positioned in the wave
zone and the region where ϕβ ≈ ϕ0β is sufficiently large. As
follows from the uncertainty relation,

�k0α ∼ 2π/Lvac, (29)

where Lvac is a typical size of this region.
In the vicinity of the detector, under the above conditions,

we can write

Âi(t, x) ≈
∫

dy
∑

β

ϕβi(x)ϕ∗
β j (y)Â j (t, y)

=
∑
α,β

[
ϕβi(x) f 1/2

α âα〈ϕβ,ψα (k0α )〉e−ik0αt + H.c.
]
.

(30)

Assuming that

�k0βT � 1, (31)

we obtain

Âi(t, x) ≈
∑
α,β

[
ϕβi(x)e−ik0β t f 1/2

α âα〈ϕβ,ψα (k0α )〉 + H.c.
]
.

(32)

The parameter T is the observation period. In fact, in order to
describe the radiation correctly, we need the fulfillment of a
weaker condition in (30) and (32),

�k0βt f � 1, (33)

where t f is the radiation formation time. The fulfillment of this
last condition can always be achieved by using the detector
of twisted photons with sufficiently narrow bandwidth. We
introduce the notation

b̂β := √
2k0β

∑
α

f 1/2
α âα〈ϕβ,ψα (k0α )〉. (34)

Then, in the vicinity of the detector, the quantum field be-
comes

Âi(t, x) =
∑

β

[
ϕβi(x)

e−ik0β t√
2k0β

b̂β + H.c.

]
, (35)

which coincides with the decomposition of the free quantum
electromagnetic field in terms of twisted photons.

In the first Born approximation with respect to the external
current, the transition amplitude of the process

0 → γ (36)

reads

S(β; 0) = 〈0|b̂βÛT/2,−T/2|0〉 ≈ −ie−iT Evac
√

2k0β

∑
α

∫ T/2

−T/2
dy

× fα〈ϕβ,ψα (k0α )〉ψ∗
αi(y) ji(y)e−ik0α (T/2−y0 ),

(37)

where it is assumed that Ĥ0|0〉 = Evac|0〉. Let us introduce the
positive-frequency Green’s function

G(+)
i j (x, y) : = −i〈0|Âi(x)Â j (y)|0〉

= −i
∑

α

fαe−ik0α (x0−y0 )ψαi(k0α; x)ψ∗
α j (k0α; y).

(38)

Then, employing condition (ii), we can write

S(β; 0) = e−iT Evac
√

2k0β

∫
dx

∫ T/2

−T/2
dy ϕ∗

βi(x)G(+)
i j

× (T/2, x; y0, y) j j (y). (39)

Consequently, in the first Born approximation, the probability
to record one photon in the process (36) is written as

dP(β ) = 2k0β

∣∣∣∣
∫

dx
∫ T/2

−T/2
dy ϕ∗

βi(x)G(+)
i j

× (T/2, x; y0, y) j j (y)

∣∣∣∣
2

dβ, (40)

where dβ is the measure in the space of quantum numbers of
twisted photons in a vacuum [see formula (14) of [81]]. Since

G(+)
i j (x, y) = Gi j (x, y), x0 > y0, (41)
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where Gi j (x, y) is the Feynman propagator, the positive-
frequency Green’s function can be replaced by the Feynman
propagator in (40).

The formula (40) can be simplified, if one strengthens
condition (i) and demands that ϕβ ≈ ϕ0β everywhere except
from a bounded neighborhood of the region M. Then, as
long as � is unbounded, the contribution of the bounded
neighborhood of the region M can be neglected in the scalar
product entering (37) and ϕβ can be replaced by ϕ0β . As a
result,

dP(β )=2k0β

∣∣∣∣
∫

dx
∫ ∞

−∞
dy ϕ∗

0βi(x)G(+)
i j (0, x; y0, y) j j (y)

∣∣∣∣
2

dβ,

(42)

where we have taken the limit T → ∞. The concrete choice
of the instant of time x0 = 0 in the argument of the positive-
frequency Green’s function in (42) is irrelevant as the different
choices of x0 just result in a common phase factor which
disappears in evaluating the modulus. Performing the Fourier
transforms

G(+)
i j (k0; x, y) = −2π i

∑
α

δ(k0 − k0α ) fαψαi(k0; x)ψ∗
α j (k0; y),

ji(k0; x) =
∫ ∞

−∞
dt eik0t ji(t, x), (43)

we obtain

dP(β ) = 2k0β

∣∣∣∣
∫

dx dy
∫ ∞

0

dk0

2π
ϕ∗

0βi(x)G(+)
i j

× (k0; x, y) j j (k0; y)

∣∣∣∣
2

dβ. (44)

For k0 > 0, the formula (43) can be written as

G(+)
i j (k0; x, y) = Gi j (k0 + i0; x, y) − G∗

ji(k0 + i0; y, x),
(45)

where Gi j (k0) is the resolvent of the Maxwell operator (1),
i.e., [

k2
0ε(k0, x) − ĥ2

]
Ĝ(k0) = 1̂, k0 ∈ C. (46)

As was discussed in Sec. 28 of [36] and Sec. 75 of [100], this
resolvent is analytic for Im k0 > 0 and

Gi j (k0; x, y) = Gji(k0; y, x) = G∗
i j (−k∗

0 ; x, y). (47)

The formula (45) can be generalized to the case of a finite
temperature β−1

T . In this case (see Secs. 76 and 86 in [100]),

G(+)
i j (k0; x, y) = (1 − e−βT k0 )−1[Gi j (k0 + i0; x, y)

− G∗
ji(k0 + i0; y, x)]. (48)

The temperature-dependent factor is 1 + nBE(βT k0), where
the last term (the Bose-Einstein distribution) is responsible for
stimulated radiation. The temperature effects are relevant only
when

βT k0 � 1, 1 K ≈ 8.6 × 10−5 eV, (49)

where k0 is the energy of a radiated photon. Thus, the proba-
bility to record a twisted photon (44) reads

dP(β ) = 2k0β

∣∣∣∣
∫

dx dy
∫ ∞

−∞

dk0

2π

sgn(k0)

1 − e−βT |k0| ϕ
∗
0βi(x)

× Gi j (k0 + i0; x, y) j j (|k0|; y)

∣∣∣∣
2

dβ. (50)

Of course, the background blackbody radiation is neglected
in this formula. Such a representation allows one to use the
formula (50) in the case of a weakly absorbing medium (cf.
[101]). The Green’s function for the Maxwell equations (1)
can be found perturbatively by treating k2

0[ε(k0, x) − 1] as a
perturbation.

Since the model we consider is exactly solvable (see, e.g.,
[81,96,102,103]), we can find the average number of created
twisted photons and the probability of the inclusive process

0 → γ + X. (51)

The procedure is completely the same as that given in [81],
Sec. 3. The probabilities (40) and (44) coincide with the
average number of twisted photons and, with good accuracy,
are equal to the probability of inclusive process (51) (see the
details in [81]). If the probability to record a twisted photon
with quantum numbers β ∈ D is needed, then

wincl(β ∈ D; 0) = 1 − exp

[
−

∫
D

dP(β )

]
. (52)

For the radiation of a point charged particle, formulas (44) and
(50) look like

dP(β ) = 2k0βe2

∣∣∣∣
∫ ∞

−∞
dτ

∫
dx

∫ ∞

0

dk0

2π
ϕ∗

0βi(x)

× G(+)
i j (k0; x, x(τ ))ẋ j (τ )eik0x0(τ )

∣∣∣∣
2

dβ

= 2k0βe2

∣∣∣∣
∫ ∞

−∞
dτ

∫
dx

∫ ∞

−∞

dk0

2π

sgn(k0)

1 − e−βT |k0| ϕ
∗
0βi(x)

× Gi j (k0 + i0; x, x(τ ))ẋ j (τ )ei|k0|x0(τ )

∣∣∣∣
2

dβ, (53)

where e is the particle charge and xμ(τ ) specifies the particle
world line. Recall that we work in the system of units where
e2 = 4πα.

IV. RADIATION OF TWISTED PHOTONS IN A
HOMOGENEOUS MEDIUM

Let us consider separately the generation of twisted pho-
tons in the case when the dispersive medium is homogeneous
ε = ε(k0), ε(k0) > 0, and the detector of twisted photons is
located in the medium or the twisted photons escape the
medium, preserving its phase front structure and are recorded
by the detector out of the medium. In that case, the procedure
developed above can be considerably simplified.

We denote by ψα the orthonormal set of eigenfunctions of
the Maxwell Hamiltonian

ĥψα = sχ̃αψα, χ̃α > 0, s = ±1, (54)
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taken in the form of twisted photons (see for details [81])

ψ3(m, k3, k⊥) = 1√
RLz

jm(k⊥x+, k⊥x−)eik3x3 ,

ψ±(s, m, k3, k⊥) = ik⊥
sk0 ± k3

ψ3(m ± 1, k3, k⊥),

ψ (s, m, k3, k⊥) = 1

2
[ψ−(s, m, k3, k⊥)e+

+ ψ+(s, m, k3, k⊥)e−]

+ ψ3(m, k3, k⊥)e3, (55)

where s is the photon helicity, m is the projection of the total
angular momentum onto the axis 3,

k0 :=
√

k2
3 + k2

⊥, (56)

and R and Lz characterize the normalization volume. The
function

jm(p, q) := (p/q)m/2Jm(p1/2q1/2) (57)

is an entire function of p and q for integer m. The helicity s is
an eigenvalue of the helicity operator

Si j := Jli jkl/|k|, (58)

where the total angular momentum operator

Jli j := εlmnxmknδi j − iεli j, kn := −i∂n. (59)

The index l in Jli j marks the components of the angular
momentum operator. The basis vectors e± := e1 ± ie2, where
{e1, e2, e3} is a right-handed orthonormal triple. The set of
functions (55) is complete in the space of divergence-free
square-integrable complex vector fields. The Maxwell equa-
tions (1) entail the on-shell condition

k2
0αε(k0α ) = χ̃2

α, k0α > 0. (60)

The free quantum electromagnetic field has the form (17) with
the normalization coefficients

f −1
α = [

k2
0 − χ̃2

α/ε(k0)
]′

k0=k0α
= [

k2
0ε(k0)

]′
k0=k0α

= dχ̃2
α

dk0α

.

(61)

In this last equality, it is assumed that χ̃α is expressed though
k0α by means of the on-shell condition (60). As long as (see
[42], Sec. 84)

d

dk0

[
k2

0ε(k0)
]

>
d

dk0
k2

0 > 0 (62)

for k0 > 0, then fα > 0 for k0α > 0.
Repeating the considerations presented in the previous

sections (see also [81]), we find that the probability to record
a twisted photon produced by point charged particles is
given by

dP(s, m, k3, k⊥) = k3
⊥ fα

(2χ̃α )2

dk3dk⊥
2π2

∣∣∣∣ ∑
l

el

∫
dτl

× e−ik0αx0
l (τl )+ik3xl3(τl )

×
{

1

2
[ẋl+(τl )a−(s, m, k3, k⊥; xl (τl ))

+ ẋl−(τl )a+(s, m, k3, k⊥; xl (τl ))]

+ ẋl3(τl )a3(m, k⊥; xl (τl ))
}∣∣∣∣

2

, (63)

where the notation borrowed from [81] has been used, l
numbers the particles with charges el , and

χ̃α =
√

k2
3 + k2

⊥. (64)

In the formula (63), it is convenient to pass from the variable
k3 to k0, k0 > 0. Then

fαdk3 = dk0/2k3, k3 =
√

k2
0ε(k0) − k2

⊥, (65)

and

dP(s, m, k0, k⊥) = n3
⊥

n3

dk0dk⊥
16π2

∣∣∣∣∑
l

el

∫
dτl e

−ik0x0
l (τl )+ik3xl3(τl )

×
{

1

2
[ẋl+(τl )a−(s, m, k3, k⊥; xl (τl ))

+ ẋl−(τl )a+(s, m, k3, k⊥; xl (τl ))]

+ ẋl3(τl )a3(m, k⊥; xl (τl ))
}∣∣∣∣

2

. (66)

In this section, it is convenient to use the notation

n3 := k3

k0ε1/2(k0)
=

(
1 − k2

⊥
k2

0ε(k0)

)1/2

, n⊥ := k⊥
k0ε1/2(k0)

.

(67)

As can be seen, the effect of a medium is reduced in this case
to the replacement k0 → k0ε

1/2(k0) in the expression for the
spatial part of the mode functions defining the probability of
twisted photon radiation by a classical current in a vacuum
[81].

Vavilov-Cherenkov radiation

As an immediate application of the general formula (66),
we consider the generation of twisted photons by means of the
VC radiation by a charged particle moving strictly along the
detector axis. In that case,

x± = 0, x3 = β3x0, (68)

where β3 = const > 0 is the particle velocity in the laboratory
frame. The expression under the modulus sign in (66) is
equal to

2πeβ3δ(k0 − k3(k0, k⊥)β3)δm0. (69)

Squaring this expression, we obtain the probability of radia-
tion of a twisted photon per unit time

dP(s, m, k0, k⊥)/T

= 2πe2δ(k0 − k3(k0, k⊥)β3)δm0β
2
3

n3
⊥

n3

dk0dk⊥
16π2

. (70)

We see that the VC radiation consists of the twisted photons
with m = 0 [15,16]. This property is a consequence of the
general statement [82] that the current density ji(t, x) invari-
ant with respect to rotations around the detector axis for any t
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produces the twisted photons only with m = 0. The δ function
entering (70) defines the Cherenkov cone

k⊥ = k0

√
ε(k0) − β−2

3 , n⊥ =
√

1 − ε−1(k0)β−2
3 ,

n3 = ε−1/2(k0)β−1
3 . (71)

Recall that the speed of light in a medium is ε−1/2(k0).
Integrating (70) over k⊥, we have

dP(s, m, k0)/T

= α

2
δm0β3

(
1−ε−1(k0)β−2

3

)
θ
(
1−ε−1(k0)β−2

3

)
dk0. (72)

This expression does not depend on s.
Using (72) and the general formulas obtained in [53,54], it

is not difficult to find the probability per unit time of twisted
photon radiation in the case when the charged particle moves
with constant velocity along the line parallel to the detector
axis,

dP(s, m, k0)/T = α

2
J2

m

(
k⊥(k0)|x+|)β3(1 − ε−1(k0)β−2

3

)

× θ
(
1 − ε−1(k0)β−2

3

)
dk0, (73)

where |x+| is the distance from the detector axis to the particle
trajectory. Note that the dependence of the expression (73) on
m is the same as for the edge radiation for a charged particle
moving along the detector axis [82]. As for the radiation
by a bunch of N identical particles moving along parallel
trajectories, we obtain

dPρ (s, m, k0)/T

= α

2
[N fm(k⊥(k0)σ⊥) + N (N −1)|ϕm(k0/β3, k⊥(k0)σ⊥)|2]

× β3
(
1 − ε−1(k0)β−2

3

)
θ
(
1 − ε−1(k0)β−2

3

)
dk0, (74)

where σ⊥ is the transverse size of the particle bunch, fm(x) is
the incoherent interference factor, and ϕm is the corresponding
coherent interference factor (see the notation and explicit
expressions in [53,54]).

V. EXAMPLES

A. Dielectric plate

Let us consider the radiation of twisted photons pro-
duced by a charged particle passing through a homogeneous
isotropic dielectric plate with the width L. We suppose that
the plate is positioned at z ∈ [−L, 0], and ε(k0) > 0 does
not depend on the choice of a point in the plate. Out of the
plate, ε(k0) = 1. The detector of twisted photons is located
at z > 0. The charged particle moves along the detector axis
with constant velocity (68). The general procedure expounded
in Secs. II and III cannot be directly applied to this case
as the medium occupies an infinite volume. Nevertheless,
this procedure is readily generalized to such a configuration.
Having suitably defined the modes of twisted photons, we

will find the expression for the probability of excitation of
these modes by constructing the complete set of solutions
of the Maxwell equations (5) with the boundary conditions
(11). Note that the transition radiation of plane-wave photons
produced by twisted electrons was investigated in [104,105].
In this section we consider the transition radiation of twisted
photons generated by usual plane-wave charged particles or
by helical beams of them.

The wave functions of twisted photons in a vacuum have
the form (55). The wave functions of twisted photons with
energy k0 in a homogeneous isotropic medium z ∈ [−L, 0] are
written as

ψ ′
3(m′, k′

3, k′
⊥) = ψ3(m′, k′

3, k′
⊥),

ψ ′
±(s′, m′, k′

3, k′
⊥) = ik′

⊥
s′ε1/2(k0)k0 ± k′

3

ψ ′
3(m′ ± 1, k′

3, k′
⊥),

(75)

where

ε1/2(k0)k0 =
√

k′2
3 + k′2

⊥, (76)

and we have used the notation in (55). Note that

ĥψ ′(s′, m′, k′
3, k′

⊥) = s′ε1/2(k0)k0ψ
′(s′, m′, k′

3, k′
⊥). (77)

It follows from the first boundary condition in (11) at z = 0
that

k⊥ = k′
⊥, m = m′. (78)

For given k0 and k3, the momentum of photon in a medium,
k′

3, is found from Eq. (76) and can take two values differing
by the sign. For z > 0, the mode function of a twisted photon
reads

aψ (s, m, k3, k⊥). (79)

For z ∈ [−L, 0], using the boundary conditions (11), we ob-
tain the wave function

a[b+ψ ′(1, m, k′
3, k⊥) + c+ψ ′(1, m,−k′

3, k⊥)

+ b−ψ ′(−1, m, k′
3, k⊥) + c−ψ ′(−1, m,−k′

3, k⊥)], (80)

where the coefficients of the linear combination are

b± = ε1/2 ± s

4εk′
3

(±sk′
3 + ε1/2k3),

c± = ε1/2 ± s

4εk′
3

(±sk′
3 − ε1/2k3). (81)

The constant a is found from the normalization condition for
the mode functions.

For z < −L, the mode function is the linear combination

a[a+ψ (1, m, k3, k⊥) + d+ψ (1, m,−k3, k⊥)

+ a−ψ (−1, m, k3, k⊥) + d−ψ (−1, m,−k3, k⊥)]. (82)

Then the boundary conditions at z = −L lead to

a± = 2(1 ± s)εk3k′
3 cos(k′

3L) − i
[
ε2k2

3 + k′2
3 ± sε

(
k2

3 + k′2
3

)]
sin(k′

3L)

4εk3k′
3

eik3L, d± =−i
ε2k2

3 − k′2
3 ± sε

(
k2

3 − k′2
3

)
4εk3k′

3

sin(k′
3L)e−ik3L,

(83)
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where s is the helicity of the mode function (79). The coeffi-
cients (83) obey the unitarity relation

1 + |d+|2 + |d−|2 = |a+|2 + |a−|2 (84)

for real k3. The dielectric plate is ideally transparent for the
modes with real k3 and k′

3L = πn, n ∈ Z.
Let �(s, m, k⊥, k3) be the mode function taking the values

(79), (80), and (82) on the corresponding intervals of the
variable z without the common factor a and with the same
values of the quantum numbers s, m, k⊥, and k0. The various
linear combinations of the modes �(s, m, k⊥, k3) with the
same energy give the complete set of solutions to the Maxwell
equations (5) with the boundary conditions (11). There are
bound states among these mode functions. They are expo-
nentially damped out of the dielectric plate and correspond to
the case of complete internal reflection of the electromagnetic
wave in the dielectric. This occurs when

k′2
3 = ε(k0)k2

0 − k2
⊥ � 0, k2

3 = k2
0 − k2

⊥ < 0 (85)

and is only possible for ε > 1. Setting k3 = i|k3|, we find that
the linear combination

α+�(1, m, k⊥, k3) + α−�(−1, m, k⊥, k3) (86)

is exponentially damped out of the dielectric plate if one of
the following two conditions is satisfied:

cot(k′
3L) = 1

2

(
k′

3

|k3| − |k3|
k′

3

)
,

cot(k′
3L) = 1

2

(
k′

3

ε|k3| − ε|k3|
k′

3

)
. (87)

These equations define the multivalued function k⊥ =
k⊥(k0, L). Such states are irrelevant for further investigation
of the radiation of twisted photons. They are exponentially
suppressed in the domain where the detector is positioned and
give a negligible contribution to (42). Note that the bound
states (86) are the eigenfunctions of the operator of the total
angular momentum.

It is useful to numerate the mode functions of twisted
photons recorded by the detector (k3 > 0) by the quantum
numbers α := (s, m, k3, k⊥) and set

k′
3 =

√
ε(k0)k2

0 − k2
⊥, k0 =

√
k2
⊥ + k2

3 . (88)

Then

f −1
α = 2k0α = 2

√
k2

3 + k2
⊥ > 0. (89)

Since, in the region z > 0, where the detector is positioned,
the wave functions �(s, m, k⊥, k3) coincide with the wave
functions of twisted photons in a vacuum, we will call these
wave functions mode functions of twisted photons. For Lz →
∞ and R → ∞, the normalization condition for the mode
function a�(s, m, k⊥, k3) is written as

|a|2
2

(1 + |a+|2 + |a−|2 + |d+|2 + |d−|2)

= |a|2(|a+|2 + |a−|2) = 1. (90)

The factor 1
2 in this expression is due to the fact that the

dielectric plate divides all the space into two parts. The
wave function of a photon in the plate gives a negligible
contribution to the normalization condition when Lz → ∞
and R → ∞. Substituting the explicit expressions (83), we
deduce

|a|−2 = |a+|2 + |a−|2

=
∣∣∣∣1 + 1

8

[
(ε2 + 1)

(
k2

3

k′2
3

+ k′2
3

ε2k2
3

)
− 4

]
sin2(k′

3L)

∣∣∣∣.
(91)

As a result, in accordance with the general formulas obtained
in the previous sections, the probability to record a twisted
photon produced by the particles with charges el looks like

dP(s, m, k⊥, k3) = |a|2
∣∣∣∣∑

l

el

∫ ∞

−∞
dτ e−ik0x0

l (τl )

{
ẋ3l (τl )�3(s, m, k⊥, k3; xl (τl ))

+ 1

2
[ẋ+l (τl )�−(s, m, k⊥, k3; xl (τl )) + ẋ−l (τl )�+(s, m, k⊥, k3; xl (τl ))]

}∣∣∣∣
2( k⊥

2k0

)3 dk3dk⊥
2π2

, (92)

where xμ

l (τ ) are the particle world lines.
Considering the particles with the trajectories (68), the expression under the modulus sign in (92) at m = 0 is given by

A : = i|β3|
k0

⎡
⎣

[
cos(k′

3L) − i
2

(
εk3
k′

3
+ k′

3
εk3

)
sin(k′

3L)
]
eik0L/β3 − 1

1 − n3β3
+

− i
2

(
εk3
k′

3
− k′

3
εk3

)
sin(k′

3L)eik0L/β3

1 + n3β3

+
1 + εk3

k′
3

2ε(1 − n′
3β3)

(1 − eik0L(1−n′
3β3 )/β3 ) +

1 − εk3
k′

3

2ε(1 + n′
3β3)

(1 − eik0L(1+n′
3β3 )/β3 )

]
, (93)

where n′
3 := k′

3/k0. The probability to record a twisted photon produced by the particle with charge e takes the form

dP(s, m, k⊥, k3) = e2|a|2|A|2δ0,m

(
k⊥
2k0

)3 dk3dk⊥
2π2

. (94)
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(a) (b)

FIG. 1. The VC radiation of twisted photons produced by beams of charged particles in the LiF plate of thickness L = 100 μm. The
number of particles in the beam is N = 105 and the Lorentz factor of particles is γ = 235. The beam is supposed to have a Gaussian profile
(see the Appendix) with longitudinal dimension σ3 = 150 μm (duration 0.5 ps) and the transverse size σ⊥ = 1.25 μm. The other parameters
of the beam are the same as in Fig. 1 in [54]. The observation photon energy k0 = 0.14 eV, which corresponds to a wavelength of 9 μm. The
photon energy and momentum are measured at electron rest energies of 0.511 MeV. It is assumed that the particles move along the detector
axis towards the detector. The peak at n⊥ := k⊥/k0 = 0.598 corresponds to the VC radiation and is found from the standard expression
n⊥ ≡ sin θVC = √

ε′(k0) − β−2, where ε′(k0) is the real part of the permittivity. The experimental data for the permittivity ε(k0 ) of LiF are
taken from [106]. The projection of the total angular momentum per photon is denoted by �. (a) The VC radiation produced by the helically
microbunched beam of particles at the second coherent harmonic k0 = 2πχnβ3/δ, where n = 2 and δ is the helix pitch [54]. The fulfillment
of the strong addition rule is evident since the one-particle radiation is concentrated at m = 0. (b) The VC radiation produced by the uniform
Gaussian beam of particles. The coherent contribution to radiation is negligible. As long as k⊥σ⊥ < 1, the radiation is concentrated near m = 0
as in the one-particle case [53,54]. The peak at small n⊥ ∼ 1/γ is the transition radiation.

This probability is concentrated at m = 0 and does not depend
on the photon helicity. The first two terms in (93) describe
transition radiation, and the terms on the second line in (93)
correspond to VC radiation [45,51]. For

k0L|1 ∓ n′
3β3|/|β3| � π/5, (95)

the latter contributions possess a sharp maximum of the order

e2L2|a|2
∣∣1 ± εk3

k′
3

∣∣2

4|ε|2 δ0,m

(
k⊥
2k0

)3 dk3dk⊥
2π2

, (96)

where the sign ± agrees with the choice of the sign in (95).
The contribution of transition radiation to (94) reaches a
maximum at

n⊥γ ≈
√

3, (97)

provided k0L/γ 2 � 1. Hereinafter n⊥ = k⊥/k0. Notice that
this notation does not agree with formula (63). For β3 > 0,
the formula (94) describes the radiation of a charged particle
moving towards the detector, while for β3 < 0 the particle
moves from the detector.

The fact that probability (94) is concentrated at m = 0 is
a consequence of the general rule [82]. This property holds
for any current density symmetric under the rotations around
the detector axis. If instead of one charged particle the radi-
ation of N identical charged particles moving along parallel
trajectories is considered, then, as was shown in [53,54], the
probability to record a twisted photon becomes

dPρ (s, m, k⊥, k3)= [N fm + N (N −1)|ϕm|2]dP1(s, 0, k⊥, k3),
(98)

where dP1(s, 0, k⊥, k3) is the probability of radiation of a
twisted photon by one charged particle, i.e., in our case (94).

Of course, it is assumed in (98) that the particle beam falls
normally onto the dielectric plate. The functions fm and ϕm are
the incoherent and coherent interference factors, respectively.
The explicit expressions for fm and ϕm are given in [53,54]. In
particular, the probability distribution over m for the coherent
radiation of twisted photons by a helically microbunched
beam of charged particles moving along parallel trajectories
is shifted with respect to the one-particle probability distri-
bution by the signed number n of coherent harmonic (the
strong addition rule). This allows one to generate the twisted
photons with large m by means of coherent transition and VC
radiations (see Figs. 1–4). In particular, the projection of the
total angular momentum per photon �ρ of the radiation at the
nth coherent harmonic is given by [54]

�ρ = �1 + n
(N − 1)|ϕn|2

1 + (N − 1)|ϕn|2 , (99)

where �1 is the projection of the total angular momentum per
photon for the radiation produced by one charged particle. In
our case, �1 = 0. Notice that, in the paraxial regime n⊥ � 1,
even the twisted photons with m = 0 and definite helicity s
possess a nontrivial phase front corresponding to the orbital
angular momentum l = m − s = −s [16]. The probability to
record a twisted photon radiated by one particle moving along
a straight line parallel to the detector axis at a distance |x+| is
obtained from (98) by the substitution

fm = J2
m(k⊥|x+|), N = 1. (100)

The radiation of twisted photons by the helically mi-
crobunched particle beam traversing the dielectric plate at a
large angle to its normal is described in Fig. 5.
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(a) (b)

FIG. 2. Transition radiation from charged particles traversing the LiF dielectric plate. The particles move along the detector axis towards
the detector. The parameters of the plate, the profile of the beam, and the Lorentz factor of particles are the same as in Fig. 1. (a) Transition
radiation of the helically microbunched beam of particles. The fulfillment of the strong addition rule on the second coherent harmonic of
radiation is clearly seen. (b) Transition radiation of the uniform Gaussian beam of particles. The contribution of coherent radiation is strongly
suppressed. The small hump at n⊥ ≈ 0.6 is the VC radiation.

B. Thick dielectric plate

Now we consider the case when the thickness of the
dielectric plate is so large that one may suppose that
the half space z < 0 is filled by the dielectric, i.e., L →
∞. The mode functions �(s, m, k⊥, k3) are given by for-
mulas (79) and (80) without the common factor a. The
states exponentially damped in the region z > 0 correspond to
�(s, m, k⊥, k3) with the quantum numbers k0 and k⊥ satisfy-
ing (85). These states are not recorded by the detector located
sufficiently far from the medium in the domain z > 0.

We will be interested in the states with k3 > 0 undamped
in the region z > 0. It is convenient to number them by
α := (s, m, k3, k⊥). Then the normalization coefficient takes
the form (89). For R → ∞ and Lz → ∞, the normalization
of the wave functions leads to the relation

|a|2
2

[1 + ε(|b+|2 + |b−|2 + |c+|2 + |c−|2)] = 1, (101)

where the factor 1
2 comes from the fact that the whole space

is split into two parts by the interface � and ε in front of the
parenthesis results from the integration measure in the scalar
product (8). Substituting the explicit expressions (81), we find
the normalization factor

|a|−2 = 1

2

∣∣∣∣1 + (ε + 1)
εk2

3 + k′2
3

4εk′2
3

∣∣∣∣. (102)

Inasmuch as the mode functions �(s, m, k⊥, k3) coincide
with the vacuum twisted photons for z > 0, we will call
them twisted photons. The probability of radiation of twisted
photons by charged particles is described by the formula
(92).

As for one charged particle moving along the trajectory
(68), the probability to record a twisted photon produced by it

(a) (b)

FIG. 3. Same as in Figs. 1 and 2, but the charged particles move from the detector, i.e., θ = π . (a) The VC radiation of a helically
microbunched beam of particles. In accordance with the strong addition rule, since the beam of particles moves from the detector, the
distribution over m is shifted to the opposite direction in comparison with Fig. 1. (b) Transition radiation of a helically microbunched beam of
particles.
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(a) (b)

FIG. 4. Suppression of the coherent contribution to VC radiation in increasing the transverse size of the helically microbunched particle
beam (cf. Fig. 1). The numbers of particles in the beams are such that the densities of particles are equal. The other parameters are the same as
in Fig. 1. The large peaks at small n⊥ correspond to transition radiation. Plots against k0 and n⊥ are given for (a) m = 2 and (b) m = 0.

becomes

dP(s, m, k⊥, k3) = e2|a|2 β2
3

k2
0

∣∣∣∣∣
1
2ε

(
1 + εk3

k′
3

)
1 − n′

3β3
+

1
2ε

(
1 − εk3

k′
3

)
1 + n′

3β3

− 1

1 − n3β3

∣∣∣∣
2

δ0,m

(
k⊥
2k0

)3 dk3dk⊥
2π2

,

(103)

where e is the particle charge and n3 := k3/k0. The last
notation disagrees with formula (63). The singularity of this
expression when the Cherenkov condition is fulfilled is re-
solved by taking into account the medium absorption, i.e., one
has to suppose that ε(k0) ∈ C and k′

3 is found from (88). The
last term under the modulus sign describes the contribution of
transition radiation. It reaches a maximum when the condition
(97) holds. Due to the symmetry of the problem, the radiation
probability is concentrated at m = 0. Moreover, it does not
depend on the photon helicity.

The probability to radiate a twisted photon by a bunch
of particles moving along parallel trajectories is given by
(98). The radiation of twisted photons produced by helically
microbunched beams of particles obeys the strong addition
rule and the sum rule (99) is satisfied. As for radiation created
by one particle moving along a straight line parallel to the
detector axis, one just needs to substitute (100) in (98).

It is not difficult to find the probability to record a twisted
photon produced by a charged particle moving along the
trajectory

x± = β±x0, x3 = β3x0, (104)

where β± and β3 are the constant projections of the particle
velocity in the laboratory frame. Let us introduce the notation

κ (n3, β3) :=
√

(1 − n3β3)2 − n2
⊥β2

⊥,

q(n3, β3) := n⊥β⊥
1 − n3β3 + κ (n3, β3)

= 1 − n3β3 − κ (n3, β3)

n⊥β⊥
,

(105)

(a)

(b)

FIG. 5. Radiation of twisted photons by charged particles traversing the LiF dielectric plate at the angle θ = 1. The angle is counted from
the normal to the plate. The other parameters are the same as in Fig. 1. (a) Radiation of twisted photons produced by one charged particle.
The plots against k0 and n⊥ are given at m = 11. (b) Radiation of twisted photons produced by a helically microbunched particle beam at the
second coherent harmonic (A23). The plots against k0 and n⊥ are given at m = 11. Of course, the strong addition rule does not hold, but the
harmonic (A23) is clearly seen.
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and δ := arg β+. Then the expression under the modulus sign
in (92) reads

A = I (β3) + I ′(n′
3) + I ′(−n′

3), (106)

where I (β3) is the amplitude of the edge radiation [82]

I (β3) := sgn(β3)
i−1−m

k⊥n⊥

(
β3 − n3

κ (n3, β3)
− s sgn(m)

)

× eimδq|m|(n3, β3) for |m| > 0,

I (β3) := sgn(β3)
i−1

k⊥n⊥

(
β3 − n3

κ (n3, β3)
+ n3

)
for |m| = 0,

(107)

while the other two terms give the amplitude of the transition
radiation

I ′(n′
3) := − sgn(β3)

i−1−m

2k⊥n⊥

[
εβ3 − n′

3

κ (n′
3, β3)

(
n3

n′
3

+ 1

ε

)

− s sgn(m)

(
n3

n′
3

+1

)]
eimδq|m|(n′

3, β3) for |m| > 0,

I ′(n′
3) := − sgn(β3)

i−1

2k⊥n⊥

(
n3

n′
3

+ 1

ε

)[
εβ3 − n′

3

κ (n′
3, β3)

+ n′
3

]

for |m| = 0. (108)

The probability of twisted photon radiation is written as

dP(s, m, k⊥, k3) = e2|a|2|A|2
(

k⊥
2k0

)3 dk3dk⊥
2π2

, (109)

with |a|2 presented in (102).
It was shown in [82] that the probability of radiation of

twisted photons for an arbitrary QED process in a vacuum
possesses the reflection symmetry,

dP(s, m, k⊥, k3) = dP(−s,−m, k⊥, k3), (110)

in the infrared regime. It is clear from (106)–(109) that, in the
case we consider, this symmetry also holds. Moreover, this
symmetry takes place for the processes involving an arbitrary
number of charged particles and evolving near the boundary
of the thick dielectric plate. Namely, the probability to record
a twisted photon produced by an arbitrary number of charged
particles moving along the trajectories (104) with different
velocities β possesses the reflection symmetry (110) provided
the medium is transparent, i.e., ε > 1, and

(1 − n′
3|β3|)2 � n2

⊥β2
⊥, n′

3 =
√

ε − n2
⊥, (111)

for all the particles participating in the process. This property
also holds when the particles transmute one into another,
are created, or cease to exist at the origin. The proof of
the symmetry property (110) is completely analogous to that
given in [82].

C. Conducting plate

In order to describe the radiation of twisted photons by
charged particles moving near an ideally conducting plane
z = 0, it is necessary to construct the corresponding mode

functions in the domain z > 0 satisfying the boundary con-
dition (13). The linear combination

�(s, m, k⊥, k3) = ψ (s, m, k⊥, k3) + b+ψ (1, m, k⊥,−k3)

+ b−ψ (−1, m, k⊥,−k3), k3 > 0,

(112)

satisfies (13) when

b± = 1 ∓ s

2
. (113)

The normalization of the wave function a�(s, m, k⊥, k3) re-
sults in

|a|2
2

(1 + |b+|2 + |b−|2) = |a|2 = 1. (114)

We will call these mode functions twisted photons since the
wave traveling to the detector coincides with the vacuum
twisted photon.

The probability to record a twisted photon produced by a
charged particle moving along the trajectory (68) is given by
(92). The expression under the modulus sign in (92) becomes

A : = − i|β3|
k0

[
1

1 − n3β3
+ 1

1 + n3β3

]
δ0,m

= − i|β3|
k0

2

1 − (n3β3)2
δ0,m, (115)

where n3 := k3/k0. This expression has a clear physical inter-
pretation (see, e.g., [40,45]): The two terms in (115) corre-
spond to the contributions of the edge radiation produced by
the charge and its image with the opposite charge in the ideal
conductor (the mirror). The probability to record the twisted
photon is

dP(s, m, k⊥, k3) = 4e2β2
3δ0,m

k2
0[1 − (n3β3)2]2

(
k⊥
2k0

)3 dk3dk⊥
2π2

.

(116)

It is concentrated at m = 0 and does not depend on the photon
helicity. Just as in the case of a dielectric, the probability of
radiation of twisted photons by a bunch of charged particles
moving along parallel trajectories normal to the surface of the
ideal conductor has the form (98). The use of helically mi-
crobunched beams of particles allows one to shift the coherent
radiation probability distribution over m by the signed number
of coherent harmonics [54,55] (see Fig. 6). The sum rule (99)
with �1 = 0 is fulfilled.

If the charged particle moves at an angle to the detector
axis along the trajectory (104), then the expression under the
modulus sign in (92) is reduced to

A = I (β3) − I (−β3)

= sgn(β3)
i−1−meimδ

k⊥n⊥

[(
β3 − n3

κ (n3, β3)
− s sgn(m)

)

× q|m|(n3, β3) − (β3 ↔ −β3)

]
. (117)

The first term comes from the edge radiation of the charge
and the second one is from its image in the mirror. Then the
probability to record a twisted photon is given by (109) with
the normalization factor |a|2 = 1. The reflection symmetry
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(a) (b)

FIG. 6. Transition radiation produced by charged particles striking a conducting plate. (a) Transition radiation of a helically microbunched
beam of particles falling normally onto the conducting plate. The parameters of the particle beam are the same as in Fig. 2. The strong addition
rule is evidently satisfied. The radiation probability is independent of the photon helicity s. In the paraxial regime n⊥ � 1, which obviously
holds in our case, the orbital angular momentum can be introduced as l = m − s. Thus the radiation summed over the photon helicities is an
equiprobable mixture of twisted photons with l = {1, 3}. The twisted photons with a definite value of the orbital angular momentum l can be
extracted from this radiation with the help of a circular polarizer selecting s = 1 or s = −1. (b) Transition radiation of three charged particles
falling onto the conducting plate at the angle θ = 1/10 with the Lorentz factor γ = 235. The trajectories of these particles are obtained from
one another by rotation around the detector axis by an angle of 2π/3. The fulfillment of the selection rules discussed in [82] is shown. The
maximum of the projection of the total angular momentum per photon is reached at n⊥ ≈ K (1 + 1/

√
2K )/γ ≈ 0.103, where K := γβ sin θ .

(110) holds for the radiation created by an arbitrary number
of charged particles moving along the trajectories (104) with
different velocities β.

It was pointed out in [82] that the edge radiation can be
used as a superradiant source of soft twisted photons. As we
see, the use of a conducting mirror allows one to simplify the
configuration of particle beams generating twisted photons in
the spectral range where the conductor can be regarded as
ideal. For example, if one focuses the three beams of charged
particles at one point on the mirror such that the angles of
incidence are equal and the angles between the beams are
the same, then the probability distribution over m of recorded
twisted photons is asymmetric for a given s (see Fig. 6),
obeys the selection rule m = 3k, k ∈ Z, and the reflection
symmetry (110). The absolute value of projection of the total
angular momentum per photon is of order K/2

√
2 [82], where

K := γ β⊥ and β⊥ = |β+|.
As for an ideal conductor with the surface of a general

form, the solution of the problem (1) and (13) can be reduced
to the solution of the Maxwell equations (1) with a singular
source. The nontrivial boundary conditions on the closed
hypersurface � are standardly replaced by the singular source

ji[ψ ; x) =
∫

�

dσ
√

h{n[i pr j]k ∂ jδ(x − x(σ ))ψk

+ δ(x − x(σ ))δik∂[kψ j]n
j}, (118)

where xi(σ ), σ = {σ a}, a = 1, 2, is the embedding map of
the closed hypersurface � into R3, ni is the unit normal to
� directed into the conductor,

pri j := hab∂axi∂bx j, (119)

with hab the inverse to the induced metric hab = ∂axi∂bx jδi j ,
and h = det hab. Taking into account the boundary conditions

(13), we obtain

ji[ψ ; x) =
∫

�

dσ
√

hn jδ(x − x(σ ))∂[iψ j]. (120)

From the physical point of view, this current describes the
currents induced by the external electromagnetic field on the
ideal conductor. The corresponding vacuum Maxwell equa-
tions become(

k2
0 − ĥ2

)
ψi(k0, x) − ji[ψ ; x) = 0. (121)

The resolvent (the Green’s function) for this equation can
be found perturbatively regarding the contribution ji[ψ] as a
perturbation.

D. Helical medium

A promising pure source of twisted photons with large
projection of the total angular momentum m is the radiation
produced by charged particles in helical media. Let the per-
mittivity ε(k0, x) be invariant under the transformations

z → z + ϕr/q0 = z + λ0

r
, ϕ → ϕ + ϕr, (122)

where q0 = 2π/λ0, ϕ is the azimuth angle of the cylindri-
cal system of coordinates with the reference axis z, and
ϕr = 2π/r, r = 1,∞, is a fixed rotation angle. We will
call the medium possessing such a symmetry a helical
medium. We denote by Vr the unitary operator acting in the
space of solutions to the Maxwell equations and realizing the
symmetry transformation (122). It follows from (122) that
ε(k0, x) is a periodic function of z with the period |λ0|. Of
course, such a situation is never realized. However, if the
number of periods N � 10, then, in describing the radiation
generated by charged particles, the edge effects can be ne-
glected (discussed below).
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In accordance with the standard theorems (see, e.g., [107]),
the complete set of solutions of the Maxwell equations (1)
or (5) can be found in the form of the eigenfunctions of the
symmetry operator

V̂rψ = eiξψ. (123)

We will assume that the complex vector field ψ is periodic
with respect to the variable z with the period N |λ0| for suffi-
ciently large N . Developing the mode functions as a Fourier
series

ψ3(ρ, ϕ, z) =
∑
k,n

akn(ρ)eikϕein(q0/N )z, (124)

where ρ is the distance from the z axis, and substituting into
(123), we obtain

ξ = 2π

Nr
κ, κ ∈ Z, (125)

and

ψ3(ρ, ϕ, z) =
∑
k,n

ãk,N (rn−k)+κ (ρ)eik(ϕ−q0z)ei(κ/N+rn)q0z.

(126)
Introducing

k3 = q0

N
κ (127)

and shifting k → k + m and κ → κ + mN , where m ∈ Z, we
have

ψ3(m, k3; ρ, ϕ, z) =
∑
k,n

āk+m(k3 + q0(rn − k); ρ)

× eik(ϕ−q0z)eimϕei(k3+q0rn)z. (128)

As a result,

ψ3(m, k3; ρ, ϕ, z) = f3(m, k3; ρ, z, ϕ − q0z)eik3zeimϕ, (129)

where

f3(m, k3; ρ, z, ϕ) = f3

(
m, k3; ρ, z + λ0

r
, ϕ

)

= f3(m, k3; ρ, z, ϕ + 2π ). (130)

The same procedure applied to the transverse components of
the mode functions leads to

ψ±(m, k3; ρ, ϕ, z) = f±(m, k3; ρ, z, ϕ − q0z)eik3zei(m±1)ϕ,

(131)

where the functions f± obey the periodicity conditions (130).
Further, we suppose that the permittivity ε(k0, x) tends

sufficiently fast to unity as ρ → +∞. The probability to
record a twisted photon by the detector is determined only
by the scattering states, which tend to the solutions of the free
Maxwell equations as ρ → +∞. For these states, we have

f3(m, k3; ρ, z, ϕ) → f3(m, k3; ρ),

f±(m, k3; ρ, z, ϕ) → f±(m, k3; ρ), (132)

as ρ → +∞, i.e., the dependence of functions f3,± on the last
two arguments disappears in this limit. It is this asymptotics
that conditions the presence of factors

eik3zeimϕ, eik3zei(m±1)ϕ (133)

in ψ3 and ψ±, respectively.

If, additionally, the permittivity ε(k0, x) is symmetric under
the rotations

ϕ → ϕ + ϕq, (134)

where q is some natural number, then the expansion (128)
turns into

ψ3(m, k3; ρ, ϕ, z) =
∑
k,n

bqk+m(k3 + q0(rn − qk); ρ)

× eiqk(ϕ−q0z)eimϕei(k3+q0rn)z, (135)

the formula (129) is left intact, and the periodicity property
(130) becomes

f3(m, k3; ρ, z, ϕ) = f3

(
m, k3; ρ, z + λ0

r
, ϕ

)

= f3(m, k3; ρ, z, ϕ + 2π/q). (136)

The analogous formulas are valid for the transverse compo-
nents ψ±.

Now we can use the general formula (53). As long as the in-
tegral entering this formula is saturated in the region � where
the asymptotics (132) holds, the amplitude of radiation of a
twisted photon with the momentum k3 and the projection of
the total angular momentum m by a charged particle moving
along the trajectory (68) is proportional to∫ ∞

∞
dt e−ik0tψ3(m, k3; 0, ϕ, β3t ). (137)

Substituting the expansion (135) into this integral and bearing
in mind that the dependence of the mode functions on the
azimuth angle ϕ must disappear at ρ = 0, we conclude that
the integral (137) is proportional to

δ(k0 − [k3 + q0(m + rn)]β3), m = −qk. (138)

To put it differently, the radiation of twisted photons is con-
centrated at the harmonics

k0 = |q0| |β3|n̄
1 − β3n3

= 2π

|λ0|
|β3|n̄

1 − β3n3
, (139)

where n̄ = 1,∞ is the harmonic number, and the
selection rule

m = sgn(λ0β3)n̄ + rn = qk (140)

holds, where n and k are some integer numbers. The intensity
of radiation at these harmonics is determined by the form of
the permittivity ε(k0, x).

The case of the permittivity invariant with respect to the
continuous transformations

z → z + ψ/q0, ϕ → ϕ + ψ, (141)

where ψ ∈ R, is formally obtained from (122) in the limit
r → ∞. Then the selection rule (139) is left unchanged and
(140) is replaced by

m = sgn(λ0β3)n̄ = qk. (142)

As we see, the radiation at the n̄th harmonic is a pure source
of twisted photons with a definite value of the projection of
the total angular momentum m.

043836-14



PROBABILITY OF RADIATION OF TWISTED PHOTONS … PHYSICAL REVIEW A 100, 043836 (2019)
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k, m

k , m

q, m1 k, m2

k , m1 + m2(a) (b)

FIG. 7. (a) Feynman diagram for the leading contribution to
transition scattering of the permittivity wave on the charged particle.
The permittivity wave is represented by the dashed line and the
large circle denotes the interaction vertex of the permittivity with
the electromagnetic field. This vertex is the first nontrivial term of
the expansion of the photon propagator in a medium in powers of
susceptibility. (b) First-order diagram describing the conversion of a
plane-wave photon to a twisted one. For a normal incidence of the
plane-wave photon onto the medium interface, the projection of the
total angular momentum m1 = s1, where s1 is the photon helicity.
This process was employed in [9,13,72] for generation of twisted
photons.

The above derivation is completely applicable to the case
when the permittivity is not isotropic and the permittivity
tensor has the form

εi j (k0, x) = ε⊥(k0, x)δi j + [ε‖(k0, x) − ε⊥(k0, x)]nin j,

(143)

where the functions ε⊥(k0, x) and ε‖(k0, x) are invariant under
(141) and

ni = ( cos(q0z), sin(q0z), 0). (144)

The permittivity tensor (143) is inherent to cholesteric liquid
crystals (see, e.g., [108]). Therefore, the radiation produced
by a charged particle moving along a helical axis of the
cholesteric is a pure source of twisted photons obeying the
selection rules (139) and (142) with q = 1 and |λ0| being
equal to a half of the chiral pitch. Note that the cholesteric
liquid crystals were used in [7,9,72] to convert an ordinary
laser wave to a twisted one. In fact, we consider the process
depicted by the diagram in Fig. 7(a), while the conversion of
plane-wave photons is described by the diagram in Fig. 7(b).
The permittivity of the form (143) is the simplest model for
permittivity of cholesteric liquid crystals which describes their
electromagnetic properties rather well. The selection rules
(139) and (142) are valid in the photon energy domain where
(143) holds, i.e., up to the extreme ultraviolet spectral range.

Another realization of a medium possessing symmetry
(141) is represented by the conductor in the form of a helix
with q branches. The bunch of charged particles moves along
the axis of this helix. The conductors of such a form were
used in [13] to transform ordinary plane-wave photons to
twisted ones. The medium with permittivity symmetric with
respect to (122) can also be made by arranging properly the
dielectrics with different ε. One more means to construct
a helical medium with symmetry (141) is to deform the
medium in a twisted manner by using, for example, the helical
sound waves. The wave packet of twisted phonons, which is
sufficiently wide in m and obeys (123) with good accuracy,

represents a helical sound wave and leads to an appropriate
variation of permittivity. As a rule, the phonon velocity can
be ignored in comparison with the velocity of a relativistic
particle and so the formulas derived above are applicable to
this case without any modifications. Thereby the twisted pho-
tons are generated by transition scattering [40,45] of helical
waves of permittivity on charged particles (see Fig. 7). The
same situation happens in a plasma perturbed by the helical
wave of phonons or photons [62–64,109]. However, in order
to describe the radiation of twisted photons quantitatively, one
needs to take a spatial dispersion into account in this case.

The selection rules (139) and (140) coincide exactly with
the selection rules found in [82] for the scattering of particles
on helical targets. It is not surprising as (139) and (140)
can be deduced from the following considerations (a similar
derivation of selection rules for the radiation produced by
charged particles in a layered medium can be found, e.g., in
[38,44]). Let the charged particle move in a medium along
the z axis with constant velocity, the z axis coinciding with
the detector axis. We assume that the medium permittivity
is invariant under the transformations (122) and (134). The
Coulomb field of the charged particle induces the current in
the medium. In virtue of the symmetry of the problem, the
density of the total current ji, which is the sum of the current
density of the charged particle and the density of the induced
current, is symmetric with respect to the transformations

z → z + λ0

2π
ϕr, ϕ → ϕ + ϕr, x0 → x0 + λ0

2πβ3
ϕr .

(145)

The components of the current density transform as

j3 → j3, j± → j±e±iϕr . (146)

The mode functions of the vacuum twisted photons (55)
change accordingly

ψ3(m, k3, k⊥)→ψ3(m, k3, k⊥)e−i[k0(λ0/2πβ3 )−k3(λ0/2π )−m]ϕr ,

ψ±(s, m, k3, k⊥)→ψ±(s, m, k3, k⊥)

× e−i[k0 (λ0/2πβ3 )−k3(λ0/2π )−m]ϕr e±iϕr .

(147)

These relations allow us to rewrite the probability to record a
twisted photon produced by the current ji in such a way that
the fulfillment of the selection rules (139) and (140) becomes
evident.

Indeed, the probability to record a twisted photon is given
by the general formula

dP(s, m, k3, k⊥)

=
∣∣∣∣
∫

d4x e−ik0x0+ik3x3

[
1

2
a+(s, m, k3, k⊥; x) j−(x)

+ 1

2
a−(s, m, k3, k⊥; x) j+(x) + a3(m, k3, k⊥; x) j3(x)

]∣∣∣∣
2

×
(

k⊥
2k0

)3 dk3dk⊥
2π2

, (148)

where the renormalized mode functions a3 and a± have been
introduced [see (35) of [81]]. Then we consider the integration
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over N periods in (148) and neglect the edge effects. Parting
the integral over x0 as∫ N |λ0|

0
dx0 · · · =

Nr∑
n=1

∫ |λ0|n/r|β3|

|λ0|(n−1)/r|β3|
dx0 · · · =:

Nr∑
n=1

An (149)

and employing the symmetry properties (146) and (147), we
find that

An = e−i[k0(λ0/2πβ3 )−k3(λ0/2π )−m] sgn(λ0β3 )ϕr (n−1)A1, (150)

where

A1 =
∫ |λ0|/r|β3|

0
dx0

∫
dx e−ik0x0+ik3x3

[
1

2
a+(s, m, k3, k⊥; x) j−(x)

+ 1

2
a−(s, m, k3, k⊥; x) j+(x) + a3(m, k3, k⊥; x) j3(x)

]
.

(151)

As a result, the radiation probability (148) is written as

dP(s, m, k3, k⊥) =
Nr∑

n=1

|e−i(k0/q0β3−k3/q0−m) sgn(λ0β3 )ϕr (n−1)|2

× dP1(s, m, k3, k⊥), (152)

where

dP1(s, m, k3, k⊥) := |A1|2
(

k⊥
2k0

)3 dk3dk⊥
2π2

. (153)

The interference factor

I (m, k3, k⊥) =
Nr∑

n=1

|e−i(k0/q0β3−k3/q0−m) sgn(λ0β3 )ϕr (n−1)|2

= sin2(πNδ)

sin2(πδ/r)
, δ := m − k0λ0

2π

(
β−1

3 − n3
)
,

(154)

has the same form as in [82]. It possesses the sharp maxima
at δ = nr, where n ∈ Z. Taking into account that permittivity
is invariant under rotations (134), the condition δ = nr leads
to the selection rules (139) and (140). At the maxima, the
interference factor is equal to

Imax = N2r2, (155)

whence it is evident that, for sufficiently large N , the edge
effects give a negligible contribution to radiation at harmonics
(139).

The selection rules (139) and (140) can also be deduced
with the aid of the conservation laws of the momentum and
total angular momentum applied to the process of transition
scattering of the wave of permittivity on the charged particle
moving uniformly along a straight line [45]. Let us consider a
stationary permittivity tensor invariant with respect to (122).
Then the Fourier modes of the wave corresponding to such a
permittivity tensor obey the relations

k0 = 0, (m + k3/q0)ϕr = 2πn ⇒
k3 = q0(nr − m), n ∈ Z, (156)

where m is the projection of the total angular momentum
onto the twisted photon detector axis. Hence, for the diagram

depicted in Fig. 7, which describes the leading-order contri-
bution to the twisted photon radiation by a charged particle
moving along the detector axis, we have

Mγ β3 + k3 = Mγ ′β ′
3 + k′

3, Mγ = Mγ ′ + k′
0, m = m′,

(157)

where M is the charged particle mass, γ is its Lorentz factor,
and the prime marks the quantities after scattering. The last
equality in (157) expresses conservation of projection of the
total angular momentum and we suppose that the charged
particle does not change its projection of the total angular
momentum. Assuming that k′

0/Mγ � 1, we have, from (157),

k3 = k′
3 − k′

0/β3. (158)

Therefore,

k′
0 = q0β3

m − nr

1 − β3n′
3

, n′
3 := k′

3/k′
0. (159)

Defining

n̄ := sgn(λ0β3)(m − nr), (160)

we arrive at the selection rules (139) and (140) with q = 1.
The generalization to the case q ∈ N is obvious.

The above selection rules were obtained for radiation of
twisted photons by one particle or by a sufficiently narrow
uniform beam of them in a helical medium. The use of suffi-
ciently long helically microbunched beams allows one to shift
the radiation probability distribution over m in accordance
with the strong addition rule [54].

VI. CONCLUSION

Let us sum up the results. In Secs. II and III we developed
a general quantum theory of radiation of twisted photons by
charged particles propagating in an inhomogeneous dispersive
medium. The production of twisted photons in homogeneous
dispersive media was already studied in [15,16], but the in-
homogeneity of a medium was not taken into account. As we
have already discussed in the Introduction, one usually needs a
source of twisted photons in a vacuum and not in the medium.
Therefore, it is relevant to consider the production of twisted
photons in inhomogeneous media since the twisted photons
can be destroyed by the inhomogeneities of permittivity.

In Sec. III we derived the general formula for the probabil-
ity to record a twisted photon produced by a classical current
in an inhomogeneous dispersive medium. In the case of a
homogeneous medium investigated in Sec. IV, we reproduced
the known results. In Sec. V we applied the general formula
to the description of radiation of twisted photons in several
particular configurations.

In Secs. V A and V B we deduced the explicit expressions
for the probability to record a twisted photon produced by a
charged particle moving with constant velocity and crossing a
dielectric plate. The axis of the detector of twisted photons
was assumed to be normal to the surface of the dielectric
plate. As expected, we found that, in the case when a charged
particle moves along the detector axis, all the radiated twisted
photons possess a zero projection of the total angular mo-
mentum and the probability to record a twisted photon does
not depend on the photon helicity. Moreover, we proved that
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the probability to record a twisted photon produced by an
arbitrary number of charged particles moving uniformly along
straight lines intersecting at one point of the surface of a thick
transparent dielectric plate possesses the reflection symmetry
[82]. Such a radiation describes infrared asymptotics of radi-
ation of twisted photons in an arbitrary QED process near a
dielectric plate. Of course, for the asymptotics to take place,
it is necessary that the wavelength of radiated photons will be
much smaller than the typical sizes of the dielectric plate.

In Sec. V C we considered the radiation of twisted pho-
tons by a charged particle falling onto an ideally conducting
plate. In fact, the radiation in this case is the edge radiation
completely described in terms of twisted photons in [82]. As
in the case of the edge radiation, the probability to record a
twisted photon obeys the reflection symmetry.

In Sec. V D we investigated the radiation produced by
charged particles moving along the axis of a twisted photon
detector in a helical medium. A typical example of such
a medium is a cholesteric liquid crystal (see, e.g., [108]).
Using different approaches, we proved that, in this case, the
radiation of twisted photons obeys the same selection rules as
were found in [82] for the scattering of charged particles on
helical targets. We provided a simple explanation of this fact
in terms of transition scattering on a helical permittivity wave.
These specific properties of helical media can be employed for
elaboration of the active medium for coherent amplification of
stimulated radiation of twisted photons.

Employing the general formulas [53,54] for the radiation
of twisted photons by particle beams, we also described the
radiation produced by uniform Gaussian and helically mi-
crobunched beams of relativistic charged particles. In particu-
lar, we showed explicitly the fulfillment of the strong addition
rule [54–61] for the radiation of twisted photons by helical
beams of particles falling normally onto a medium surface.
Such beams can be used to generate VC and transition radia-
tions with large projections of the total angular momentum.
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APPENDIX: INTERFERENCE FACTORS FOR
GAUSSIAN PARTICLE BEAMS

The general formulas for the incoherent, fmn, and coherent,
ϕm, interference factors read [54]

fmn =
∫

db ρ(b) j∗m(k⊥δ+(b), k⊥δ−(b)) jn(k⊥δ+(b), k⊥δ−(b)),

ϕm =
∫

db ρ(b)eik0δ
0(b)−ik3δ

3(b) j∗m(k⊥δ+(b), k⊥δ−(b)). (A1)

We particularize these formulas to the case when the normal
ξ = (0, 0, 1) to the vacuum-medium interface at the points
where the beam of particles enters and exits the medium is

parallel to the axis of the twisted photon detector. The particle
beam moves initially with the velocity

β = β(sin θ, 0, cos θ ). (A2)

The one-particle probability distribution has the form (see
Sec. 3.5 of [54])

ρ(b′) = e−b′2
3 /2σ 2

3√
2πσ3

e−b′
+b′

−/2σ 2
⊥

2πσ 2
⊥

′

×
∞∑

k=0

[
αk

(
b′

+
σ⊥

)k

e2π iχkb′
3/δ+α−k

(
b′

−
σ⊥

)k

e−2π iχkb′
3/δ

]
,

(A3)

where α∗
k = α−k are given in (74) of [54], the prime to the

sum sign says that the term with k = 0 should be multiplied
by 1/2, and

b′
1 = cos θb1 − sin θb3, b′

2 = b2,

b′
3 = sin θb1 + cos θb3. (A4)

Using the general formula (12) of [54], we find

δ1 = b′
1

cos θ
, δ2 = b′

2, δ3 = 0, δ0 = tan θb′
1 − b′

3

β
.

(A5)

The probability distribution (A3) describes a helically mi-
crobunched particle beam with the helix pitch δ and the
handedness χ . The case δ → ∞ corresponds to a uniform
Gaussian beam of particles.

It is convenient to change the integration variables in (A1)
and pass from b to b′. The Jacobian of this change equals
unity. Having performed such a change of variables, we will
not write the primes at b′ to simplify the notation. Let us start
with the incoherent interference factor. First, we write

j∗m jn = im−n
∫ π

−π

dψ1dψ2

(2π )2
eimψ1−inψ2 eik⊥b2(sin ψ1−sin ψ2 )

× eik⊥b1(cos ψ1−cos ψ2 )/ cos θ . (A6)

Due to periodicity of the integrand, the change of variables

ψ1 − ψ2

2
→ ψ1,

ψ1 + ψ2

2
→ ψ2 (A7)

results in ∫ π

−π

dψ1dψ2

(2π )2
→

∫ π

−π

dψ1dψ2

(2π )2
. (A8)

Hence,

j∗m jn = im−n
∫ π

−π

dψ1dψ2

(2π )2
ei(n−m)ψ2+i(n+m)ψ1 e−ik⊥sin ψ1(b+z∗+b−z),

(A9)
where

z := sin ψ2

cos θ
− i cos ψ2. (A10)
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The integrals over b± in (A1) become Gaussian and can be
evaluated with the aid of the relations∫

db+db−
2i

bm
+e−b+b−/2+β+b−+β−b+ = 2π (2β+)me2β+β− ,∫

db+db−
2i

bm
−e−b+b−/2+β+b−+β−b+ = 2π (2β−)me2β+β− ,

(A11)

where db+db− = 2idb1db2. In addition,∫
db3√
2πσ3

e−b2
3/2σ 2

3 ±2π iχkb3/δ = e−2π2k2σ 2
3 /δ2

. (A12)

Using these formulas, we find that the term at αk is given by
the integral

im−ne−2π2k2σ 2
3 /δ2

∫ π

−π

dψ1dψ2

(2π )2
ei(n−m)ψ2+i(n+m)ψ1

× (−2ik⊥σ⊥sin ψ1z)ke−2k2
⊥σ 2

⊥sin2 ψ1|z|2 . (A13)

The term at α−k becomes

im−ne−2π2k2σ 2
3 /δ2

∫ π

−π

dψ1dψ2

(2π )2
ei(n−m)ψ2+i(n+m)ψ1

× (2ik⊥σ⊥sin ψ1z∗)ke−2k2
⊥σ 2

⊥sin2 ψ1|z|2 . (A14)

One integration in this double integral can be performed. The
integral over ψ1 is reduced to

∫ π

−π

dψ

2π
ei(n+m)ψ sink ψe−a2 sin2 ψ =

(
i

2

)k

×
{∑k

s=0
(−1)sk!
s!(k−s)! e

−a2/2Is+(n+m−k)/2
(

a2

2

)
, n+m−k

2 ∈ Z

0, n+m−k
2 �∈ Z.

(A15)

As a result, we arrive at

fmn = im−n
∫ π

−π

dψ

2π
ei(n−m)ψ

′∑∞

k=0
(k⊥σ⊥)k

× e−2π2k2σ 2
3 /δ2

[αkzk + α−kz∗k]

×
k∑

s=0

(−1)sk!

s!(k − s)!
e−k2

⊥σ 2
⊥|z|2 Is+(n+m−k)/2(k2

⊥σ 2
⊥|z|2),

(A16)

where Ik (x) is the modified Bessel function of the first kind
and ψ2 in the definition of z should be replaced by ψ . The
prime to the sum sign reminds us that the term at k = 0 should
be taken with the factor 1/2 and the terms such that n + m − k
is an odd number must be omitted.

Note that when

πσ3/δ � 1, (A17)

the terms with k �= 0 are strongly suppressed, i.e., the inco-
herent radiation is the same as for a round particle beam [53]

and

fmn ≈ im−n
∫ π

−π

dψ

2π
ei(n−m)ψ

×
{

e−k2
⊥σ 2

⊥|z|2 I(n+m)/2(k2
⊥σ 2

⊥|z|2), n+m
2 ∈ Z

0, n+m
2 �∈ Z.

(A18)

For θ � 1 or π − θ � 1, the incoherent interference factor
(A16) reduces to the corresponding factor found in [54] in the
case of a forward radiation.

Now we turn to the coherent interference factor. Upon
substitution

eik0δ
0(b)−ik3δ

3(b) j∗m(k⊥δ+(b), k⊥δ−(b))

= im
∫ π

−π

dψ

2π
e−imψeik0(tan θb1−b3 )/βe−ik⊥(b2sin ψ+b1cos ψ/cos θ )

= e−ik0b3/β

∫ π

−π

dψ

2π
e−imψeik⊥(b+ z̃∗+b− z̃)/2, (A19)

where

z̃ := tan θ

βn⊥
+ sin ψ

cos θ
− i cos ψ, (A20)

the integrals over b in (A1) become Gaussian. Then we have∫
db3√
2πσ3

e−b2
3/2σ 2

3 ±2π iχkb3/δ−ik0b3/β = e−σ 2
3 (k0/β∓2πχk/δ)2/2.

(A21)

The integrals over b± can be performed by the use of the
formulas (A11). After a little algebra, we arrive at

ϕm =
∫ π

−π

dψ

2π
e−imψe−k2

⊥σ 2
⊥|z̃|2/2

( ∞∑
k=0

′
ik⊥σ⊥

)k

× [
αk z̃ke−σ 2

3 (k0/β−2πχk/δ)2/2

+ α−k z̃∗ke−σ 2
3 (k0/β+2πχk/δ)2/2

]
, (A22)

where the prime to the sum sign says that the term with k =
0 should be taken with the factor 1/2. The integral over ψ

can be represented as the series of products of the modified
Bessel functions of the first kind, but this representation does
not facilitate the evaluation of (A22). Therefore, we do not
write it here.

Note that when the condition (A17) is satisfied, the co-
herent interference factor and the probability of coherent
radiation are concentrated near the coherent harmonics

k0 = 2πχnβ/δ, χn > 0, n ∈ Z. (A23)

The radiation probability at these harmonics is proportional to
|αn|2. However, in general, the strong addition rule [54] is not
fulfilled. Only when

�θ � 1,
|tan θ |
βn⊥

� 1, k2
⊥σ 2

⊥
|tan θ |
βn⊥

� 1, (A24)

where �θ = θ or �θ = π − θ , does the strong addition rule
hold. This case of course corresponds to the forward radiation.
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