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A generic photonic coupler with active and lossy parts, gain saturation, and asymmetric characteristics is
examined. Saturable activity is shown to be able to enhance the overall stability of the steady states, prevent
evolution to undesirable unbounded modes, and allow for bistable operation in specific regions of the parametric
space. Both stability and bistability are studied in the phase space of the system, where the basins of attraction
of each state are identified, providing an accurate description of the dependence of the electric fields on the
initial conditions. Continuous families of exceptional points are detected via suitable regulation of the coupling
and asymmetry features of the configuration. In this way, a complete description of the nonlinear dynamics
landscape is provided, which should be crucial for multiple application-driven designs incorporating such a
ubiquitous optical component.

DOI: 10.1103/PhysRevA.100.043834

I. INTRODUCTION

The nonlinear coherent optical coupler [1,2] is one of the
most fundamental elements for multiple key technological
architectures and photonic integrated circuits [3], allowing
for applications related to power-dependent directed transport
of energy [4], unidirectional propagation [5], and optical
isolation [6,7]. The possibility of engineering the gain and
loss characteristics of such devices results in a rich set of non-
Hermitian dynamical features that have no counterpart in con-
servative (Hermitian) configurations and has been analyzed
for decades (see, e.g., [8,9]). The generality of the underlying
model, consisting of coupled-mode equations, suggests its
applicability to a wide class of isomorphic non-Hermitian
dimers, describing other photonic devices such as twisted fiber
amplifiers [10] as well as quantum systems [11,12].

Most of the setups considered so far are structurally sym-
metric, with balanced loss and gain leading to parity-time
(PT) symmetric configurations; indeed, in recent years there
has been tremendous progress in the theoretical formulations
and experimental implementations of such systems [13–18].
The overall lossless nature of these layouts gives rise to
optimal responses with large applicability potential spanning
from single-mode lasing [19,20], coherent perfect absorption
[21], and optical switches with plasmonic waveguides [14–17]
to invisible acoustic sensors [18]. Furthermore, interesting
features and properties like tunable quantum phase transi-
tions [22] and whispering-gallery-mode resonances [23] were
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revealed due to PT symmetry. Most importantly, the PT-
symmetric condition, when imposed on nonlinear structures,
has led to significant results related to active control of light
[24], controlled power transport [25], and robust soliton prop-
agation [26].

However, under the symmetric presence of activity and
dissipation, the system often evolves to states with unbounded
electric field amplitudes, which is undesirable for realistic
applications. As an example, two waveguides [25] with iden-
tical wave propagation numbers and exactly opposite gain
and loss coefficients support either an asymmetric unbounded
state [27,28] or a symmetric bounded nonlinear supermode,
therefore not allowing for capabilities of directed power
transfer between the two waveguides in a stable fashion. A
remedy to such an unwanted behavior is the introduction of
gain/loss asymmetry, which, as has been recently shown,
not only enhances the stability of the system [29], but also
admits controlled directed power transport enabled by the
emergence of additional strongly asymmetric modes [30]. It
is worth mentioning that the asymmetry as a stabilizer has
been considered for other non-Hermitian photonic systems
consisting of coupled lasers [31,32] but also for more general
configurations of paired oscillators [33]. In addition, inves-
tigations of the key role of asymmetry in the formation and
propagation of self-localized beams in non-Hermitian setups
have shown that continuous families of solitary waves can be
formed under generic conditions, not necessarily restricted by
symmetry requirements [34]; as a result, they exhibit a rich
set of propagation features such as dynamical trapping and
controllable routing once the gain and loss spatial distribution
is properly engineered [35,36].

Apart from asymmetry in structure and excitation,
another important characteristic determining the functionality
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of paired optical components is saturation. This property
expresses the difficulty of photonic matter to be receptive to
fields of large magnitudes developed therein; accordingly, the
texture of the material changes to prevent unbounded power
increase within its volume. Such behavior also yields a non-
linear effect that is most commonly present in active media.
Indeed, saturation exerts significant damping influence on the
instability of evanescently coupled arrays [37], acting as a
natural stability booster. Moreover, saturable active matter,
except for being more realistic, has been utilized for the study
of optical cavity effects in nanowire lasers and waveguides
[38] and ultrafast all-optical absorption switches for photonic
crystals [39].

In this work, we combine the aforementioned character-
istics of asymmetry and saturation to study the dynamical
features of continuous waves in a generic asymmetric active
coupler with saturable gain. After analytically determining
the fixed points corresponding to the nonlinear supermodes
(NSs) of the system and characterizing their linear stability,
we scan the parametric space and identify the response of the
device. Due to the considered gain saturation, the stability
of the system gets enhanced and under certain conditions
bistability [40] emerges, which is the backbone of multiple
memory [41] and filtering [42] applications. In cases where
one or two stable NSs exist we examine the influence of
the initial conditions on the response of the coupler and, by
numerically computing the evolution of the excited fields, we
provide reliable basins of attraction [43] for the stable NSs
and the undesirable unbounded state that govern the operation
of the setup. Such information is crucial when designing
components for the dynamic reconfiguration between sup-
ported steady states [44] and high-precision measurement and
detection [45]. Finally, we search the non-Hermitian structure
of our system for spectral degeneracies known as exceptional
points (EPs) [46] that are related to substantial sensitivity
capabilities [47] as well as mode conversion utilities [48]. We
believe that the thorough and multifaceted analysis of such
a general layout, while mainly interesting for its nonlinear
dynamics content, is most important for its usefulness to a
wealth of applications that are involved.

II. COUPLED-MODE EQUATIONS
AND NONLINEAR SUPERMODES

A. System model and coupled-mode equations

We consider a pair of parallel waveguides positioned along
the z axis of our Cartesian coordinate system (x, y, z), depicted
in Fig. 1. Ej (z) with j = 1, 2 are the electric field complex
phasors in each waveguide j when dropping the transverse
spatial dependence xy and the vectorial nature of the modes.
The time dependence is of the form exp(−iωt ) and propaga-
tion along the z > 0 axis is examined. The first waveguide
( j = 1) is lossy and, in its linear operation, characterized
by a complex propagation constant (β1 + iα1), while α1 > 0
measures the magnitude of the loss. The second waveguide
( j = 2) has gain; thus, α2 < 0, and inevitably, its response is
clipped by saturation with constant ε > 0. Both waveguides
are nonlinear and obey the Kerr effect, namely, their refrac-
tive indexes are proportional to the squared field magnitude
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FIG. 1. Sketch of the examined setup. Two waveguides (one
passive and one active) are evanescently coupled (by the constant
k) and the developed waves E1(z) and E2(z) are propagating along
axis z. The complex propagation constant of the passive waveguide
is denoted (β1 + iα1) and that of the active waveguide (also saturable
with saturation constant ε) (β2 + iα2).

with (common) proportionality constant γ . The two elements
are evanescently coupled and their interaction is expressed
through a positive linear coupling parameter k > 0 (nonlinear
coupling is ignored).

Wave propagation into the aforementioned system is de-
scribed by the following coupled-mode equations [49]:

−i
dE1

dz
= (β1 + iα1)E1 + γ |E1|2E1 + k

2
E2, (1)

−i
dE2

dz
=

(
β2 + i

α2

1 + ε|E2|2
)

E2 + γ |E2|2E2 + k

2
E1. (2)

These coupled-mode equations are derived from the original
Maxwell’s laws, governing the wave propagation in a struc-
ture of evanescently coupled waveguides, under the paraxial
approximation and by utilizing a perturbative approach. In
particular, a single waveguide is considered as the unper-
turbed system and the presence of a second waveguide in
its proximity acts as a perturbation. Each waveguide has its
own set of eigenmodes that are orthogonal to each other;
however, the perturbation destroys orthogonality and induces
mode amplitude variation along the propagation distance. As
a result, the energy exchange between the eigenmodes is
described by the coupled-mode equations, through the cou-
pling coefficient k given by the scaled overlap integral of the
transverse eigenmodes of the two waveguides [50,51].

One may write the two complex fields in polar form,
Ej (z) = Aj (z) exp[ibz + iϕ j (z)], with common propagation
constant b ∈ R, amplitudes Aj > 0, and phases ϕ j ∈ R, for
j = 1, 2. If so, Eqs. (1) and (2) can be rewritten as follows by
separating real from imaginary parts:

Ȧ1 = −α1A1 − k

2
A2 sin ϕ, (3)

Ȧ2 = − α2

1 + εA2
2

A2 + k

2
A1 sin ϕ, (4)

ϕ̇ = (β2−β1)+γ
(
A2

2−A2
1

)+ k

2

(
A1

A2
− A2

A1

)
cos ϕ, (5)

where ϕ = ϕ2 − ϕ1 is the phase difference between the two
waves and an overdot denotes the derivative with respect to z.
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B. Nonlinear supermodes

The NSs of the system correspond to steady states propa-
gating with constant values of the field amplitudes and phase
difference {A1, A2, ϕ}. They can be found as fixed points of the
dynamical system defined by Eqs. (3)–(5) by solving the non-
linear algebraic system obtained after setting the derivatives
equal to 0. The NSs are completely described by four parame-
ters, namely, the amplitude of one of the waveguides (A1), the
ratio of the squared field amplitudes [R = (A2/A1)2 > 0], the
phase difference (ϕ), and the propagation constant (b).
The ratio R is found by solving the following fourth-order
polynomial equation,[

γ

ε
(αR − 1) + β1(β − 1)

R

R − 1

]2

= k2R

4
− α2

1, (6)

where α = −α2/α1 > 0 and β = β2/β1 > 0. These ratios of
the imaginary and real parts of the refractive indices describe
the asymmetry of the structure and are kept positive without
loss of generality. Importantly, for α = β = 1 and ε = 0, the
system has a balanced gain and loss and the two waveg-
uides have identical geometric properties determining their
propagation constants, thus corresponding to a PT symmetric
configuration [25]. The ratio R is restricted by the conditions(

k

2α1

)2

R > 1 (7)

and

γ β1(1 − R)

⎛
⎝β − 1 ± α1

β1

1 − R

R

√(
k

2α1

)2

R − 1

⎞
⎠ > 0, (8)

reflecting the dependence of the asymmetry of the NSs on
the parameters of the structure and defining the regions of
parameter space where NSs exist. The other parameters char-
acterizing the NSs are given in terms of R as follows:

sin ϕ = − 2α1

k
√

R
, (9)

A2
1 = α

ε
− 1

εR
, (10)

and

b = β1
βR − 1

R − 1
+ γ

εR
(αR − 1)(R + 1). (11)

In the absence of gain and loss saturation ε → 0, the above
expressions reduce to those obtained previously in [29,30]. It
is worth emphasizing that there is a remarkable freedom in
selecting the parameters of the system so that an asymmetric
NS with arbitrary squared electric field amplitude ratio R
exists, allowing for directed power transport capabilities.

The stability of the NS is determined by the eigenvalues of
the Jacobian J of the system evaluated at the specific NS,

J =

⎡
⎢⎢⎢⎣

−α1 − k
2 sin ϕ − k

2 A2 cos ϕ

k
2 sin ϕ −α2

1−εA2
2

(1+εA2
2 )2

k
2 A1 cos ϕ

(R+1)k cos ϕ

2A2
− 2γ A1 2γ A2 − (R+1)k cos ϕ

2A1R
(R−1)k sin ϕ

2
√

R

⎤
⎥⎥⎥⎦,

(12)

with a positive real part of at least one eigenvalue correspond-
ing to instability of the respective NS.

III. RESULTS AND DISCUSSION

A. Parameter-space analysis and stability maps

Prior to the presentation of results on the existence and sta-
bility of NSs, it would be meaningful to define value intervals
for the quantities defining the structure and excitation of the
investigated coupled system. In the following, we restrict our
analysis to the case of γ > 0, corresponding to a self-focusing
nonlinearity; the analysis is readily applicable to the case of
self-defocusing nonlinearity γ < 0 due to the invariance of
the system (1) and (2) under the “staggering” trasformation
γ → −γ , β1,2 → −β1,2, E1 → −E∗

1 , E2 → E∗
2 . Moreover, γ

is kept constant at γ = 1. This choice is based on the fact
that A1 and A2 are normalized amplitudes usually possessing
values of the order of unity; in this way, the nonlinear term
becomes comparable in magnitude with the linear one, rein-
forcing the interplay between them. For similar reasons, we
can use moderate values of the saturation parameter ε, in most
cases within the interval 0 < ε < 1, to avoid purging the gain
factor. The coupling coefficient k, which is common to both
waveguides due to reciprocity, is inversely proportional to the
distance between the two waveguides since it is achieved via
the evanescent waves developed outside of them; thus, we
assume k/|β1| ∈ [0.1, 10]. Finally, the ratios α, β > 0, which
indicate the asymmetry between the gain/loss distributions in
the two waveguides and between the refractive indices of the
two employed media, respectively, cover quite an extensive
range: 0.1 < α, β < 10. Here, we care more about the effect
of the asymmetry on the two coupled waveguides rather
than the quantitative propagation features into each of them
individually; therefore, we assume unitary values for the real
and imaginary parts of the wavenumber (α1 = β1 = 1) into
the passive waveguide, without serious loss of generality.

The evolution of the system is crucially determined by the
existence of stable NSs, and in fact, any realistic application
is directly related to the existence of at least one stable NS.
However, apart from converging to a stable NS, the system
may evolve either to a trivial zero mode (A1 = A2 = 0) or
to an unbounded state (A1 = 0, A2 → +∞) [25,30]. In the
following, we sweep the basic parameters and we obtain
detailed stability maps depicting the number of stable NSs in
each region of parameter space. Regions with no stable NSs
are indicated in blue, whereas regions with one or two stable
NSs are designated by green and brown color, respectively.

In Fig. 2, we show the number of stable NSs supported
by the system as a function of the gain/loss contrast α and
propagation constant asymmetry β between the waveguides
for various coupling and saturation levels. In Fig. 2(a), we ex-
amine a system with no saturation (ε = 0) and low coupling; it
is noted that stability is achieved only within a moderate zone
of α, while β < 1. Remarkably, the behavior of the coupled
waveguides ceases to be stable abruptly for α > 1, when the
overall nature of the device becomes active. This is directly
related to the symmetry of the dynamic equations (1) and
(2) when ε = 0, which becomes perfect at the PT-symmetric
point (α = β = 1). One may wonder how it is possible to have
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FIG. 2. Number of stable NSs (0, blue; 1, green; 2, brown) as
a function of the gain/loss asymmetry α and propagation constant
asymmetry β for (a) zero saturation ε = 0 and weak coupling,
k/β1 = 2; (b) ε = 1 and k/β1 = 2; (c) ε = 0.1 and k/β1 = 10; and
(d) ε = 1 and k/β1 = 10.

a stable mode for larger gain values α, whereas no such mode
exists for very small gain values. Such a trend is attributed
to the strong engagement of the active waveguide with the
passive one, due to their coupling interaction; for a very weak
coupling, the active part is left alone to continuously increase
its mode amplitude even for small gain values.

In Fig. 2(b), we investigate the same setup as in Fig. 2(a)
but with increased saturation (ε = 1). One directly observes
the beneficial influence of saturation on the stability response.
In particular, the system can be stable for more substantial
gain ranges α; indeed, increased saturation “clips” the activity
of the gain medium and prevents A2 from divergence. Note
that in Fig. 2(b) an additional and ultranarrow stability region
is opened for larger β, if properly matched with diminished
gain/loss contrasts α. Importantly, the strong asymmetry be-
tween the two waveguides studied in Fig. 2 is exploitable
in directed power transport [30] and control of modulational
instability [29].

In Fig. 2(c), we increase the coupling, which enhances
the collaboration towards stability of the two waveguides,
compared with Figs. 2(a) and 2(b). In addition, it leads to
the onset of bistability across a small parametric region close
to the PT-symmetric regime. Such a conclusion is further
validated by Fig. 2(d), where the same sizable coupling
(k/β1 = 10) is combined with significant saturation (ε = 10).
A much more extended parametric “plateau” of bistability is
formulated, accompanied by substantial restriction of unstable
regions. Upon inspection of Figs. 2(c) and 2(d), we remark
that bistability domains never share a common boundary with
domains where no stable NSs exist; they only touch each
other via isolated points. The bistability reported in Figs. 2(c)
and 2(d), accompanied by hysteresis, is indispensable for
information processing in various setups including acoustic
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FIG. 3. Number of stable NSs (0, blue; 1, green; 2, brown) as a
function of the gain/loss asymmetry α and saturation level ε for (a) a
low propagation constant ratio, β = 0.5, and moderate coupling,
k/β1 = 5; (b) β = 10 and k/β1 = 5; (c) β = 0.5 and k/β1 = 10; and
(d) β = 10 and k/β1 = 10.

[52] or thermal [53] components and for photonic memory
primarily in optical structures [41]. Similar bistability effects
also occur in antidirectional couplers with gain and loss [54].

In Fig. 3 we display stability maps, as in Fig. 2, where
we scan the whole range of the saturation coefficient ε. In
Fig. 3(a), where low values of β and k are assumed, we
observe an abrupt change in the stability behavior occurring at
a specific value of α ∼= 0.91. In Fig. 3(b), we further increase
β and note that stability is also achievable for low levels of
α, unlike in Fig. 3(a); however, the system becomes overall
more unstable [larger blue region compared to Fig. 3(a)]. In
Fig. 3(c), where the coupling is stronger, bistability emerges
for a considerable part of the stable parametric space, even
though the unstable region remains almost unchanged. In
Fig. 3(d) we examine the same pair of waveguides as in
Fig. 3(b) but with a smaller distance between them (larger
k/β1 = 10); such a design modification allows the system to
support a stable regime for very low saturation levels even
when α is below unity. The stability features of saturable
couplers enables their utilization as cells in a computing
photonic platform [55] and for atom-photon coupling with
high radiative decay [56].

In Fig. 4 we investigate how sweeping the range of k values
affects the stability of the system and thus represents the
number of stable NSs in maps whose vertical axis indicates
the normalized variable k/β1 (with β1 = 1). In Fig. 4(a),
we see that, for a small gain α, the existence of a stable
NS is restricted to a thin parametric strip of the (α, k) map.
However, if the gain/loss asymmetry α (for α1 = 1) exceeds
a threshold, the coupling favors the convergence of solutions,
and that is why large stability and bistability parametric
domains emerge. In Fig. 4(b), where the range of saturation
coefficient ε has been extended, we note the absence of stable
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FIG. 4. Number of stable NSs (0, blue; 1, green; 2, brown) as
a function of the normalized coupling k/β1 and (a) the gain/loss
asymmetry α (with β = 0.8, ε = 1) and (b) the saturation coefficient
ε (with β = 1.5, α = 2).

NSs for k → 0. Furthermore, we again verify the findings
shown in Figs. 2(c) and 2(d); indeed, the transition from two
stable NSs to none occurs only through isolated points, unlike
the transition from regions with two stable NSs to one or from
one to none, which have common borders. Finally, Fig. 4(b)
illustrates the crucial role of saturation in the bistability of the
coupler; importantly, it seems that bistability is not feasible in
the absence of saturation (ε = 0).

B. Phase-space analysis and basins of attraction

The existence of a stable NS does not guarantee the evo-
lution of the system to this state; the system may evolve
either to the stable zero state, an unbounded state, or one of
the two stable NSs in the case of bistability, depending on
the initial conditions {A1(0), A2(0), ϕ(0)}. By selecting the
parameters of the system so that at least one stable NS exists
we exclude the possibility of the system’s evolution to the zero
state, since it has been found to be stable only at parameter
regions where no stable NS exists [30]. However, evolution
to a specific stable NS (or the undesirable unbounded state)
still depends strongly on the initial conditions. Each stable
NS is associated with a basin of attraction, defined as the
set of initial conditions for trajectories that asymptotically
converge to this point. The extent of the basin of attraction
of each stable NS in the system’s phase space provides a
measure of how “attractive” this NS is. In what follows, we
show characteristic cases of basins of attraction calculated
numerically by considering a fine grid of initial conditions on
specific plane cuts of the three-dimensional phase space and
characterize them according to their asymptotic evolution.

Such basins of attraction are sketched in Fig. 5(a) for the
case of a single stable NS {Ā1, Ā2, ϕ̄} on an (A1, A2) map;
the initial value A1(0) is represented along the horizontal axis
and A2(0) along the vertical one. The third quantity, the phase
difference, is kept fixed and equal to the steady-state value,
namely, ϕ(0) = ϕ̄. Green marks the basin of attraction of
the stable NS, which is indicated by a black dot. Similarly,
blue marks the basin of attraction of the unbounded state
(instability region). It is noteworthy that apart from the main
area containing the stable NS, the basin of attraction has a
fine structure consisting of several thin strips, for larger A1(0),
demonstrating the sensitive dependence on initial conditions,
typical in complex nonlinear systems. To demonstrate the
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FIG. 5. Basins of attraction and representative solution trajec-
tories on the initial condition planes. (a) (A1(0), A2(0)) map for
ϕ(0) = ϕ̄; (b) (A1(0), ϕ(0)) map for A2(0) = Ā2; (c) (A2(0), ϕ(0))
map for A1(0) = Ā1. The basin of attraction of the stable NS and
the instability region are shown in green and blue, respectively. Plot
parameters: α = 2, β = 1.5, ε = 0.5, and k/β1 = 5.

utility of the presented information, we show a couple of
indicative trajectories of the system corresponding to initial
conditions evolving asymptotically to the stable NS and the
unbounded state. The red line corresponds to the solution
trajectory beginning from one of the thin stable zones far
away from the fixed point. We note that, after executing some
oscillations and passing through instability domains [at which
apparently ϕ(z) �= ϕ̄], the system converges to the steady-state
solution. The case of initial conditions chosen within the blue
region is illustrated by the white line in Fig. 5(a). Indeed, after
some spatially abrupt changes, A2 and A1 tend monotonically
to ∞ and 0 values, respectively.

In Fig. 5(b) we show the basins of attraction of the same
system as in Fig. 5(a), but across a different plane cut with
the phase difference ϕ(0) at the vertical axis. It should be
stressed that the two sketches [Figs. 5(a) and 5(b)] do not
contain redundant information since this time the amplitude
A2 has been preselected equal to its convergent value, namely,
A2(0) = Ā2. We display a stable trajectory (red line) which,
after following a spiral route, converges to the fixed point
(black dot). In Fig. 5(c) we draw again the basins of attraction
for the same configuration in the (A2, ϕ) plane by choosing
the initial amplitude A1(0) equal to Ā1. We observe that in
this plane cut the basin of attraction has a simply connected
topology.

In Fig. 6, we investigate a coupled layout supporting two
stable points, denoted by {Ā1, Ā2, ϕ̄} and {Â1, Â2, ϕ̂}. There-
fore, each triplet of initial conditions {A1(0), A2(0), ϕ(0)} may
give rise to a solution converging to one (green) or the other
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FIG. 6. Basins of attraction and representative solution trajecto-
ries in the initial condition planes of a system with two stable fixed
points for (a) ϕ(0) = ϕ̄, (b) A2(0) = Ā2, and (c) A1(0) = Ā1. The
basins of attraction of the two stable NSs and the instability region
are shown in green, brown, and blue, respectively. Plot parameters:
α = 1.7, β = 1.4, ε = 1, and k/β1 = 5.

(brown) stable NS or may lead to instability. As implied
above, the basins of attraction sketched on a two-dimensional
plane cut require an implicit selection for the third parameter
of our three-dimensional phase space, which has been taken
equal to the corresponding value of the fixed point [like
ϕ(0) = ϕ̄ in Fig. 5(a)]. When bistability occurs, there are
two alternatives for this selection (first or second stable NS),
leading to different forms of basins of attraction shown in each
plane cut.

In Fig. 6(a), we represent two fixed points, {Ā1, Ā2, ϕ̄}
(black dot) and {Â1, Â2, ϕ̂} (gray triangle), on the (A1, A2)
plane, implying that ϕ is respectively different; indeed, the
two stable states are not so close to each other in the three-
dimensional phase space as in Fig. 6(a), since ϕ̄ �= ϕ̂. How-
ever, the domains of stability and instability are computed
considering that the initial phase difference ϕ is kept equal
to that of the first NS: ϕ(0) = ϕ̄. A major locus of stability is
established, which is divided between the two stable NSs; it is
again accompanied by thin strips similar to those in Fig. 5(a),
but bicolored this time.

In Fig. 6(a) we also show characteristic evolutions of A1(z)
and A2(z); one can observe a case converging to the first NS
{Ā1, Ā2, ϕ̄} (red line), in a similar manner as in Fig. 5(a). In
addition, we examine two neighboring initial points on the
(A1, A2) plane exhibiting different behaviors for z → +∞
(one unstable, the other converging to the second NS). It is
striking how they diverge from each other, with the first one
(white line) following the path towards instability and the
second (yellow line) spiraling around {Â1, Â2, ϕ̂}.
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FIG. 7. Basins for attraction of the same system as in Fig, 6 but
with the initial phase difference equal to the steady-state value of the
other fixed point, ϕ(0) = ϕ̂. (a) (A1(0), A2(0)) map; (b) detail of
the (A1(0), A2(0)) map around the two fixed points. The basins of
attraction of the two stable NSs and the instability region are shown
in green, brown, and blue, respectively.

In Figs. 6(b) and 6(c), we calculate the basins of attraction
with A2(0) = Ā2 and A1(0) = Ā1, respectively, as in Figs.
5(b) and 5(c). Obviously, the patterns are also 2π -periodic
with respect to ϕ. Again, elongated segments of convergence
to the first NS appear alternating with instability stripes.
Furthermore, one can achieve convergence to {Ā1, Ā2, ϕ̄} even
for A1(0) → 0, without caring much about ϕ(0) as long as
A2(0) is properly selected; on the contrary, one can reach
{Â1, Â2, ϕ̂} only for a specific range of ϕ(0), a result attributed
to the choice A1(0) = Ā1.

In Fig. 7 we sketch the basins of attraction for the same
system as in Fig. 6 but with a different implicit selection of
the third initial condition. In particular, in Fig. 7(a), we show
the stability regions on the (A1(0), A2(0)) map with ϕ(0) = ϕ̂;
because of this alternative choice of ϕ(0) compared to that
in Fig. 6(a), the final states of the system are designated by
the black square and gray rhombus. We emphasize that the
shape of the domains is totally different, a feature which is
again accredited to the three-dimensional nature of the prob-
lem making the two-dimensional cross cuts of convergence
volumes for fixed ϕ(0) [or one of the other two quantities
A1(0) and A2(0)] dependent on ϕ(0) [or A1(0) and A2(0),
respectively]. In particular, the extent of the basin of attraction
corresponding to the first stable NS shrinks, whereas the other
one dominates, in contrast to Fig. 6(a). Again, we show a
characteristic trajectory for an initial condition chosen very
close to but outside the basin of attraction of the stable NS;
as in the corresponding trajectories in Figs. 5(a) and 6(a), the
system evolves to the unbounded state with A1(z) → 0 and
A2(z) → +∞.

In Fig. 7(b), we show a detail of the bottom-left corner of
the map in Fig. 7(a), together with two additional trajectories
starting from two almost-adjacent initial points but belonging
to different basins of attraction: one to the first NS (green
region, red line) and the other to the second NS (brown region,
yellow line). The projections of the two trajectories almost
coincide initially; as z increases, the one starting from the
basin of attraction of the second NS converges rapidly to
the corresponding steady state with its amplitude undergoing
multiple oscillations. However, the trajectory shown in red
sticks on the second NS (gray rhombus), winding around it
many times before finally reaching its own steady state (black
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square). That feature of a solution spending a large part of
its trajectory around the other steady state {Â1, Â2, ϕ̂} instead
of its own {Ā1, Ā2, ϕ̄} seems definitely to be related with our
initial phase difference choice, ϕ(0) = ϕ̂. Such behavior of
trajectories “sticking” at a point different from that of the final
equilibrium is typical for complex nonlinear systems [43]. It is
finally clear that small perturbations in initial conditions can
cause the coupler response to move between the coexisting
attractors, resulting in wild fluctuations in the power output
[57].

C. Eigenvalue spectra and exceptional points

The eigenvalues λ of the Jacobian of the linearized system
which determine its behavior around a mode of operation can
coalesce for specific selections of parameters. Such a spectral
degeneracy is typical for non-Hermitian systems (with gain
and loss) and is known as an exceptional point; in its vicinity,
the behavior of the system is of a fundamentally different
nature compared to the neighboring points [58,59]. This spec-
tral coincidence offers opportunities for ultrasensitive mea-
surements [47,60] and other interesting applications involving
energy transfer between developed waves [61,62]. Moreover,
EPs have been shown to possess specific spectral signatures
in the noise and modulation response [63] of non-Hermitian
dimers and occur in abundance at the generic configuration
of a dimer, not restricted by any symmetry conditions or
other requirements related to the optical frequency mismatch
and gain/loss ratio [64]. It is, therefore, meaningful to exam-
ine the occurrence of EPs in the system investigated in the
present report. We have performed a thorough search across
the considered parameter space in the quest for coalescing
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FIG. 8. (a) Real and (b) imaginary part of the eigenvalues as
a function of the gain/loss contrast α for k/|β1| = 1.6. (c) Real
and (d) imaginary part of the eigenvalues as a function of the
coupling k/|β1| for α = 0.565. Dashed vertical lines denote ex-
ceptional points. Common plot parameters: β = 1.012, ε = 0.8,
and β1 = −1.
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FIG. 9. (a) Real and (b) imaginary part of the eigenvalues as a
function of the coupling k/β1 for α = 0.521. Dashed vertical lines
denote EPs. Plot parameters: β = 0.3, ε = 0.5, and β1 = 1.

eigenvalues λ and determined certain parametric loci along
which such a degeneracy occurs in stable regions.

In Figs. 8(a) and 8(b), we show the variation of the real
and imaginary parts of the three eigenvalues λ as a function of
the gain/loss contrast α; the black dashed vertical lines denote
the emergence of EPs. Starting from Fig. 8(b), we observe that
two EPs appear in pairs at those α’s that all three eigenvalues λ

convert from complex into real, and vice versa; such a result is
anticipated since the coefficients of the characteristic polyno-
mial |J − λI| [with J given by Eq. (12) and I being the 3 × 3
identity matrix] are real. All these transitions happen within
a restricted α range where the system is stable as indicated
in Fig. 8(a) (Re[λ] < 0 for all eigenvalues). In Figs. 8(c) and
8(d), we show the dependence of the real and imaginary parts
of λ’s, respectively, as functions of the coupling coefficient
k/|β1|. It seems that, by adjusting the distance between the
two waveguides, one can achieve twice the coalescence of
eigenvalues.

Finally, in Fig. 9, we show the case of an EP occurring at
the coalescence of all three of the system’s eigenvalues λ as
the coupling k is swept for β1 > 0. Two of the eigenvalues
follow opposite trends in their real part and meet the third one
at a specific k; as far as the imaginary parts are concerned, they
are vanishing only at the EP, unlike those in Figs. 8(b) and
8(d). We note again that a careful scanning of the coupling
strength can lead to highly effective EP-based designs like
polarization converters [65] and optical amplifiers [66].

IV. CONCLUDING REMARKS

The most generic configuration of an asymmetric active
photonic coupler with saturable gain has been studied on the
basis of coupled-mode equations valid for any non-Hermitian
dimer. The saturation has been shown to result in significant
stability enhancement of the nonlinear supermodes of the sys-
tem, as well as avoidance of undesirable evolution to blowup
solutions. The extent of the stability domains in parameter
space, as well as the basins of attraction of the stable non-
linear supermodes in the phase space of the system, has been
studied in detail. The critical role of asymmetry between the
active and the passive waveguide parameters is demonstrated
in terms of the number of supported nonlinear supermodes
and the presence of bistability. Moreover, the existence of
exceptional points in the linear spectrum of the stable modes
has been shown to occur extensively in the parameter space of
the system, namely, the spectral degeneracies are accessible
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by varying any one of the key parameters. All these important
features suggest that the asymmetric active photonic coupler is
a fundamental element capable of reconfigurable functionality
for photonic integrated circuit applications spanning from
metrology and optical sensors to phase switching and ultra-
fast communications. Finally, we believe that the systematic
investigation presented in this paper can be used to reveal the
full complexity of the basins of attraction, not only of stable
steady states, but also of other coexisting attractors, such
as periodic oscillations (limit cycles); they are particularly
relevant in optically injected photonic oscillators and systems
of two optically coupled semiconductor lasers, where the

asymmetry and the nonlinear gain coefficient are seen to play
a fundamental role.
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