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Peculiar features of nuclear resonant Bragg scattering
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The properties of x-ray diffraction are compared for two principally different scattering mechanisms: potential
and resonant. The first mechanism is well represented by elastic scattering from atomic electrons (Rayleigh
scattering), while the second one is offered by recoilless resonant scattering from nuclei (Mössbauer scattering).
Diffraction in Bragg geometry from a semi-infinite crystal is considered. Mainly, the spatial aspects of scattering
are discussed like angular dependencies, distributions of electric and magnetic fields inside the crystal and,
especially, the role of asymmetry in the diffraction geometry. The results of the model calculations are presented
for a complex reflection coefficient, for total wave fields and their interaction with atoms, for path lengths in
transmission of radiation through the crystal, and for an interplay between absorption and reflection of radiation
by the atomic ensemble.
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I. PRELIMINARY COMMENTS

A long time passed after the discovery of x-ray diffraction
[1] predicted by von Laue before the diffraction of resonant
γ radiation by nuclear crystal lattice was observed [2]. Much
earlier than this observation, several successful attempts were
made to excite radiative nuclear transitions with use of elec-
tromagnetic radiation, but nobody at that time had regarded
the feasibility of nuclear diffraction because of an assumed
violation of the wave coherence, which was expected due to a
recoil during an absorption and emission of γ -ray photon by
the nuclei. Only after the discovery of the recoilless nuclear
resonance fluorescence by Mössbauer [3], such a possibility
started to be considered as real. The recoilless mechanism
ensures the existence in crystals of the nuclear resonance
of natural width and the possibility of emission by nuclei
of γ -ray photons having a record coherence length. It is
amazing that the wave packet of a Mössbauer γ quantum
can contain, for instance, ∼1011 or ∼1013 unperturbed oscil-
lations for nuclear transitions in the 57Fe and 67Zn isotopes,
respectively.

An ensemble of Mössbauer nuclei in a crystal could rep-
resent for electromagnetic radiation a resonating diffraction
grating. The interaction of γ -ray photons with nuclei is a case
of resonance scattering, where the nucleus presents a perfect
two-level system. The entire process of scattering can be
divided into three stages: an absorption of a primary quantum
with formation of an intermediate excited state, dwelling in
the intermediate state, usually a long-lived one, and a transi-
tion back to the ground state with an emission of a secondary
particle. Concerning the creation of the excited state, there
could not be any doubt that the energy of a γ -ray photon
is sufficient to excite only a single nucleus. Seemingly, the
described picture of the scattering process makes it tempting
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to consider the interaction in terms of localization. On the
other hand, observation of such a collective phenomenon like
diffraction would mean that all nuclei in a scattering ensemble
must be touched by excitation. So, the critical question was
how one could imagine a collective excitation in an ensemble
of nuclei, if the photon energy is sufficient to excite only one
nucleus.

In order to resolve this contradiction, the idea of the
delocalized nuclear excitation was introduced by Trammell
[4] and Kagan and Afanas’ev [5]. Within this idea, in the
absence of an indication which nucleus is excited, each one
should be considered as excited with the definite probability
amplitude in accordance with the quantum-mechanical prin-
ciple of superposition of states. Such a delocalized excitation
has been called a nuclear exciton. If the state where one
nucleus is excited and all other nuclei are in the ground state
is an elementary state of excitation, then, in this model, the
nuclear exciton wave function is a linear superposition of
such elementary excitations. Thus, the nuclear excitation is
delocalized, and a photon is shared by all nuclei. This is how
the scattering process exhibits a collective character. By these
features of nuclear excitation, the resonance diffraction of a
γ -ray photon from an ensemble of nuclei should be considered
as a macroscopic quantum phenomenon. The crystal behaves
in the photon diffraction process as a macroscopic quantum-
mechanical object, the macroscopic quantum resonator.

The existence of nuclear exciton provides the physical
basis for the use of a macroscopic polarization given by the
Maxwell equations to treat the radiative effects of nuclei. The
macroscopic polarization of a nuclear ensemble is the sum of
the induced nuclear transition moments over a unit volume,
i.e., the density of the induced electric or magnetic moment,
depending on the multipolarity of the nuclear transition. It
represents a quantum-mechanical average over the nuclear
ensemble.

A number of features distinguishes the elementary acts
of interaction of resonant and nonresonant radiation with an
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TABLE I. Specific features of scattering.

In resonance Off resonance

Scattering mechanism in the
wavelength range ∼0.5−1.5Å

Resonant nuclear+
potential electronic

Dominant potential+
weak resonant+
weak Compton

Temporal aspects
Long-lived intermediate nuclear

state ∼10−5–10−9s
Fast collision ∼10−17s

Elastic and inelastic
scattering channels

(γ , γ ) and (γ , e−)
inelastic (γ , e−) is dominant

(x, x) and (x, e−)
elastic (x, x)
is dominant

Intra-atomic interference
Nuclear radius rn � λ

no form factor
Atomic radius ra ∼λ

a big role of form factor

Multipolarity of transition
Clear-cut nuclear transition
multipoles E1 or M1(+)E2

Hierarchy of multipoles
E1, M1, E2

Polarization dependence
Complex in presence

of hyperfine splitting. Optical
activity of media is essential

Specific for
E1 transition

atom. Some of them are listed in Table I. An interaction
of x rays with electrons in atoms is dominated by Rayleigh
scattering. A resonant contribution to the electronic scatter-
ing amplitude plays the role of a slight perturbation which,
however, in special applications may be important. On the
contrary, the interaction of x rays with atomic nuclei is
the case of pure resonance scattering characterized by the
narrow resonances and, therefore, it is highly sensitive to
the frequency deviation from the resonant frequency. The
principal difference mentioned above concerns the duration
of the scattering process: 10−5–10−9 s for nuclear resonant
scattering versus 10−17 s for electronic nonresonant scattering.

Another important difference is related to a significance of
an elastic radiative channel of scattering. As Table I shows,
the radiative channel is dominant for electronic scattering,
but plays a minor role for the low-energy nuclear isomeric
transition. The probability of an internal electronic conver-
sion in scattering at an individual nucleus is so large that a
localization of excitation with a loss of a photon is very likely.
And yet the coherence in the collective response of nuclei in
a crystal permits the radiative channel not only to survive, but
even to become dominant in the process of interaction of a
γ -ray photon with a nuclear array. Due to the constructive
contributions of all scattering paths, the probability of γ -ray
reemission is strongly enhanced. Under the conditions where
the radiationless process (internal electronic conversion) is
dominant in the interaction with an isolated nucleus, this
enhancement effect is of great importance for the survival of a
γ ray in a large nuclear ensemble.

Among other peculiar features one should note the ab-
sence of destructive interference in scattering from a nucleus
because of the negligible size of nuclear radius in com-
parison to the wavelength of radiation. Therefore, nuclear
form factor in the scattering amplitude is always equal to
unity, independently of the scattering angle. Another feature
of nuclear resonant scattering is related to the possibility of
hyperfine interaction, which arises in the presence of internal
electric or magnetic crystalline fields. Due to this, the nuclear
ensemble represents in general an optically active medium.

Various wave field configurations can be constructed by using
a polarization-dependent selective excitation of nuclear tran-
sitions under conditions of their hyperfine splitting.

Experiments where diffraction of electromagnetic waves
by a nuclei array in a crystalline lattice has been observed gave
convincing evidence of a full space-time coherence in nuclear
resonance scattering. The existence of nuclear diffraction
clearly proved the possibility of coherent radiative coupling of
nuclear oscillators, which was spread over the crystal volume
with the dimensions very large in comparison to the wave-
length, and during extremely long times characterized by the
lifetime of nuclear excited state. The total field in the crystal
represents a coherent superposition of waves “allowed” by
scattering system, i.e., the waves that are eigensolutions of the
Maxwell equations of the scattering problem.

Potential scattering is characterized by an amplitude in-
dependent of radiation frequency, and it is practically a real
value. Such kind of scattering is realized in the process of
elastic scattering far away from an absorption edge. On the
contrary, resonant scattering is characterized by the amplitude
sharply dependent on the radiation frequency. Strictly in reso-
nance, it is a pure imaginary value.

In the simulation of electronic and nuclear scattering of
x rays in a crystal, we assume that atoms are frozen and
no atomic motions occur, i.e., that the Debye-Waller factor,
accounting for thermal vibrations of atoms in a potential
scattering, and the Lamb-Mössbauer factor, accounting for
thermal vibrations of nuclei in resonance scattering, are equal
to unity. This assumption will not affect the physical results
within the framework of the task of our article.

We discuss mainly the spatial aspects of scattering like
angular dependencies, distributions of electric and magnetic
fields inside the crystal and, especially, the role of asymmetry
in the diffraction geometry. The energy dependence of the
nuclear resonance scattering has been extensively studied in a
number of experiments (see, e.g., overview in [6]). Therefore,
it is not discussed in this paper.

In order to outline the theoretical basis of the paper, in
Sec. II the elements of the dynamical diffraction theory are
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given in the application to the case of Bragg scattering from
a semi-infinite crystal. Then, in Sec. III a comparison of
electronic and nuclear diffraction in model calculations is
presented. In Sec. IV, the role of asymmetry in the geometry
of scattering is considered. Finally, some concluding remarks
are provided.

II. ELEMENTS OF THE THEORY

A. Solution for the reflection in Bragg geometry

The simplest and most fundamental electromagnetic waves
are transverse plane waves. The theory of stationary scattering
describes the transformation of a plane wave of electromag-
netic radiation due to its interaction with atoms. A transverse
plane electromagnetic wave is characterized by the frequency
of radiation ω, by the wave vector k, and by the polarization
vector e. The frequency is related to the radiation energy
E = h̄ω. The wave vector is normal to the wave front, and
its absolute value, or the circular wave number is determined
by the wavelength of radiation K = 2π/λ. The polarization
vector e is represented by the unit vector normal to the wave
vector. The state of radiation is significantly modified due to
interaction with atoms in substance. The excited atomic cur-
rents contribute to the field, and the constructive interference
of the waves emitted by atoms gives rise to the formation
of the strong waves in some directions when the Bragg re-
quirements are satisfied. We suppose that Bragg reflection can
occur only from one set of atomic planes in a crystal. In this
case, two strong waves are generated in the crystal: the wave
propagating in the forward direction with the wave vector k0,
and the diffracted wave with the wave vector k1 = k0 + S,
where S is the scattering vector. The vectors k0 and k1 form
the scattering plane. The scheme of the two-wave diffraction
is represented in Fig. 1.

Linearly polarized electromagnetic wave is described by
a combination of two mutually orthogonal polarization states
σ and π . The unit vectors of the incident and scattered σ -
polarized waves eσ

0,1 are determined by the vector products
eσ

0,1 = [k1 × k0]/|[k1 × k0]|. They are normal to the scatter-
ing plane. The unit vectors of the π -polarized waves eπ

0,1
are determined by the vector products eπ

0,1 = [k0,1 × eσ
0,1]/K ,

both lying in the scattering plane. The oscillation of the
electric field strength in the wave goes along the polarization
vector e, while the oscillation of the magnetic field strength
in the wave goes along the polarization vector h. The latter
is determined as hs

d = [kd × es
d ]/K , where s and d are the

polarization and the direction indices.
The dynamic theory takes into account multiple scattering

of radiation in the crystal. In a steady state, the dynamical
equilibrium in the exchange of energy between the radiation
field and the excited atomic currents is established due to mul-
tiple scattering. As a result, the total field in the crystal repre-
sents a coherent superposition of the waves allowed by the
scattering system. These waves are dynamically coupled via
atomic currents feeding each other so that the total field must
be considered as a single entity [7]. As mentioned above, here
we limit ourselves to considering the case where two waves
are formed due multiple scattering: the wave propagating in a
direction close to the primary one and the diffracted wave.

FIG. 1. The scattering scheme is presented in the XY Z rectangu-
lar coordinate system. The crystal surface lies in the XY plane. In
the Bragg reflection geometry, the incident and the reflected waves
are located above the crystal surface. The wave vectors k0 and k1

describe the waves propagating through the crystal in the forward
and the reflection directions, respectively. The incident wave can be
either σ or π polarized. The electric polarization vectors eσ

0 , eσ
1 and

the magnetic polarization vectors hπ
0 , hπ

1 are normal to the scattering
plane, the direction from the observer is given in red (dark gray),
while that toward the observer in green (light gray), the electric
vectors eπ

0 , eπ
1 and the magnetic vectors hσ

0 , hσ
1 lie in the scattering

plane, vector S = k1 − k0 is the scattering vector, n is the unit vector
in the direction of the inward normal to the crystal surface. The
reflecting planes are orthogonal to the plane of figure and inclined to
the crystal surface at angle ϕ, NM is the trace of a reflecting plane,
θ is the angle between the incident beam and reflecting plane.

In Fig. 1 the asymmetric diffraction geometry is displayed,
where the glancing angle of incidence θ0 = θ + ϕ is greater
than the glancing angle of reflection θ1 = θ − ϕ. The asym-
metry factor β characterizing the geometry of scattering is
determined by the ratio of scalar products of the wave vectors
of the incident and diffracted waves and the unit vector n,
directed along the inward normal to the crystal surface, β =
(nk0)/(nk1). Using Fig. 1 to determine the asymmetry factor,
we obtain β = − sin θ0/ sin θ1. For the geometry displayed in
Fig. 1, the asymmetry factor |β| > 1. We shall call this case
a steep incidence. In the reverse course of the rays, |β| < 1,
the case will be called a grazing incidence. In the symmetric
geometry angle ϕ = 0 and β = −1.

Solving the dynamical equations for the reflection from
only one set planes in a semi-infinite crystal, one arrives at
the following expression for the wave field inside the crystal
[8,9]:

E(r) = exp(iKr) exp
(−iKε

(2)
0 L

)
× E0

[
e0 − β

∼
η10

2ε
(1)
0 − ∼

η00

e1 exp (iSr)

]
, (1)

where K is the wave vector of radiation in free space, r is the
vector from the origin of coordinates to the observation point,
L is the path length of radiation in the crystal to the point of
observation, i.e., the projection of r vector on the direction of
incidence. In Eq. (1), E0 is the scalar amplitude of the incident
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wave, ε(1,2)
0 are small complex values showing the deviation of

the refractive index from unity. They are determined as

ε
(1,2)
0 = 1

4

{∼
η00 + β

∼
η11 − αβ

∓
√

(
∼
η00 − β

∼
η11 + αβ )2 + 4β

∼
η01

∼
η10

}
, (2)

parameters
∼
ηdd ′ represent the Fourier coefficients in the ex-

pansion of the crystal susceptibility in S space, i.e., in the
space of scattering vectors. Parameter α in Eq. (2) is related
to the deviation of the wave vector of the incident wave from
the direction determined by the Bragg condition: θ = θ −
θB, α = −2 sin 2θBθ , where θB is the Bragg angle. In the
following, we call parameters

∼
ηdd ′ briefly as susceptibilities

of the crystal. A susceptibility is actually determined by
the amplitude of scattering from the crystal unit cell. The
scattering amplitude is a complex function that relates ampli-
tudes, phases, and polarizations of the spectral components of
the incident and the reflected radiation. Near the resonance
energy, the susceptibility of the crystal containing resonant
nuclei includes both the electronic and the nuclear contribu-
tions, correspondingly,

∼
η = χ + η. Below, we shall analyze

the cases where polarization does not change in scattering,
therefore, the polarization indices will be omitted. Indices dd ′
indicate the directions of propagation of the waves in the case
of two-wave diffraction; d, d ′ = 0, 1. When polarization of
the waves does not change, the set of susceptibilities

∼
ηdd ′

represents the matrix of second rank, where each element is
proportional to the amplitude of scattering from one permitted
direction to the other: 0 → 0, 0 → 1, 1 → 0, and 1 → 1. The
structure of the electronic and the nuclear susceptibilities will
be regarded in the next subsection.

The first term in Eq. (1) represents the wave propagating
through the crystal near the direction of the primary wave,
while the second term represents the diffracted wave. The
complex amplitude of the diffracted wave contains an addi-
tional phase factor exp (iSr), originating due to diffraction of
radiation in the crystal, the scattering vector S is orthogonal
to the reflecting planes. The additional phase is defined by the
projection of vector r on the direction of S vector. When the
condition for Bragg scattering is fulfilled, |S| = 2π/D, where
D is the distance between the neighboring reflecting planes.
Let rm and rm+1 be the vectors to the observation points at the
neighboring reflecting planes. The projection of the vectors’
difference on the direction of S is equal to D. Thus, the spatial
phase changes by 2π in shifting of the observation point from
an arbitrary chosen reflecting plane to the neighboring one.
As a result of summation of the propagating and the diffracted
waves, the amplitude of the total electromagnetic field in the
crystal is spatially modulated in the direction orthogonal to the
reflecting planes. Yet, we turn back to this issue later. Under
conditions of the constructive interference, the phase factor
exp (iSrm) = 1, and for the field amplitude in the case e0 = e1

we obtain

E (L) = exp
(−iKε

(2)
0 L

)
E0

[
1 − β

∼
η10

2ε
(1)
0 − ∼

η00

]
. (3)

For this case, in the nearest vicinity to the reflecting plane m,
regardless of the depth of its location in the crystal, the ratio

of the scalar amplitudes of the scattered and the propagating
waves E1/E0 is

R = − β
∼
η10

2ε
(1)
0 − ∼

η00

; (4)

this ratio represents the reflection coefficient. Another im-
portant characteristic of the coherent Bragg scattering is the
reflectivity of a crystal, which describes the scattering in
the terms of the energy fluxes. The latter is represented
by the product W = IS of the radiation intensity I and radi-
ation beam cross section S. The reflectivity Q is given by the
ratio W1/W0 of the energy flux in the reflected beam to that in
the incident one. Finally, using the definition for the reflection
coefficient and taking into account that the ratio S0/S1 = |β|,
we obtain for the reflectivity

Q = |R|2 1

|β| . (5)

In the following, we analyze the characteristic features of
the wave field in crystal described by Eq. (1) for two types of
interaction of radiation with atoms. As a thought experiment,
we shall consider the diffraction of radiation in the crystal
of iron consisting completely of the nuclear resonant isotope
57Fe. The crystal of iron in alpha phase has a cubic lattice with
the lattice constant of 2.866 Å. The unit cell of iron contains
two iron atoms: one of them is located in the cube corner and
another one in the center of cube.

Concerning an interaction with nuclei, we shall consider
the transition between the ground and the first excited states
of 57Fe with the energy of 14.41 keV. The spin of 57Fe nucleus
is equal to 1

2 in the ground state and 3
2 in the excited state.

Therefore, in the interaction of radiation with the nuclei, the
magnetic dipole transition M1 is excited. Because iron is a
ferromagnet, the local magnetic fields at iron nuclei cause
hyperfine splitting of nuclear levels both in the ground and
in the excited states.

B. Electronic and nuclear susceptibility of the crystal

For comparison of modes of electronic and nuclear scatter-
ing, we explore one and the same case of permitted Bragg
reflection. Let the crystal be cut in such a way that the
crystalline planes (00n) are orthogonal to the Y Z plane, as
shown in Fig. 1. The first structurally allowed reflection from
this set of planes is the (002) reflection. The Bragg angle of
this reflection for radiation with the energy of 14.41 keV is
θB = 17.47◦. An interaction with electrons of atomic shells is
characterized by the same amplitude at any frequency of the
incident radiation in the range of nuclear γ resonance. The
electronic oscillations of different multipolarity are excited.
However, among the excited multipoles there is a significant
hierarchy, where the dominant role belongs to the electric
dipole oscillation E1.

For the electronic susceptibility, we use the expression
from the theory of x-ray scattering (see, e.g., [10])

χ ss′
dd ′ = (

es
d es′

d ′
) λ2

πV0

∑
a=1,2

[
−r0 fa(kd ′ − kd ) − i

1

2λ
σ ph

a

]

× exp {−i(kd ′ − kd )ra} exp {−Wa(kd ′ − kd )}, (6)
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TABLE II. The susceptibility of iron crystal for reflection (002).

Electronic Nuclear − 1
2 ⇒ − 1

2 Nuclear − 1
2 ⇒ − 3

2{
χ00 χ01

χ10 χ11

} {
ηππ

00 ηππ
01

ηππ
10 ηππ

11

} {
ησσ

00 ησσ
01

ησσ
10 ησσ

11

}
{

Reχ00 + i Imχ Reχ01 + i Imχ

Reχ10 + i Imχ Reχ11 + i Imχ

}
−iηππ

{
1 1
1 1

}
−iησσ

{
1 exp (+i2θB )

exp (−i2θB ) 1

}
Reχ00 = Reχ11 = −14.56, Reχσσ

01 = Reχσσ
10 = −8.54, Imχσσ = −0.66 (in units 10−6)

Reχππ
01 = Reχππ

10 = −7.0, Imχππ = −0.54, ηππ = 143.34, ησσ = 107.51 (in units 10−6)

where the outer brackets represent the polarization factor, V0

the unit-cell volume, r0 classical electron radius, fa the atomic
form factor, depending on the scattering angle (dispersion
correction  fa to the atomic factor is omitted here), σ

ph
a the

photoeffect cross section, ra the coordinate of atom in the unit
cell of crystal, exp (−Wa) the Debye-Waller factor, the sum-
mation is carried out over the atoms of the unit cell. For the
crystal of α iron, V0 = 23.54 Å

3
. In the definition of electronic

susceptibility, the real part is negative in consistence with the
phase shift of −π , which should hold for the wave scattered
much above the K edge. A negative sign before the imaginary
part is associated with the choice of sign in the exponential
index exp (−iκε

(2)
0 z/ sin θ0). With such a choice of the sign,

the physical condition of absorption of radiation in the crystal
is satisfied.

When the σ -polarized wave is incident on the crystal, the
polarization factor (eσ

d eσ
d ′ ) ≡ 1 (see Fig. 1). In the absence

of thermal motions, exp (−Wa) ≡ 1. In the calculations us-
ing Eq. (6), the following values of the physical quantities
were used: r0 = 2.82 × 10−13 cm, σ

ph
Fe = 0.57 × 10−20 cm2,

fa(0) = 26, fa(2θ
(002)
B ) = 15.25, exp {−i(kd ′ − kd )ra}(002) =

1. The susceptibility matrix for electronic scattering is shown
in the left column of Table II.

We turn to the nuclear susceptibility. Nucleus is a quantum-
mechanical physical system. Therefore, the amplitudes of
nuclear resonance scattering are calculated on the basis of
quantum mechanics. With the electromagnetic field of the
suitable frequency, the nuclear transition current is excited,
which represents an oscillating multipole, in our case the mag-
netic dipole M1. The excited current determines directly the
scattering amplitude. The latter is calculated as the quantum-
mechanical average over the nuclear array in the crystal.

Due to the interaction of the internal magnetic field with
the magnetic moments of nuclei in the ground and in the
excited states, the energy levels in these states are split: in
the ground state into two sublevels with the projections of the
nuclear spin on the magnetic field of + 1

2 and − 1
2 , and in the

excited state into four sublevels with the spin projections of
− 3

2 , − 1
2 , + 1

2 + 3
2 .

The matrix of the nuclear susceptibility has been calculated
on the basis of the theory of nuclear resonance coherent scat-
tering [11] in application to the nuclear diffraction in a crystal
of iron [12]. The resonance structure of nuclear scattering is
characterized by the factor 1/(E − Eeg − i), where Eeg is the
energy of the transition between the ground and the excited
states, and E is the energy of the incident radiation in units
of �/2 with � being the width at half-height of resonance.

Assuming that the energy of incident radiation is equal to the
resonance energy of the transition between specific sublevels
of the ground and the excited states, we obtain

ηss′
dd ′ (E = Eeg)

= −i
3

KV0
σ0〈 jg, mg; L, M| je, me〉2

∑
a=1,2

(
hs

d na
−M

)(
hs′

d ′na
−M ′

)∗

× exp {−i(kd ′ − kd )ra} f LM
a (kd ) f LM

a (kd ′ ), (7)

where the summation is taken over the nuclei of the unit cell,
σ0 the nuclear resonance cross section; 〈 jg, mg; L, M| je, me〉
the Clebsch-Gordan coefficient for the electromagnetic transi-
tion of the multipolarity L between the ground and the excited
states of nucleus, jg, je the nuclear spin, and mg, me the spin
projections in the ground and the excited states, respectively,
M = me − mg takes the values 0,±1, (hs

d na
−M )(hs′

d ′na
−M ′ )∗

the polarization factor of nuclear resonance scattering when
a specific transition between the components of hyperfine
structure of the ground and the excited states is induced,
hs

d , hs′
d ′ the unit vectors of the magnetic polarization of the

incident and the scattered waves, and na
−M , na

−M ′ mutually
orthogonal unit vectors, which define the spatial properties of
the magnetic moment of nuclear transition, f LM

a (kd ) f LM
a (kd ′ )

the Lamb-Mössbauer factors which are equal to unity in the
absence of thermal vibrations. In further calculations, the
cross section of nuclear resonance scattering was taken equal
to σ0 = 2.464 × 10−18 cm2.

The axes of easy magnetization in an iron crystal are
directed along the edges of the cubic unit cell. Let the sample
under study be oriented in a such way that the X axis coincides
with the direction [100], as it is shown in Fig. 1, and the crystal
is magnetized along this direction. For this orientation of the
magnetic field at the nuclei, the orthogonal unit vectors take
the following form: n±1 = ∓ 1√

2
(ny ± inz ) and n0 = nx.

When the π -polarized wave is incident on the crystal as
shown in Fig. 1, the magnetic polarization vector is oriented
along the X axis. Then, the polarization factor of the scattering
amplitude is nonzero only for nuclear transitions − 1

2 → − 1
2

and + 1
2 → + 1

2 , i.e., out of six permitted transitions only
two (with M = 0) are able to contribute to the scattering
picture. For these transitions, we get (hπ

d na
−M )(hπ

d ′na
−M ′ )∗ = 1

and 〈 1
2 ,± 1

2 ; 1, 0| 3
2 ,± 1

2 〉2 = 1
6 . We will analyze the diffraction

picture for an isolated nuclear transition − 1
2 → − 1

2 . The
susceptibility matrix for this transition is given in the middle
column of Table II.
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FIG. 2. Left panel: the angular dependencies of the reflection coefficient on the complex plane for potential electronic scattering
(R contour a) and nuclear resonant scattering (R contours b and c for excitations of the − 1

2 → − 1
2 and − 1

2 → − 3
2 transitions, respectively).

The bold arrow represents the unit vector with the phase of the incident wave, taken here for zero. Right panels: the angular dependencies of
the total field amplitudes Etot and Htot at an arbitrary atomic reflecting plane: the complex values of the amplitudes (upper right panel), and the
absolute values of the amplitudes (lower right panel) in electronic and nuclear scattering for the − 1

2 → − 1
2 transition. E0, H0 are the scalar

amplitudes of electric and magnetic fields in the incident wave taken equal to unity.

When the σ -polarized wave is incident on the crystal, the
magnetic polarization vector lies in the scattering plane Y Z .
In this case, the magnetic polarization vector is nonzero only
for nuclear transitions − 1

2 → − 3
2 , − 1

2 → + 1
2 , + 1

2 → − 1
2 ,

and + 1
2 → + 3

2 , i.e., only the transitions having M = ±1 are
able to contribute to the diffraction pattern. We will inves-
tigate the diffraction characteristics for an isolated nuclear
transition − 1

2 → − 3
2 . The polarization factors correspond-

ing to this transition are equal (hσ
0,1na

1 )(hσ
0,1na

1 )∗ = 1 and
(hσ

0,1na
1 )(hσ

1,0na
1 )∗ = exp (±i2θ ). The susceptibility matrix for

this transition is given in the right column of Table II.
Upon an excitation of the transition − 1

2 → − 1
2 , the matrix

elements of the nuclear susceptibility are pure imaginary
numbers, what corresponds to the wave phase shift of −π/2
for scattering exactly at resonance. Far away from a nuclear
resonance, the incident radiation interacts only with electrons
in the crystal. In this case, in calculations we will use the
matrix of electronic susceptibility presented in Table II. If
the radiation frequency coincides with the energy of nuclear
transition, we will use the total matrix of the electronic and
the nuclear susceptibilities, where, as it is easy to see from
Table II, the nuclear part plays the dominant role.

III. COMPARISON OF ELECTRONIC AND NUCLEAR
DIFFRACTION IN MODEL CALCULATION

A. Complex reflection coefficient

As discussed above, the reflection coefficient defined by
Eq. (4) describes the amplitude and phase of the reflected
wave relative to the corresponding parameters of the inci-
dent (propagating) wave at the position of reflecting plane,

regardless of its depth location in the crystal. The angular
dependencies of the reflection coefficient are displayed on
the complex plane in the coordinates ReR, ImR at the left-
hand side of Fig. 2. The reflection coefficient at the fixed
angle of incidence is represented by a vector R on this plane.
Each of the closed contours on the plane is the locus of the
R-vector end points corresponding either to electronic or nu-
clear scattering for variable scattering angle. We will call them
R contours. Here, we assume symmetric Bragg scattering
geometry, i.e., ϕ = 0 and β = −1.

The incidence angle changes in the angular range from
θ � θB to θ � θB. At large deviations from the Bragg an-
gle, the angular parameter α � ∼

η00, so that R ≈ |β|∼η10/α.
Accordingly, the initial phase of R vector is determined by
the ratio of the imaginary and real parts of the susceptibility
∼
η10, i.e., as the R vector approaches the origin (at very large
positive or negative values of the deviation angle), the R
contour is tangent to the complex susceptibility. Thereby, the
orientation of R contour on the complex plane is determined
by the initial phase of R vector for electronic and various cases
of nuclear scattering.

The R contour a shows the angular evolution of the
complex reflection coefficient for electronic scattering. In
this case, the susceptibility χσσ

10 is mainly the real negative
number, so that the initial phase of the reflected wave is close
to −180◦. It remains so while the angle of incidence is not
close to the Bragg region. As the Bragg reflection region is
approached, the length of the R vector grows and reaches at a
certain angle unity. Thus, the amplitude of the reflected wave
at the reflecting atomic planes becomes comparable to the
amplitude of the incident wave, but the two waves remain in
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the opposite phase. This angle corresponds to the left angular
border of the region of strong reflection. Further in the region
of Bragg reflection, the R vector is rotated clockwise, as
it is shown in the left panel of Fig. 2 (contour a), and its
phase changes in the angular range of −180◦ → −360◦. In
this region, the length of the vector decreases from unity to
zero.

The R contour b displays transformation of the reflection
coefficient in the case of nuclear resonant scattering. The
incident radiation excites here the nuclear transition − 1

2 →
− 1

2 with the change of the magnetic quantum number M =
0. Relative to the case of electronic scattering, the drastic
difference in several respects is observed. First of all, the R
contour b possesses quite different shape: it looks symmetric
relative to the Bragg position. The contour is turned 90◦ coun-
terclockwise relative to that of electronic scattering because
the initial phase of the reflected wave is −90◦, due to the
fact that the susceptibility ηππ

10 is a negative pure imaginary
number. At increasing incidence angle, the R vector rotates
clockwise, and the phase of the reflected wave changes in the
angular range of −90◦ → −270◦. The length of the R vector
changes symmetrically relative to the Bragg angle, and the
vector equals unity in the Bragg position. In this position, the
amplitude of the reflected wave gets equal to the amplitude of
the incident wave, and the waves appear to be in the opposite
phases.

The behavior of the R vector in the contour c, which
corresponds to resonant scattering for the nuclear transition
− 1

2 → − 3
2 , is similar to that considered above. The only

difference is in the relative phasing the waves, which changes
in the diapason of −125◦ → −305◦.

The described appearance of the R contours in nuclear
scattering is relevant for scattering at the exact resonance.
When stepping aside from the resonant energy, the form
and the position of the R contours become different. If the
energy of incident radiation is shifted by ∓�/2 to the left
or to the right slopes of the resonance, the factor (−i) in the
susceptibility described by Eq. (7) is replaced by the factors
± 1

2 (1 − i), which correspond to the rotation of the nuclear R
contour by ±π/4 angles. In addition to the rotation, the shapes
of the contours become asymmetric.

B. Interaction of the wave field with atoms
under diffraction conditions

In the case of electronic scattering, we deal with the
interaction of the electric component of the wave field with
the electric dipole induced in the atomic shell. As for the case
of nuclear scattering, the magnetic component of the field
interacts with the magnetic dipole of the excited transition
in 57Fe nucleus. The amplitude of the magnetic wave field
is determined, as well as the amplitude of the electric wave
field, by Eq. (1), where the scalar amplitudes E must be
replaced by the amplitudes H and the polarization vectors e
by the polarization vectors h. In the cases of the contours
a and b, the σ - and π -polarized waves are incident on the
crystal with the relations eσ

1 = eσ
0 and hπ

1 = hπ
0 , respectively

(see Fig. 1). Because the polarization vectors of the incident
and the reflected waves are the same, the Etot and Htot contours
of the total wave amplitudes at the reflecting atomic planes are

easily obtained, simply by shifting the axis of the imaginary
values to the left-hand side by unity (see the upper panel
in Fig. 2). The new axes are Re(1 + R) and Im(1 + R). The
total field amplitudes far away from the Bragg angle are
Etot = E0 and Htot = H0 (E0 and H0 are assumed to be equal
to unity). The length of the Etot vector decreases from unity
to zero keeping its orientation, then it starts to grow rotating
at the same time clockwise. The Htot vector starts rotating
clockwise immediately, and its length decreases from unity
to zero at the first stage. While reaching the Bragg angle,
the total field Htot disappears and then grows symmetrically
up to the value of H0 = 1. The angular dependencies of the
absolute values of the field amplitudes Etot and Htot at an
arbitrary reflecting plane for electronic and nuclear scatterings
are shown in the lower panel of Fig. 2. When approaching
the Bragg region, the strength of the electromagnetic field at
the atomic planes drops down in any of the considered cases.
At a definite angular position, the field at atoms completely
disappears in both electronic and nuclear scattering. But, as
the angle increases further, the behavior of the fields becomes
strongly different. For nuclear scattering, the amplitude of the
field Htot symmetrically increases, approaching gradually the
level of the incident wave amplitude. In electronic scattering,
however, the field amplitude Etot first sharply rises to the value
significantly exceeding the amplitude of the incident wave,
and then falls down to this level. The extraordinary rise of
the total electric wave field is determined by the constructive
interference of the propagating and the reflected waves when
moving along the R contour, as one can see in the left panel
of Fig. 2. The dramatic transformation of Etot occurs within
rather narrow angular range, while Htot dependence spreads
over much broader region. The characteristic angular ranges
are determined by the magnitudes of electronic and nuclear
susceptibilities.

The diminishing of the total field amplitudes at the atomic
planes to zero corresponds to the Borrmann effect for elec-
tronic scattering [13] and to the Kagan-Afanas’ev effect for
nuclear scattering [11]. In the first case, the absorption of
x rays by electrons gets negligibly small [14], while in the
second case the inelastic channels of nuclear reaction are
getting completely suppressed [11,15]. For the considered
examples, the polarization vectors of the incident and reflected
waves are collinear. This is the decisive condition for turning
down the total field at the atoms and for the decrease of the
x-ray absorption by atoms. However, whereas for realization
of the Borrmann effect the disappearance of the fields at the
atoms is a necessary condition, for the Kagan-Afanasev effect
it is optional, as we shall see below.

We consider a situation, where the polarization vectors
of the incident and the reflected waves are not collinear:
eπ

1 �= eπ
0 and hσ

1 �= hσ
0 (see Fig. 1). In these cases, at the

Bragg angle we obtain, using Eq. (1) and Table II, the
following relations: Etot (rm) ∝ E0[eπ

0 − eπ
1 ] and Htot (rm) ∝

H0[hσ
0 − hσ

1 exp (−i2θ )]. In both cases, the amplitudes of the
incident and reflected waves are equal in absolute values, but
the amplitude of the total field at the atoms of the reflecting
planes turns out to be a finite value. Consequently, the con-
dition for the Borrmann effect is violated and, therefore, the
strong residual absorption of radiation by an electron shell
takes place.
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FIG. 3. The time trajectories of the end points for the field
strength vector: Htot (rm, t ) at the reflecting atomic planes, Htot (rh, t )
at the middle plane between the reflecting planes, and of the excited
magnetic moment vector μ+1 for the nuclear transition − 1

2 → − 3
2 .

Now, we consider the scenario for nuclear scattering. We
write the expression for the total field, taking into account the
temporal dependence of its amplitude:

Htot (rm, t ) ∝ exp (iωt )H0
[
hσ

0 − hσ
1 exp (−i2θ )

]
. (8)

In order to analyze the time dependence of the complex
vector Htot (rm, t ), we evaluate the real part of the
expression presented above: Re[Htot (rm, t )] = hσ

0 cos ωt −
hσ

1 cos 2θ cos ωt − hσ
1 sin 2θ sin ωt . For the determined

real vector, we calculate its projections on the Y and Z
axes [taking into account that hσ

0y = sin θ , hσ
0z = − cos θ

and hσ
1y = − sin θ , hσ

1z = − cos θ (see Fig. 1)], obtaining
Re[Htot (rm, t )]Y = sin θ cos ωt + sin θ cos 2θ cos ωt + sin θ

sin 2θ sin ωt and Re[Htot (rm, t )]Z = − cos θ cos ωt +
cos θ cos 2θ cos ωt + cos θ sin 2θ sin ωt . At last, the time
dependence of the total field strength can be presented on the
complex plane with the axes Re[Htot]Y , Re[Htot]Z as follows:

Htot (rm, t ) = sin 2θ exp [i(ωt − θ )]. (9)

The obtained expression represents the left-handed circularly
polarized field. The counterclockwise circulation of the mag-
netic field strength vector within a time period is shown
in Fig. 3. The field amplitude |Htot| = sin 2θ amounts to a
significant part of the incident wave amplitude, ∼0.57H0, the
initial phase of Htot is −θ .

The question is whether the field of such a form is able to
excite the nuclear transition − 1

2 → − 3
2 . The orientation of the

magnetic moment in space is determined by the following unit
vector:

μ ∝ n−M , M = me − mg, n−M = n+1,

where the unit vector n+1 = −(ny + inz )/
√

2. This gives
the following expression for the temporal behavior of the
magnetic moment: μ+1(t ) ∝ exp (iωt )(ny + inz ). Then, the
real part of μ+1(t ) is Re{exp (iωt )(ny + inz )} = (ny cos ωt −
nz sin ωt ), and the projections of the obtained vector
on Y, Z axes are Re{exp (ωt )(ny + inz )}Y ∝ cos ωt and
Re{exp (ωt )(ny + inz )}Z ∝ − sin ωt . The result of the calcu-
lation shows that the vector rotates clockwise, that is in the
direction opposite to the rotation of the vector Htot (see Fig. 3).
Therefore, when the frequency of the primary radiation is
tuned to excite the given nuclear transition, the total field
created by the nuclear ensemble at the Bragg angle is not able
to produce the excitation of nuclei because of the opposite
directions of the circular polarizations of the field and of
the relevant magnetic moment. This result demonstrates the
unique property of the Kagan-Afanas’ev effect, the effect
of suppression of inelastic channels of nuclear reaction. In
contrast to the Borrmann effect, where the necessary condition
is the cancellation of the amplitude of the electromagnetic
field at the atoms, the requirement for an observation of the
Kagan-Afanas’ev effect turns out to be the suppression of
the amplitude of nuclear excitation. As we have seen, this
condition can be fulfilled even if the field amplitude at the
atoms is quite large.

We turn to consider the question as to how the wave field
configuration in space between the neighboring reflecting
atomic planes is modified due to diffraction. As mentioned
in Sec. II A, the field amplitude is modulated in the direction
orthogonal to the scattering planes. When the angle of inci-
dence approaches the Bragg angle, a standing wave is formed.
For nuclear scattering, the structure of the standing wave can
be completely different for different nuclear transitions.

As we have seen, in nuclear scattering for the transition
− 1

2 → − 1
2 , where M = 0, the standing wave is built up with

the magnetic field nodes located in the reflecting planes, at
r = rm. In the plane lying in the middle between the reflecting
planes, the phase factor exp (iSrh) = −1. Therefore, in these
planes the magnetic components of the incident and reflected
electromagnetic waves add constructively, forming antinodes
of the magnetic field. There, the magnetic field amplitude is
|Htot| = 2H0, and the field is linearly π polarized.

In contrast, the amplitude of the magnetic component of
the wave field at the reflecting planes for nuclear scattering
with the transition − 1

2 → − 3
2 is finite. In this case, the wave is

left-hand circularly polarized and, as shown above, with such
a polarization, it is not capable to excite nuclei. Concerning
the field in the middle plane, it is given by the following
expression:

Htot (rh, t ) ∝ exp (iωt )H0
[
hσ

0 + hσ
1 exp (−i2θ )

]
(10)

[compare to Eq. (8)]. The right-handed circulation of the field
vector at the middle plane within a time period is displayed in
Fig. 3. Evidently, the field is elliptically polarized. The ellipse
is strongly extended along the Z axis, i.e., in the direction of
the σ -polarization vector. We see that the polarization state
of the standing wave underwent a dramatic transformation in
the space interval between the reflecting plane and the middle
plane. The presented example vividly demonstrates one more
peculiar feature of nuclear diffraction.
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FIG. 4. Structure of the modulated wave field in the space between the reflecting atomic planes m and m + 1 for several angular positions
of the crystal in the vicinity of the Bragg angle. The set of panels (a) illustrates the case of electronic scattering, the sets of panels (b) and (c) are
related to the case of nuclear resonant scattering. The angle of incidence of radiation is increased from panel to panel from the left-hand to
the right-hand side, corresponding to the angular deviations of −260, −25, 0, +25, and +260 μrad from the center of the rocking curve. The
angular positions corresponding to the left edge of the range of the strong electronic reflection and to the angle of maximum nuclear reflection
are marked by the stars. The bold vertical bars on the panels (a) and (b) and the ellipses in the set of panels (c) display linear and elliptical
oscillations of the electric strength vectors for electronic scattering and of the magnetic strength vectors for nuclear scattering in the equally
spaced points between the reflecting planes. In nuclear scattering, the transitions − 1

2 → − 1
2 (b) and − 1

2 → − 3
2 (c) are excited, respectively.

All oscillations are displayed in the XY Z coordinate system.

C. Standing wave structure

In the case of electronic scattering, various questions con-
cerning the wave field spatial distribution in crystals have
been investigated in details [16,17]. Concerning nuclear scat-
tering, the examples of transformation of the electromagnetic
field polarization within one unit cell under conditions of
realization of the effect of suppression of nuclear excitation
are presented in Ref. [18]. The expressions for the wave
field amplitude at the atomic planes and between them in
the approximation of small deviations from the Bragg angle
are given in Ref. [9], Eqs. (5) and (6). Different behavior
of the field in the cases of electronic and nuclear scattering
for the transition with M = 0 is illustrated in Ref. [9], in
Fig. 5. In this work, spatial distributions of the wave field
oscillations are found for arbitrary angles of incidence in the
range of Bragg reflection. For each angle, the distributions
along the normal to the reflecting planes are calculated in the
space interval between the atomic planes m and m + 1. The
results of the calculations for electronic scattering and nuclear
scattering for the transitions − 1

2 → − 1
2 and − 1

2 → − 3
2 are

presented in Fig. 4. The scattering geometry is symmetric.
Figure 4(a) displays evolution of the amplitude modulation

and the spatial location of the total electric wave field in elec-
tronic scattering of σ -polarized wave. In this case, the wave
field is linear polarized in a way that the oscillations of the
electric strength vector occur along X axis, within the limits

of the vertical bold bars in Fig. 4. The amplitude modulation
at the initial crystal position is displayed on the left panel.
In this angular position (θ − θB = 0 μrad), the electric field
amplitude is only slightly different in the atomic planes and
between them. The highest contrast is achieved on the left
edge of the reflection region, marked by the star, at the angle
θ − θB = 10.5 μrad. Herein, the standing wave is formed.
The nodes of the wave are located at the atomic planes,
whereas the antinodes with the doubled amplitude at the
middle plane. Thus, the electric field is as if it is completely
pushed out to the space unoccupied by atoms. For this reason,
the absorption of radiation drops down dramatically. Further
on, the wave field is moving along the normal to the reflecting
planes, oppositely to the Z-axis direction, practically without
changing its configuration, i.e., keeping the shape of the stand-
ing wave (the next two distributions correspond to the angles
θ − θB = 17.5 and 35 μrad, respectively). Thereby, since the
field strength at the atomic planes grows, the absorption
of radiation by atoms restores. Nevertheless, the integrated
over the sample absorption still plays a negligible role. This
happens because, due to an interference phenomenon, known
as primary extinction, the field is not allowed to penetrate
into the crystal within the range of strong reflection (the
issues of the primary extinction and of the penetration length
will be discussed in Sec. IV C). Drifting further with the
increase of the incidence angle, the antinodes of the standing
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FIG. 5. The angular dependencies of the absolute values of the reflection coefficient: (a) in potential electronic scattering and (b) in resonant
scattering with the nuclear transition − 1

2 → − 1
2 . The bold lines depict the dependencies for the asymmetric geometry with β = −0.5 (left

panels) and β = −2.0 (right panels). For comparison, the dependencies for the symmetric geometry are shown by thin lines. The vertical
arrows mark the boundaries of the region of strong reflection in the cases of asymmetric scattering.

wave move to the atomic planes. Because at these angles the
primary extinction plays already lesser role, the radiation can
penetrate deeper into the crystal and, therefore, the role of
absorption increases significantly. Finally, far away from the
Bragg region (θ − θB = 260 μrad), the reflected wave fades
out and only the wave propagating in the forward direction
with a constant in space amplitude remains.

Figure 4(b) displays evolution of the spatial modulation
of the magnetic wave field amplitude for nuclear resonant
scattering of π -polarized incident wave when the nuclear
transition − 1

2 → − 1
2 is excited (scattering by electrons is

neglected in these calculations). When the crystal is set in the
Bragg position (marked by the star), the standing magnetic
wave with the nodes at the atomic planes and the antinodes
between the planes is formed. The field is linearly π polarized,
oscillations of the magnetic strength vectors occur along the
X axis. In this angular position, the field is not absorbed
by nuclei, and radiation is able to penetrate deeply into the
crystal. When turning the crystal away from the center of

the rocking curve, both to the left-hand and to the right-hand
sides by 25 μrad, 260 μrad symmetrically, the modulation of
the field amplitude in space decreases. The oscillations of the
magnetic field at the atomic planes restore and, therefore, the
absorption of radiation by the nuclei appears. It is interesting
to note that, in contrast to the case of electronic scattering,
the modulation pattern only slightly shifts along the normal to
the reflecting planes when the crystal angular setting changes.
In addition, the offset direction depends on the direction of
rotation of the crystal.

The evolution of the total magnetic field spatial distribution
in nuclear resonant scattering of σ -polarized wave is shown in
in Fig. 4(c). When the crystal is magnetized along the X axis,
the incident radiation can excite only the nuclear transitions
with M = ±1, in the particular case, the transition − 1

2 →
− 3

2 . In this case, one observes quite a different picture: now
the total field of the elliptical polarization is created. The
rotation of the magnetic strength vector occurs in the Y Z
plane. The pure circular rotation of the magnetic vector takes
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place in the atomic planes when the crystal is set at the Bragg
position (marked by the star). Yet, as we were convinced
above, the left circular polarized field is unable to excite the
right circular polarized oscillation of the nuclear transition
magnetic moment. Therefore, in the absence of absorption
the field is capable to penetrate deeply into the crystal.
To the left- and to the right-hand sides from the Bragg
position, the field at the atomic planes becomes elliptically
polarized. Therefore, the absorption of radiation by nuclei
is partly restored. The noticeable asymmetry of the field
configurations at the opposite sides of the Bragg angle is
observed. In the limit of the large angular deviation, only the
σ -polarized wave propagating through the crystal remains. In
general, the fanciful patterns of the transforming polarization
are observed in the considered case.

D. Interplay between absorption and reflectivity

We recall that the reflectivity of a crystal is defined by the
expression Q = |R|2/|β| [see Eq. (5)]. When the scattering
geometry is symmetric, it represents the ratio of intensities in
the diffracted and the incident beams. In this case, for nuclear
resonant diffraction the full reflectivity Q = |R|2 approaches
unity [see the angular behavior of the reflection coefficient
in Figs. 2 and 5(b)]. The prediction of the 100% reflectivity
of γ radiation by nuclear lattice [8] was very unexpected.
Indeed, high reflectivity looks improbable if one takes into
account that the intermediate state only to a small percentage
decays by reemission of γ radiation. Most of the radiation
should be lost into incoherent decay channels via internal
conversion and spin-flip processes. Furthermore, losses can be
expected from the diffraction process itself, which gives rise to
incoherent channels due to an isotopic and spin incoherence.
In the case of 57Fe, the entire losses into incoherent channels
should amount to at least 95%. Under these circumstances, it
was hard to imagine that in the resonance Bragg diffraction of
γ rays high reflectivity might be ever reached.

The main reason of the high reflectivity turned out to be
the suppression of all inelastic channels of nuclear scattering,
Kagan-Afanas’ev effect, discussed in Sec. III B. The nature of
the suppression is related to the formation of the interference
pattern described in Sec. III C. Due to the formation of the
standing wave field inside the crystal, the amplitude of nuclear
excitation can be strongly modified. In particular, when the
field nodes are formed at the place of nuclear positions, the
excitation of nuclei vanishes.

Clearly, in this situation we face an obvious logical con-
fusion: the total reflection of γ radiation is only possible
because of the full suppression of nuclear absorption. The
latter is caused by forcing the excitation amplitude to zero.
One should then conclude that the entire reflection takes place
under conditions where the excitation amplitude becomes zero,
which sounds really puzzling. This question can be answered
if we closely consider the interaction of the total wave field
with nuclei, namely, the issues of the interplay of absorption
and diffraction of radiation near the Bragg position [19].

The damping of the field intensity inside a semi-infinite
crystal is given by the linear absorption coefficient μa =
2K Imε

(2)
0 , i.e., by the imaginary part of ε

(2)
0 [see Eq. (1)].

At resonance, where ηdd ′ = iη, and for the symmetric case

β = −1, the expression for ε
(1,2)
0 , Eq. (2) takes the simple

form

ε
(1,2)
0 = 1

4 {α ∓
√

α2 − 4iηα}. (11)

From Eq. (11), it can be immediately deduced that Imε
(2)
0 falls

down from 1
2η to zero when approaching Bragg position. This

means that in the entire angular range around the Bragg posi-
tion, the damping is less than the off-Bragg regular damping
caused by the absorption in resonance. Thus, in resonance
diffraction there is no anomalously strong damping similar
to the primary extinction characteristic for electronic Bragg
scattering of x rays. On the contrary, the radiation is allowed to
penetrate into the crystal deeper than it does in the off-Bragg
position of the crystal.

The weakest damping and the deepest penetration ob-
viously occur when the exact Bragg position is reached.
In the immediate neighborhood of the Bragg position
where α � η, we may approximately accept that ε

(1,2)
0 ∼

1
4 {α ± √

2αη(1 − i)} and, hence, Imε
(2)
0 ∼ √

α. The total
number N of nuclei interacting with the field is proportional
to the penetration length La of radiation. Because |μaLa| =
1, the penetration length is inversely proportional to Imε

(2)
0 ,

which yields the angular dependence N ∼ 1/
√

α.
For the radiation polarization component with h1 = h0,

the wave field amplitude at the reflecting planes, where
exp (iSrm) = 1, is given by

H(rm)∼exp

(
1

4
K

√
αηL

){
1 + iη

1
2 [α+(1 − i)

√
αη]−iη

}
h0.

(12)

In the approximation of
√

α � √
η, it is proportional to

H(rm) ∼ exp

(
−1

4
√

αηKL

)√
α

η
. (13)

The question now concerns the entire absorption and reflec-
tion of the wave field over the increased penetration length.
Both the entire absorption and reflection are determined by the
total number of nuclei N ∼ 1/

√
α, and by the field amplitude

at the positions of nuclei H(rm) ∼ √
α. We recall that α is

the deviation from the Bragg angle. Lowering of the field
amplitude is accompanied by growing with the same tempo
of the number of reflecting nuclei.

When absorption is considered, the contributions of all
nuclei are summed incoherently. The entire absorption then
turns out to be given by

entire absorption ∼ N × |H(rm)|2 ∼ (1/
√

α)α = √
α (14)

and, hence, diminishes proportionally to
√

α. At the exact
Bragg position, the entire absorption completely vanishes.
This results in a suppression of incoherent channels. But,
when diffraction is considered, the contributions of all nuclei
should be summed coherently. The reflection is then given by
the square of the summary scattering amplitude

reflection ∼ |N × H(rm)|2 ∼ |(1/
√

α)
√

α| = 1. (15)

In spite of the vanishing wave field when approaching the
Bragg position, reflection does not vanish. In contrast, at
the Bragg position it becomes the total one. Thus, we see
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that the coherent scattering of all nuclei is able to maintain
diffraction, even though the field amplitude at the place of
each individual nucleus vanishes. The different behavior of
the total absorption and total diffraction is of course due to the
different ways of summing the contributions of all the nuclei.

Thus, in resonance Bragg diffraction, in spite of the very
strong incoherent channels for individual nuclei, diffraction
can take place without absorption. In a semi-infinite crystal,
the only outlet for the radiation is the entrance surface. The
entire radiation must leave the crystal through this surface;
this is the reason why the total reflection is achieved in spite
of the very deep penetration.

IV. ROLE OF THE ASYMMETRY OF
THE DIFFRACTION GEOMETRY

A. Absolute value of the reflection coefficient

In Fig. 5, the angular dependencies of the absolute values
of the reflection coefficient |R| are presented for the asym-
metric geometries with the asymmetry factors β = −0.5 and
−2.0.

First, we consider an event of potential scattering of
radiation by electrons [see Fig. 5(a)]. In this case, there
is a pronounced angular range, where the reflection co-
efficient is maximal and changes slightly. The boundaries
of this range are marked by the vertical arrows. Let us
find the width and the center position of this range. Here,
we should consider only the electron susceptibility, so
that

∼
ηdd ′ = χdd ′ . Given that |Imχdd ′/Reχdd ′ | � 1, one can

approximately write the root in the expression for ε in

the form
√

[χ ′
00 + χ ′

11|β| − α|β|]2 − 4|β|(χ ′
01χ

′
10), where the

prime symbol designates the real value of the susceptibility.
The solution has a physical sense only if the expression
under the square root is greater than or equal to zero. This
condition yields the formulas for the left and right bound-
aries of the strong reflection region as α1,2 ≈ χ ′

00/|β| + χ ′
11 ±

2
√

(χ ′
01χ

′
10)/

√|β|, wherein one gets the expressions for the
center position and for the width of the strong reflection
range as

αc = χ ′
00/|β| + χ ′

11,

|α| = 4
√

(χ ′
01χ

′
10)/|β|. (16)

As one can see from Eq. (16), at rising |β| the angular width of
the range decreases in inverse proportion to

√|β|. Substituting
the susceptibility values given in Table II and taking into
account the relation between the angular parameter α and
the real angle, we obtain |θ | = (59.2 − 17.1) = 42.1 μ rad
for |β| = 0.5 and |θ | = (29.6 − 8.5) = 21.1 μrad for |β| =
2.0, which is in agreement with the data in Fig. 5(a). With
the increase of |β|, the center position of the reflection range
approaches the value of χ ′

11. Remarkably, the shrinking of
the reflection range is accompanied by the growth of the
maximal magnitude of the reflection coefficient |R|m. Notice
that |R|m is less than unity for |β| < 1 and more than unity for
|β| > 1. Thus, in the case of a constructive interference, where
exp (iSrm) = 1, the amplitude of the reflected wave at the
reflecting plane appears to be in the first case lesser, while in
the second case larger than the amplitude of the wave incident

on the reflecting plane. It is easy to show that for |β| > 1 and
the angular parameter αm ≈ αc → χ ′

11, the maximal value of
the reflection coefficient obeys the dependence

|R|m ≈
∣∣∣∣∣ βq

1
2 +

√
1 − 4|β|q2

∣∣∣∣∣, (17)

where q = (χ ′
01/χ

′
00). The dependencies of the maximal value

of the reflection coefficient |R|m and of the width of the
reflection range |R|w = α in the case of potential electronic
scattering are presented on left-hand panel in Fig. 6. As
one can see, when moving from the range of the grazing
to the range of the steep incidence of x rays, the absolute
value of the reflection coefficient monotonously grows, and
the reflection diapason narrows. At upper extreme of this
range, the amplitude of the reflected wave can exceed that of
the incident wave by more than five times.

We turn to the case of nuclear resonant scattering. Here,
the behavior of the reflection coefficient has a number of
significant differences. The shape of the angular dependence
of the absolute value of the reflection coefficient resembles a
symmetrical peak, as one can see in Fig. 5(b). Thus, in contrast
to the case of electronic scattering, the clear-cut range of a
strong scattering is absent. One can expect similar properties
of angular dependence of Bragg scattering in neutron resonant
scattering [20] and at an absorption edge in x-ray scattering
in the case of the large imaginary part relative to the real
part of scattering amplitude, as discussed in Ref. [19] (see
Fig. 5 in that paper). At the same time, the widths of the
angular dependencies exceed those in the case of electronic
scattering by more than an order of magnitude. As discussed
above, this difference is determined by the ratio of the nuclear
and the electronic susceptibilities |η|/|χ |, which essentially
exceeds unity (see Table II). The maximal absolute value of
the reflection coefficient and the angular width of the relevant
curve at the half-height as functions of the asymmetry factor
in resonance Bragg diffraction are shown on the right-hand
panel in Fig. 6. Here, in contrast to the case of potential
electronic scattering, the width of the angular curve grows
when moving apart from the symmetric geometry, both to
the side of the grazing incidence geometry (|β| < 1) and to
the side of the steep incidence geometry (|β| > 1). How-
ever, when moving toward large |β|, the rise of the angular
curve width slows down. As far as the maximal absolute value
of the reflection coefficient is concerned, it grows within the
entire range of increasing |β|, with the very fast increase in
the range of |β| < 1. The rise abruptly slows down in the
interval of 1 < |β| < 2, and practically ceases at |β| > 2. The
absolute value of the reflection coefficient does not exceed
unity in contrast to the case of electronic scattering.

As to the reflectivity, its maximum value Q ∼ 1 in elec-
tronic scattering is reached at any magnitude of the asymmetry
factor with the only difference that in the grazing incidence
geometry |β| < 1, it occurs in a broader angular range, while
in the steep incidence geometry |β| > 1, it happens in a
narrower range (see Fig. 7, left panel). In nuclear scattering,
the maximum reflectivity Q ∼ 1 is reached only for the
symmetric diffraction geometry (Fig. 7, right panel). When
stepping aside from the point of symmetry toward either
direction, the nuclear reflectivity drops down. The reflectivity
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FIG. 6. The maximal value of the reflection coefficient |R|m (shown by the vertical left-hand axis H ) and of the width of the reflection range
|R|w (shown by the vertical right-hand axis W ) as a function of the asymmetry factor |β|, with the left-hand panel for the case of electronic
scattering and the right-hand panel for the case of nuclear scattering with the transition 1

2 → − 1
2 .

of about half the maximum value is reached for the considered
cases of asymmetry.

B. Transformation of the total wave field when
passing toward asymmetric geometry

Figure 8 shows the distributions of the wave field ampli-
tudes in the space between the neighboring atomic planes
for various scattering geometries and, in each geometry, for
several incidence angles. In the center panels, the spatial
distribution is given for the symmetric geometry β = −1.
In the left- and the right-hand panels, they are shown for
the asymmetric geometry in the grazing incidence case with
β = −0.5, and in the steep incidence case with β = −2.0,
respectively. The amplitude of the wave propagating in the
direction of k0 vector is taken for unity.

First, we consider the upper row of the panels illustrating
the case of electronic scattering. The spatial distributions
of the electric field amplitude |Etot| are shown here. The
distribution in the symmetric geometry is related to that in
Fig. 4(a). When approaching the Bragg range, the reflected
wave starts to be formed, and a slight modulation of the wave
field amplitude appears, as shown by the thickest orange line.
At the left edge of the reflecting range, a maximum contrast
of modulation is reached (as shown by the thinner green line).
The electromagnetic field is completely pushed out into the
space between the planes. With a further increase of the angle,
the maximum of the wave field amplitude moves toward the
atomic planes (shown by the further thinner pink line). When
getting out of the reflection range, the modulation contrast
gradually drops down (the consequently thinner violet and
blue lines). Here, the modulation of the amplitude turns out

FIG. 7. The angular dependence of the reflectivity in the case of electronic (left panel) and nuclear scattering for M = 0 transition (right
panel) for three indicated values of the asymmetry factor.
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FIG. 8. The distributions of the wave field amplitude in the space between the neighboring atomic planes m and m + 1 at various angles
of incidence of radiation on the crystal in the vicinity of the Bragg angle, shown for various magnitudes of the asymmetry factor β. The upper
row of panels correspond to scattering of σ -polarized wave by electron shells of atoms; the lower row correspond to scattering of π -polarized
wave by atomic nuclei when the nuclear transition − 1

2 → − 1
2 is excited. The amplitude of the wave incident on the planes is taken equal to

unity. The thickest orange lines correspond to angles lesser than the Bragg angle, the thinner green lines correspond to angles on the left edges
of the range of strong reflection for electronic scattering and to the Bragg angle for nuclear scattering. The subsequently further thinner pink,
violet, and blue lines correspond to sequentially increasing angles above the Bragg angle.

to be inverted relative to that at the entrance of the reflection
range, e.g., compare the thicker orange and blue lines.

The picture does not change qualitatively in the asymmet-
ric geometry. However, here there are quantitative differences.
The main difference is in the modulation contrast. At the
grazing incidence (as shown by left-hand panel), the contrast
of modulation is much less than in the symmetric case. The
wave field amplitude at the atomic planes is not zero for
all incidence angles. At the steep incidence (see right-hand
panel), the modulation contrast, on the contrary, is getting
larger than in the symmetric geometry. At the atomic planes,
the wave field amplitude is also nonzero, but in-between the
planes it is by more than twice larger than the amplitude in the
incidence wave. At the grazing incidence, the standing wave
moves without noticeable change of the modulation contrast
within a larger angular interval. At the steep incidence, the
modulation contrast decreases much faster (compare the con-
sequently thinner pink, violet, and blue lines in the left and
right panels).

We turn to the case of nuclear scattering represented in the
lower row of panels. The incident π -polarized wave excites
the transition − 1

2 → − 1
2 between the nuclear sublevels in

the ground and excited states. In this case, the distributions
of the magnetic wave field |Htot| in the space between the
neighboring atomic planes are displayed. The distributions in
the symmetric geometry are displayed in the central panel.
The middle-thick green line represents the amplitude distri-
bution in the crystal set at the Bragg angle. As well as in the
case of electronic scattering, here the maximal contrast of the

amplitude distributions is reached. The nodes are located at
the atomic planes. The antinodes between the planes have the
doubled amplitude of the propagating wave. The difference
to electronic scattering is the symmetric drop of the mod-
ulation contrast in the standing wave below and above the
Bragg angle. Aside from that, the standing wave is shifting
symmetrically to the left and to the right sides when the crystal
is set off the Bragg position, as shown by the thickest orange
and thinnest violet lines.

In the asymmetric geometry, the significant differences
between the grazing and steep incidence are observed. At the
side of grazing incidence, the contrast in modulation of the
wave field amplitude drops down appreciably. On the contrary,
at the side of the steep incidence the contrast characteristic
for the symmetric case is preserved and maintained in a
large angular range. This conclusion is also supported by the
increase of the width of the reflection region for |β| > 1 as
compared to the symmetric geometry (see the lower right-
hand panel in Fig. 5). It is interesting that zero field value at
the atoms at the Bragg angle is kept. From this observation one
can conclude that the asymmetric mode with |β| > 1 turns
out to be more advantageous from the point of view of the
suppression of nuclear absorption in the crystal.

C. Penetration length and reflectivity

In the case of nuclear resonant scattering, the full reflectiv-
ity can be reached only in the Bragg position (see Sec. III D).
Aside from this position, the reflectivity drops down due to
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the rise of the nuclear excitation amplitude [see Fig. 4(b)],
involving restoration of incoherent channels, particularly, of
internal conversion. On the contrary, in electronic scattering
the total reflectivity of the crystal Q ∼ 1 is preserved within
the finite angular range even at the angles, where the total
field at the atomic planes is rather large [see the central panel
in Fig. 4(a)] and, therefore, the photoelectronic absorption
is restored. Quite an evident question arises as to why the
reflectivity can be maintained at a high level under the con-
dition of strong absorption of radiation by atoms. In order to
clarify this issue, we consider the variation of the number of
atomic centers participating in scattering in the angular range
near the Bragg position. This number is directly related to the
penetration length of radiation La into the crystal.

In the vicinity of the Bragg angle, a significant change
of La can occur along with the strong modification of the
wave field structure inside the crystal and, as a consequence,
of the interaction conditions of radiation with atoms. Far off
the Bragg angle, the penetration length is determined by the
ordinary absorption of radiation by atoms due to photoelectric
effect or due to internal electron conversion. But, within the
limits of the reflection range, the decisive role starts to be
played by the interference of the waves built up inside the
crystal due to diffraction. The interference of the eigenwaves
determines the structure of the wave field in the crystal space
on both a small and large scale. As the result of the interfer-
ence, the modulation of the total field amplitude arises with
the period equal to the interplanar spacing, i.e., on the scale of
several radiation wavelengths. In addition, the characteristic
parameter of attenuation of the wave field amplitude changes
on the scale essentially exceeding the wavelength.

The modulation of the field amplitude on a short scale
was thoroughly discussed in previous sections. It takes place
both for electronic and for nuclear scattering. However, in
electronic scattering, due to the phase relations of the scat-
tered waves, another specific kind of an interference occurs.
This is a strong destructive interference between the waves
propagating in the forward direction, the incident wave, and
twice reflected one, occurring in a thin layer under the surface
of the crystal. By this reason, within the finite angular interval
the radiation is practically prevented from penetration into the
crystal. This interference damping of radiation is known as
primary extinction. The primary extinction determines a pe-
culiar behavior of the damping parameter Imε

(2)
0 . The angular

dependence of Imε
(2)
0 is illustrated in Fig. 9. As one can see,

due to the primary extinction in a wide angular interval, the
following relation holds: |Imε

(2)
0 | � |Imχ00/2|. As a result,

the damping of radiation in the crystal within this angular
range appears to be much larger than that far off the Bragg
region.

The primary extinction does not exist in the nuclear diffrac-
tion case. Here, only the short-range modulation of the wave
field amplitude determines the angular variation of the damp-
ing parameter. The latter, starting from the value of |Imη/2|
far off reflection range, goes to zero approaching the Bragg
angle (see Fig. 9).

In order to characterize the length of penetration, we
have to take into account that the wave field amplitude can
be strongly modulated and, in addition, that the modulation
pattern can move in space when the incidence angle changes

FIG. 9. Angular dependencies of the imaginary parts of ε
(2)
0 in

the vicinity of the Bragg angle for electronic (the thin dark cyan line)
and for nuclear (the thick pink line) scattering. Far off the Bragg
angle, the limit values of Imε

(2)
0 are indicated at the right side.

within the reflection range (see Fig. 4). Therefore, the char-
acteristic wave field amplitude should be averaged over the
interplanar space. For the simplest model of the average, one
can accept the half-sum of the amplitudes on the atomic plane
and in the middle distance between the neighboring planes.
For the (002) reflection of iron crystal, the phase factors for the
mentioned positions are exp (iSr) = ±1, respectively. Then,
for the scalar value of the averaged amplitude we obtain

Eaveraged = E0 exp
(
K Imε

(2)
0 L

)1

2

{∣∣∣∣∣1 − β
∼
η10

2ε
(1)
0 − ∼

η00

∣∣∣∣∣
+

∣∣∣∣∣1 + β
∼
η10

2ε
(1)
0 − ∼

η00

∣∣∣∣∣
}

. (18)

At the given susceptibility, the field attenuation on the path
L is determined by the deviation of rays from the Bragg
angle and by the asymmetry factor β. We define the length
of penetration as a path La, within which the averaged ampli-
tude drops by a factor of

√
e (i.e., the averaged intensity of

radiation after this path is 1/e of its initial value). At the end
of the characteristic path La, the following relationship holds:

a = exp
(
K Imε

(2)
0 La

)
D, (19)

where a = √
1/e and D = 1

2 {|1 − β
∼
η10

2ε
(1)
0 −∼

η00

| + |1 + β
∼
η10

2ε
(1)
0 −∼

η00

|}.
To extract and calculate the value of La, it is necessary to take
a logarithm of both parts of the equation. Finally, we arrive at

La = λ

2π Imε
(2)
0

ln
[ a

D

]
. (20)

In Figs. 10(a) and 10(b), the angular dependencies of the
penetration lengths for electronic and nuclear diffraction,
respectively, are presented in vicinity of the Bragg angle for
the various asymmetry factors. Far off the Bragg angle the
normal absorption takes place, and La is ≈21 μm in electronic
scattering and only ≈0.1 μm in nuclear scattering. In latter
case, the penetration length is so small because of strong
absorption in nuclear resonance.
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FIG. 10. In the upper row, the angular dependencies of the penetration length of radiation into the crystal are shown for the symmetric and
asymmetric geometries of scattering with the values of the asymmetry factor β = −0.5, −1.0, and −2.0. In the lower row, the dependencies
of the penetration lengths, amplitudes of the total fields, and reflectivities on the asymmetry factor are displayed for specific angular positions
of the crystal [see the description of panels (c) and (d) in the text]. Panels (a) and (c) represent electronic scattering, and panels (b) and
(d) represent nuclear scattering for the transition − 1

2 → − 1
2 .

For two types of scattering, a drastic difference in the
angular dependencies is immediately observed: a strong de-
crease of La within the clear-cut angular ranges for electronic
scattering in contrast to a sharp rise of La, symmetrically
extending on the entire region around the Bragg angle, for
nuclear scattering. The dips in Fig. 10(a) occupy the distinct
angular ranges, where the high reflectivity of radiation occurs
[compare to the angular dependencies shown in Fig. 5(a)].
This is the primary extinction that causes such a behavior of
La. Because of the primary extinction, the penetration length
for the considered reflection turns out to be by approximately
10 times lesser than the regular value. In resonant nuclear
scattering, the primary extinction does not take place. There-
fore, the damping of radiation is caused only by the action
of incoherent channels, among them, primarily, by internal
conversion. Because by approaching the Bragg position the
nuclear excitation amplitude at the atomic planes vanishes and
incoherent channels are suppressed, the resonant radiation is
allowed to penetrate deep into the crystal. Under the condition

of normally strong absorption in resonance, close to the Bragg
angle La can reach thousands of microns, exceeding dramati-
cally the regular penetration length far off the Bragg position
[see Fig. 10(b)]. The anomalous penetration of radiation into
the crystal is determined by the behavior of the damping
parameter Imε

(2)
0 . The angular dependencies of the damping

parameter in the vicinity of the Bragg angle are displayed in
Fig. 9.

The deep penetration also happens in electronic scattering,
at the left edge of the high-reflectivity interval. However, the
angular width of the La rise is extremely small in comparison
to the width of the reflection region, because for x rays the
real part of the scattering amplitude is always large in com-
parison to the imaginary part. Primary extinction, therefore,
is the dominant reason for the high reflectivity in electronic
scattering.

In Figs. 10(a) and 10(b), the angular dependencies are
compared for three values of the asymmetry factor. Much
stronger influence of the asymmetry on the values of La is
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observed in nuclear resonant scattering. Whereas in electronic
scattering the minimal values of La only slightly differ for
β = −0.5, −1.0, −2.0, in nuclear resonant scattering for
the same values of β the maximal values of La are different
significantly (by several orders of magnitude).

In Figs. 10(c) and 10(d) the penetration lengths for specific
angular positions are shown as functions of the asymmetry
factor. The minimal and maximal values of the penetration
lengths, La min and La max, are considered for electronic and
nuclear scattering, respectively. In electronic scattering, the
lengths La min correspond to the angular parameters αc. In
nuclear scattering, the lengths La max correspond to the angu-
lar positions θ − θB = 0.5 μrad, i.e., to the very vicinity of the
Bragg angle. They are compared to the total field amplitudes
Etot (rm) and Htot (rm) at the scattering centers. Figures 10(c)
and 10(d) show quite an opposite behavior of La in electronic
and nuclear diffraction. When moving from the side of the
grazing incidence |β| < 1 to the side of the steep incidence
|β| > 1, the characteristic La and, hence, the number of the
scattering centers N in the region of the high reflectivity
decreases in electronic scattering and increases in nuclear
scattering. The inverse behavior takes place for the total field
amplitudes Etot (rm) and Htot (rm): the amplitude grows in elec-
tronic scattering and diminishes in nuclear scattering. By this
reason, the reflectivity determined by the coherent sum of the
amplitudes over the scattering centers |N × E(rm), H(rm)|2
stays at high level in electronic scattering and only slightly
changes in nuclear scattering, as one can see in Figs. 10(c)
and 10(d). Thus, in potential electronic scattering the decrease
of the scattering centers number is compensated by growing
of the total field amplitude at their positions, and vice versa:
the decrease of the total field amplitude in resonant nuclear
scattering is compensated by the increase of the number of
scattering centers to maintain the high level of the reflectivity.

V. SUMMARY

A number of features distinguishes the elementary acts
of interaction of resonant and nonresonant radiation with an
atom. Potential scattering is characterized by the amplitude
independent on the radiation frequency and, practically, it
is a real value. Such kind of scattering is realized for the
process of elastic scattering far away from an absorption
edge. On the contrary, resonant scattering is characterized by
the amplitude sharply dependent on the radiation frequency.
Strictly in resonance, it is a pure imaginary value. Therefore,
for γ radiation an ensemble of Mössbauer nuclei in a crystal
represents a resonating diffraction lattice. When a γ -ray
photon is absorbed by the nuclear ensemble, a long-lived
intermediate state is created.

The entire process of scattering of a γ -ray photon by a
nucleus can be divided into three stages: absorption of a
primary photon with a formation of an intermediate excited
state, dwelling in the intermediate state, and transition back
to the ground state with an emission of a secondary photon.
In the intermediate state, the nuclear excitation is delocalized,
and a single photon is shared by all nuclei. This is how the
scattering process exhibits a collective character. By these
features of nuclear excitation, the resonance diffraction of a

γ -ray photon by an ensemble of nuclei should be considered as
a macroscopic quantum phenomenon. In the photon diffraction
process, the crystal behaves as a macroscopic quantum-
mechanical object, the macroscopic quantum resonator. The
collective state of nuclear excitation, called nuclear exciton,
provides the physical basis for the use of a macroscopic polar-
ization given by the Maxwell equations to treat the radiative
effects of nuclei.

The probability of an internal electronic conversion in scat-
tering at an individual nucleus is so large, that the localization
of excitation with the loss of photon is very likely. And yet
the coherence of the collective response of nuclei in a crystal
permits the radiative channel not only to survive, but even to
become dominant in the process of an interaction of a γ -ray
photon with a nuclear array. When the Bragg requirements
are satisfied, the excited atomic currents contribute to the
field, and the constructive interference of the waves emitted
by atoms gives rise to the formation of the strong waves in
some directions.

In this work, as the thought experiment the diffraction
of radiation in the crystal of iron entirely consisting of the
nuclear resonant isotope 57Fe was considered for the (002)
Bragg reflection. The angular dependencies of the reflection
coefficient for electronic and nuclear scattering in the vicinity
of Bragg reflection were computed and displayed on the com-
plex plane (see Fig. 2). The specific R contours were obtained
for electronic and nuclear scattering. The total amplitude of
the electromagnetic field was directly evaluated.

The structure of the total field in the space between the
neighboring reflecting atomic planes can be strongly modified
due to diffraction. The field amplitude is modulated in the
direction orthogonal to the scattering planes (see Fig. 4).
The drop of the total field amplitudes at the atomic planes
at the Bragg angle to zero corresponds to the Borrmann effect
in electronic scattering and to the Kagan-Afanas’ev effect
in nuclear scattering. While for realization of the Borrmann
effect the disappearance of the fields at the atoms is a neces-
sary condition, for the Kagan-Afanasev effect it is optional.
Due to diffraction, in the case of an excitation of the nuclear
transition with the change of the magnetic number |M| = 1
the circularly polarized total magnetic field at the nuclei is
created. At the same time, the magnetic moment of the nuclear
transition appears to be also circularly polarized, but in the
opposite direction of rotation (see Fig. 3). Therefore, tuned
to excite the given nuclear transition, the total field created in
diffraction by the nuclear ensemble is not able to produce the
excitation of nuclei when approaching the Bragg angle. This
is a very typical situation for the Kagan-Afanasev effect: the
field at nuclei is not zero, but the interaction with the nuclei is
suppressed.

The main reason for the high reflectivity in nuclear scatter-
ing is the suppression of all inelastic channels. One should
then conclude that the entire reflection takes place under
conditions, where the excitation amplitude becomes zero.
How can these facts can be reconciled? The question concerns
the entire absorption and reflection of the wave field in the
crystal. They are determined by the total number of nuclei
involved in diffraction: N ∼ 1/

√
α, where α is an angular

parameter proportional to the deviation from the Bragg angle,
and by the field amplitude at the positions of the nuclei:
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H(rm) ∼ √
α. Dropping down of the field amplitude is accom-

panied by growing up with the same tempo of the number of
reflecting centers. When absorption is considered, the contri-
butions of all nuclei are summed incoherently. Then, the entire
absorption turns out to be proportional to N × |H(rm)|2 ∼
(1/

√
α)α = √

α, i.e., it disappears when approaching the
Bragg angle. When diffraction is considered, the contributions
of all nuclei are summed coherently. Then, the reflection is the
square of the summary scattering amplitude |N × H(rm)|2 ∼
|(1/

√
α)

√
α| = 1. In spite of the vanishing wave field when

approaching the Bragg position, reflection does not vanish.
In contrast, it becomes total at the Bragg position. Thus, we
see that coherent scattering of all nuclei is able to maintain
diffraction, even though the field amplitude at the place of
each individual nucleus vanishes.

The asymmetry in scattering geometry reveals itself in
different way in electronic and nuclear scattering. Several
characteristics of Bragg scattering were analyzed in depen-
dence of the asymmetry factor β = − sin θ0/ sin θ1, where θ0

and θ1 are glancing angles of the incident and reflected beams.
In electronic and nuclear scattering, the maximal value |R|m
of the reflection coefficient and the width |R|w of its angular
dependence vary differently with the asymmetry parameter β

(see Fig. 6). In electronic scattering, when moving from the
side of the grazing incidence to the side of the steep incidence
|R|m grows monotonously, and it can become much higher
than unity. That is, the amplitude of the reflected wave can
significantly exceed that of the incident wave. The width |R|w
in this case gradually falls. In nuclear scattering, |R|m reaches
saturation at the level of unity soon after the symmetry point
β = −1. As far as |R|w is concerned, it significantly exceeds
the corresponding width of the diffraction region in electronic
scattering, by more than one order of magnitude. In contrast
to electronic scattering, the width in nuclear scattering reaches
minimum at the symmetric position, and it rises with deviation
from this position to both sides.

The distributions of the wave field amplitudes in the space
between the neighboring atomic planes were computed for the
asymmetry factors β = −0.5,−1,−2.0 (see Fig. 8). Strong
spatial modulation of the amplitude is observed in the Bragg
angle region. In nuclear scattering, the modulation in the
wave field amplitude falls down below and above the Bragg
angle symmetrically, in contrast to electronic scattering. When
passing to the asymmetric reflection in the grazing incidence

case, the contrast of the modulation decreases appreciably. On
the contrary, at the side of the steep incidence, the contrast
characteristic for the symmetric case is preserved and main-
tained in a large angular range. Aside from that, at the Bragg
angle the zero value of the field at the atoms is kept.

A drastic difference is observed in the angular dependen-
cies of the penetration lengths for two types of scattering: a
strong decrease of La within the range of the high reflectivity
for electronic scattering, in contrast to a great increase of La,
spreading over the entire region around the Bragg angle, for
nuclear scattering (see Fig. 10). This behavior of La is caused
by the interference of the waves formed inside the crystal
under the conditions of coherent scattering. The interference
damping of radiation in electronic scattering is known as
primary extinction. In resonant nuclear scattering, the primary
extinction is absent. Therefore, the damping of radiation is
caused only by the action of incoherent channels, mostly by
internal electron conversion. Since in approaching the Bragg
position the nuclear excitation amplitude vanishes and the
incoherent channels are suppressed, the resonant radiation is
allowed to penetrate deep into the crystal.

When passing from the case of the grazing incidence |β| <

1 to the case of the steep incidence |β| > 1, in the region
of the high reflectivity the penetration length La and, hence,
the number of scattering centers N decreases in electronic
scattering and increases in nuclear scattering. Thus, in poten-
tial electronic scattering the decrease of the scattering centers
number is compensated by growing of the total field amplitude
at their positions, and vice versa: the decrease of the total field
amplitude in resonant nuclear scattering is compensated by
the increase of the number of scattering centers to maintain
the high level of reflectivity.

In this paper we did not touch some other specific features
of nuclear diffraction, particularly, its energy and time depen-
dence, and, especially, the strong polarization dependence of
the magnetic and electric fields structure inside the crystals.
Due to the polarization dependence, it became possible to
obtain a pure nuclear diffraction without any contribution of
coherent electronic scattering [21]. In particular, the polariza-
tion dependence of the field structure in combination with the
existence of the nuclear states mixed in the spin projections for
the FeBO3 crystal allowed for the creation of the Synchrotron
Mössbauer Source, which presents the source of coherent
nuclear resonant γ radiation of the 57Fe isotope [22–26].
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