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Analytical description of the propagation of spatiotemporal solitons in fibers
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On the basis of the approximate method of the averaged Lagrangian, the propagation modes of spatiotemporal
solitons in a graded-index optical fiber with a Kerr nonlinearity and anisotropic transverse distribution of the
linear refractive index are investigated. It is shown that within the framework of the proposed approach, the
equations for soliton parameters are formally similar to the dynamical equations of a two-dimensional quantum
Bose liquid in an external field. Various modes of propagation in the form of light bullets localized in all
directions were investigated. The conditions under which “dancing” light bullets can form are revealed. The
trajectories of such objects are spatial Lissajous figures, turning into helical lines in the case of axially symmetric
optical fibers. The fundamental spatiotemporal soliton is a special case of dancing light bullets. Under conditions
when the diffraction spreading scale length is much shorter than the dispersion scale length, the transverse
dynamics of a soliton does not depend on its longitudinal dynamics. In this case, the principal possibility of
forming a wide class of light bullets with different transverse structures is shown. In addition, under these
conditions, the spatiotemporal soliton mode of the self-imaging effect is described.
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I. INTRODUCTION

The modern science about optical solitons originates from
the invention of quantum generators of the visible frequency
range, i.e., from the 1960s. There are spatial, temporal, and
spatiotemporal solitons.

Spatial solitons are continuous beams, infinitely extended
in the direction of propagation and localized in transverse
directions. Focusing nonlinearity tends to compress the beam
in transverse directions. This process can be prevented by
diffraction. The mutual compensation of these effects is ca-
pable of forming the spatial soliton.

Temporal solitons are pulses of finite temporal duration and
infinitely extended in transverse directions. Here the nonlinear
temporal self-compression of the pulse is compensated by
dispersive spreading.

Spatiotemporal solitons (light bullets) can be considered as
a symbiosis of spatial and temporal solitons. Light bullets are
bunches of light energy, localized in all directions. According
to the above, focusing nonlinearity, dispersion, and diffraction
take part in the formation of light bullets. Let us note that these
three physical effects are necessary, but not sufficient for the
formation of light bullets. It is well known, for example, that
the focusing Kerr (cubic) nonlinearity, combined with anoma-
lous group velocity dispersion (DGV) and diffraction, is not
able to form a light bullet in a homogeneous bulk medium
[1]. It requires the presence of other types of nonlinearity:
saturating, Raman, etc. [1].

Another opportunity for the formation of a spatiotemporal
soliton can be provided by linear refraction in an inhomo-
geneous medium. The role of such medium can performed
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a fiber light guide. For example, in a graded-index fiber,
the refractive index continuously changes from its center
to the periphery. Thus, in the general case, the formation
of a light bullet requires the presence of nonlinearity, dis-
persion, diffraction, and of spatial inhomogeneity of the
medium.

In fibers with anomalous DGV, bright solitons can be
formed. In the case of normal DGV, dark solitons are formed
under certain conditions. We note that both bright and dark
solitons in optical fibers were observed experimentally. In [2],
bright dissipative solitons were observed. Dark solitons in
the form of vector domain polarization walls in a fiber ring
laser were also observed [3]. We also note the experimental
observation of dark and bright solitons in the spectral range
with both normal and anomalous DGV [4].

It should be noted that theoretical studies devoted to the
propagation of optical solitons in optical fibers are based
on numerical simulations [5]. At the same time, satisfactory
analytical approaches have not been developed. There is a
simple approximate approach associated with the factorized
dependence of the envelope of the light field on time and
transverse coordinates [6]. However, this approach does not
answer the question about the stability of light bullets and the
conditions for their formation. We note in this regard that light
bullets can be used in fiber-optic communication systems.
Therefore, analytical studies of the formation and propagation
of light bullets in optical fibers are highly desirable and
relevant.

This paper proposes a description of the waveguide propa-
gation of spatiotemporal solitons based on the development
of the method of an averaged Lagrangian applied to the
transversely inhomogeneous media. This method has proven
itself in the theory of temporal and spatiotemporal solitons
propagating in homogeneous bulk media [7–13].
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The paper is organized as follows. Section II gives a
nonlinear wave equation for the complex envelope of the
electric field of a light pulse. This equation is a nonlinear
Schrödinger equation (NLS), supplemented by a term that
takes into account the spatial inhomogeneity of the refractive
index. In this section is described the scheme of the averaged
Lagrangian method based on a trial solution in the form of
a spatiotemporal soliton. It is shown that the equations for
the parameters of this soliton are formally similar to the hy-
drodynamic equations for a quantum Bose liquid, which can
be transformed into a modified Gross-Pitaevskii equation. In
Sec. III, the solutions of these equations are found in the form
of a “dancing” light bullet and a fundamental spatiotemporal
soliton. Section IV is devoted to a brief analysis of solutions of
the type of light bullets in the approximation of the diffraction
limit. In this limit, the transverse diffraction spreading of
a light pulse occurs much faster than spreading along the
direction of propagation. As an example, the soliton version
of the self-imaging effect resulting from the interference of
various soliton modes of a fiber is considered here. In Sec. V,
the general conclusions are formulated; the advantages and
disadvantages of the proposed analytical approach are noted.

II. AVERAGED LAGRANGIAN APPROACH. SOLUTIONS
FOR SOLITON PARAMETERS

For a pulse propagating in a transversely inhomogeneous
nonresonant medium with a Kerr nonlinearity, the following
equation is true [1,14,15]:

i
∂ψ

∂z
= −β2

2

∂2ψ

∂τ 2
+ α|ψ |2ψ + g(r)ψ + c

2n0ω
�⊥ψ. (1)

Here ψ is the envelope of the electric field E of the pulse E =
ψ exp[i(ωt − kz)] + c.c.; ω and k are the carrier frequency
and wave number, respectively; z is the coordinate along the
direction of a pulse propagation (longitudinal coordinate);
τ = t − z/vg is the “local” time, vg is the linear group velocity
on the central axis of the fiber; β2 = ∂

∂ω
( 1
vg

) is the DGV pa-

rameter; c is the speed of light in a vacuum; n0 = √
1 + 4πχ0

and χ0 are the linear refractive index and linear susceptibility
on the central axis of fiber, respectively; the coefficient g(r)
determines the linear refraction of the matter of the fiber:

g(r) = ω

c

n2
0 − 1

2n0
f (r). (2)

r is the transversal radius vector, f (r) is the dimensionless
function characterizing the transverse distribution of the linear
dielectric susceptibility of the medium: χ (r) = χ0[1 + f (r)],
f (0) = 0; �⊥ is the transversal Laplacian; α is the coefficient
of the Kerr nonlinearity which is determined by the expression

α = ω

2πn0
n2, (3)

where n2 is the nonlinear refractive index determined through
the refractive index n depending on the pulse intensity I: n =
n0 + n2I .

In the case of a focusing fiber, the function f (r) decreases
from the center of the waveguide to its periphery. In the
defocusing case, the situation is opposite.

Under the condition α > 0 (α < 0) the Kerr nonlinearity is
focusing (defocusing).

Equation (1) corresponds to the Lagrangian density:

L = i

2

(
ψ∗ ∂ψ

∂z
− ψ

∂ψ∗

∂z

)
− g|ψ |2 − β2

2

∣∣∣∣∂ψ

∂τ

∣∣∣∣
2

− α

2
|ψ |4 + c

2n0ω
|∇⊥ψ |2. (4)

The mathematical procedure used in this section originates
from Refs. [9–13]. In these papers, the influence of transverse
perturbations on the temporal solitons in homogeneous bulk
media was considered. Applied to our case, this corresponds
to the identity g(r) = 0 in Eq. (1). Here we consider the
generalization of this method to the case when g(r) �= 0.

First we put g(r⊥) = �⊥ψ = 0 in Eq. (1). In this case,
Eq. (1) has a solution in the form of a temporal soliton,

ψ = 1

τp

√
−β2

α
exp

(
i
β2z

2τ 2
p

)
sech

(
τ

τp

)
, (5)

where τp is the free parameter that has the meaning of the
temporal pulse duration.

Accounting for the last two terms on the right-hand side of
(1) being carried out, we choose a trial solution on the basis
of temporal soliton (5). However, we now assume that the
parameter τp is an unknown function of the coordinates. We
make the same assumption regarding the imaginary exponent
in (5). Thus, we choose a trial solution in the form

ψ =
√

−β2

α
eiθρsech(ρτ ), (6)

where ρ and θ are the unknown functions of the coordinates z
and r.

Substituting (6) into (4) and integrating the resulting ex-
pression on τ , we arrive at the averaged Lagrangian .
Ignoring the nonessential constant factor, we have

 =
∫ +∞

−∞
Ldτ ∼ − c

n0ω
ρ

∂θ

∂z
+ cβ2

6n0ω
ρ3 +

(
c

n0ω

)2

×
[
ρ

(∇⊥θ )2

2
+ 1

6

(
π2

12
+ 1

)
(∇⊥ρ )2

ρ

]
− c

n0ω
gρ.

(7)

Now, using (7), we write the Euler-Lagrange equations with
respect to variables ρ and θ :

∂

∂z

∂

∂ (∂θ/∂z)
+ ∇⊥

∂

∂ (∇⊥θ )
= 0,

∂

∂ρ
− ∇⊥

∂

∂ (∇⊥ρ )
= 0.

As a result, we obtain the set of equations

∂ρ

∂z
+ ∇⊥(ρ∇⊥ϕ) = 0, (8)

∂ϕ

∂z
+ (∇⊥ϕ)2

2
+ cβ2

2n0ω
ρ2 − c

n0ω
g(r) = μ2

2

(
c

n0ω

)2 �⊥
√

ρ√
ρ

.

(9)

Here

ϕ = − c

n0ω
θ, μ = 2

√
1

3

(
π2

12
+ 1

)
≈ 1.559. (10)
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The right-hand side of (9) takes into account diffrac-
tion effects. The system (8) and (9) is identical to the
equations for a quantum Bose liquid in an external field
[16]. The right-hand side of (9) is sometimes called quan-
tum pressure. Neglecting this term corresponds to the ap-
proximation of geometrical optics. In this case, the sys-
tem (8) and (9) is identical to the set of equations for
the two-dimensional flow of an ideal fluid [17,18]. The
coordinate z here performs the role of time, and the
dynamic variables ρ and ϕ act as the density of the fluid and
the potential of the velocity field, respectively. The third term
on the left-hand side of (9) corresponds to the internal pressure
of an imaginary fluid. The last term on the left-hand side of
this equation corresponds to the density of the potential energy
of the external field in which the fluid is placed. This term
takes into account the dependence of the refractive index of
the fiber on the transverse coordinate.

We introduce the complex function associated with the
variables ρ and ϕ by Madelung transformation [1,13,19,20]:

� = √
ρ exp

(
i
n0ω

cμ
ϕ

)
= √

ρ exp

(
−i

θ

μ

)
. (11)

It is easy to see that the system (8) and (9) is equivalent to
the equation

i
∂�

∂z
= − μс

2n0ω
�⊥� + β2

2μ
|�|4� − g(r)

μ
�. (12)

Taking into account the above, Eq. (12) can be called
the modified Gross-Pitaevskii equation for a two-dimensional
Bose-Einstein condensate in an external field. The modifica-
tion here is due to the fact that the Gross-Pitaevskii equation
contains cubic nonlinearity [21]. At the same time, the degree
of nonlinearity of Eq. (12) is 5. The external field is taken into
account by the last term on the right-hand side of Eq. (12).

On the other hand, Eq. (12) describes the propagation of
an optical beam in a fiber with a fifth-degree nonlinearity.
Therefore, it can be said that the procedure used in this section
reduces Eq. (1) for the propagation of a pulse in a fiber with a
cubic nonlinearity to Eq. (12) for a certain beam propagating
in a fiber with a fifth-degree nonlinearity.

One can find various solutions of Eq. (12) [or of system (8)
and (9)] and thus analyze the behavior of the functions ρ and
ϕ. As a result, the dynamics of the optical pulse in the fiber
will be studied.

III. DANCING LIGHT BULLET AND FUNDAMENTAL
SPATIOTEMPORAL SOLITON

We assume below that the linear susceptibility has a
parabolic profile in the cross section of a fiber: χ (r) =
χ0[1 − ( x2

a2
x
+ y2

a2
y
)]. When

f (r) = f (x, y) = −
(

x2

a2
x

+ y2

a2
y

)
, g(r) = − ω

2c

(
ε2

x x2+ ε2
y y2
)
,

(13)

where ax and ay are the constants characterizing the transverse
scales of the fiber along the x and y axes respectively,

ε j =
√

n2
0 − 1

n0a j
. (14)

Here and everywhere below j = x, y.
When a2

x,y > 0 (a2
x,y < 0) the fiber is focusing (defocus-

ing). Generally speaking, we assume that the fiber does not
have axial symmetry; i.e. ax �= ay.

Let us determine also the dispersion scale length ld and the
diffraction scale lengths lD j by the expressions

ld = 2τ 2
p

|β2| , lD j = n0ω

c
R2

j0 = 2πn0

R2
j0

λ
, (15)

where λ = 2πc/ω is the wavelength corresponding to the
carrier frequency ω, Rx0 and Ry0 are the equilibrium scale
lengths (apertures) of this soliton along the x axis and y axis,
respectively (see below).

When finding solutions to system (8) and (9), we use the
Cartesian coordinate system.

Equations (A14) and (A15) in the Appendix for the soliton
apertures Rx and Ry are similar to the system of equations for
the motion of two Newtonian particles of unit mass in a field
with the “potential energy” (A15). The interaction between
these particles is described by the last term on the right-hand
side of (A15).

The function U (Rx, Ry) is a surface in the space of vari-
ables Rx and Ry. The stationary solutions of Eq. (A15) corre-
spond to the local minimum of the function U (Rx, Ry) under
conditions Rx = Rx0 and Ry = Ry0. We write the conditions
for the existence of the extremum in the form(

∂U

∂Rx

)
0

=
(

∂U

∂Ry

)
0

= 0.

Hereinafter, the subscript “0” corresponds to the fact that Rx =
Rx0 and Ry = Ry0.

From here and from (A15), with accounting for (15), we
obtain

ε2
j = μ2

4l2
D j

+ 2sgn(β2)

ld lD j
. (16)

From (16), (A1)–(A5), (A12), (A17), (A10), and the
first expression in (10), taking into account that Rj = Rj0 =
const., we find

θ =
⎡
⎣μ2

4

∑
j=x,y

1

lD j
+ sgn(β2)

ld

⎤
⎦z + n0ω

c

×
∑
j=x,y

ε jq j0

{q j0

4
sin[2(ε j z + δ j )]+ x j cos(ε j z+ δ j )

}
,

(17)

ρ = 1

τp
exp

⎧⎨
⎩−

∑
j=x,y

[x j − q j0 sin(ε j z + δ j )]2

2R2
j0

⎫⎬
⎭. (18)

It is believed here that xx = x, xy = y.
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FIG. 1. Schematic representation of a constant-intensity surface
of the dancing light bullet in the traveling framework under the condi-
tion ax = 2ay; ξ̄ and η̄ are the dimensionless variables, determined by
the relations ξ̄ = (x − qx )/Ry0 and η̄ = (y − qy )/Ry0, respectively.

Figure 1 schematically displays the surface of constant
intensity ∼|ψ |2 ∼ ρ2sech2[ρ(t − z/vg)] of the spatiotempo-
ral soliton (6), (18) in the optical fiber under the condition
ax �= ay. It is clear that such soliton is not axially symmetric.

According to expressions (6) and (18), the center of a
bunch of light energy ∼|ψ |2 ∼ ρ2sech2[ρ(t − z/vg)] propa-
gates along a trajectory described by the parametric equations
(see Fig. 2):

zc = vgt, xc = qx0 sin (ωxt + δx ), yc = qy0 sin(ωyt + δy).
(19)

Here ω j = vgε j .
In the transverse plane z = vgt , the center of the light

bullet describes the Lissajous figures. These figures are the
superposition of oscillatory movements along the x and y axes
with frequencies ω1 and ω2, respectively. The spatiotemporal
soliton, which is displayed in Fig. 1, propagates along this
trajectory.

The solution discussed can be called the dancing light bul-
let. This solution has five free parameters: δx, δy, qx0, qy0, and
τp. The first four parameters define the Lissajous figure. Given
the temporal duration τp, we use (16) and (15) to determine the
components Rj0 of the aperture of the light bullet. In addition,

FIG. 2. Schematic representation of propagation trajectory of
dancing light bullet in the fiber, defined by the expressions (19):
ωx/ωy = ay/ax = 1.5, δ2 = δ1 + π/2. Designations t0 < t1 < t2 <

t3 < t4 < t5 correspond to the different points in time t .

the amplitude of this light bullet is also uniquely determined
by the temporal duration τp [see (6) and (18)].

Putting lD j ∼ R2
j0 → ∞, ε j ∼ 1/a j = 0 into Eqs. (17) and

(18), we come to the case of a one-dimensional (temporal)
soliton in a homogeneous medium. In this case, it follows
from (17) and (18) that θ = sgn(β2 )

ld
z = β2z

2τ 2
p
, ρ = 1

τp
[see also

(15)]. Equalities (16) turn into identities 0 = 0. That is, the
solution (6) and (16)–(18) exactly passes to the soliton (5).
This circumstance is an important argument in favor of our
approach.

The dancing light bullet which is described by the expres-
sions (16)–(18) is stable, if the local extremum of a function
U (Rx, Ry) [see (A15)] is its minimum. This requires the
implementation of inequalities A1 > 0, A2 > 0, and A1A2 −
B2 > 0, where

Aj =
(

∂2U

∂R2
j

)
0

= ε2
j + 3μ2

4l2
D j

+ 6
sgn(β2)

ld lD j
,

B =
(

∂2U

∂Rx∂Ry

)
0

= 4
sgn(β2)

ld
√

lDxlDy
.

It is easy to see from here that under the condition β2 > 0
the inequality A1A2 − B2 > 0 is performed automatically. At
the same time, as can be seen from (16), inequalities A1 > 0
and A2 > 0 are equivalent to the conditions

ε2
j > 0. (20)

The conditions (20) can be carried out for the focusing fiber
only, when ε2

x > 0 and ε2
y > 0. In the defocusing fiber (ε2

x < 0
or ε2

y < 0) or in the absence of a fiber (A = 4ε2
x = B = 4ε2

y =
0), a stable light bullet cannot form. The last conclusion agrees
with the well-known statement for a homogeneous medium
with Kerr nonlinearity [1].

In a focusing fiber with a normal DGV (β2 > 0) within the
framework of the physical model used, a stable light bullet can
form without other conditions on the parameters of the optical
pulse [see (16) and (20)]. Therefore, below we consider the
case of anomalous DGV (β2 < 0). It is this case that has an
important applied significance [1].

From (6) and (3) it follows that a stable light bullet under
the condition β2 < 0 can form if n2 > 0. That is, the Kerr
nonlinearity must be focusing. Such a situation is realized in
the fused silica fiber [1].

The equalities (16) allow us to exclude some parameters
from the inequality A1A2 − B2 > 0. Excluding in series lD j ,
ld , and ε j , after simple mathematical transformations, we have

1√
1 + Hx

+ 1√
1 + Hy

< 1, (21)

3GxGy + Gx + Gy > 1, (22)

2(Qx + Qy) − 3QxQy < 1, (23)

where Hj = ( μld ε j

2 )2, Gj = ( 2lD jε j

μ
)2, and Qj = 4lD j

μ2ld
.

Under conditions (20)–(23) in the case β2 < 0 the approx-
imate solution (6) and (16)–(18) of Eq. (1) is stable.

The meaning of conditions (21)–(23) is most transpar-
ent in the case when the fiber and the optical pulse are
axially symmetric: ax = ay = a, Rx0 = Ry0 = R0, Rx = Ry = R,

043828-4



ANALYTICAL DESCRIPTION OF THE PROPAGATION OF … PHYSICAL REVIEW A 100, 043828 (2019)

qx0 = qy0 = q0,

εx= εy = ε =
√

n2
0 − 1

n0a
, lDx = lDy = lD= n0ω

c
R2

0 = 2πn0
R2

0

λ
.

(24)

In this case, instead of the system (A14), for the soliton
aperture R we have the equation

R′′ = −∂U

∂R
, (25)

where the potential energy (A15) takes the form

U (R) = ε2

2
R2 + μ2

8

(
c

n0ω

)2 1

R2
+ c

2n0ω

sgn(β2)

ld

R4
0

R4
. (26)

From (16) and (21)–(23) under conditions Hx = Hy = H ,
Gx = Gy = G, and Qx = Qy = Q we have H > 3, G > 1/3,
and Q < 1/3. Then, using the expressions for H , G, and Q,
we write in the axially symmetric case

l2
d >

12

μ2ε2
, l2

D >
μ2

12ε2
,

lD
ld

<
μ2

12
. (27)

Using (24), the first expression in (15), and the second ex-
pression in (10), we rewrite these inequalities in the following
form:

R0 > Rmin = 0.27

√
λa(

n2
0 − 1

)1/4 , (28)

τp > τmin = 1.05

√
n0|β2|a(

n2
0 − 1

)1/4 , (29)

R0

τp
<

Rmin

τmin
= 0.25

√
λ

n0|β2| . (30)

The above Lissajous figures here are ellipses. Assuming,
moreover, in (17) and (18) δx − δy = π/2, we obtain

θ =
[

μ2

2lD
+ sgn(β2)

ld

]
z + n0ω

c
εrc · r, (31)

ρ = 1

τp
exp

(
−|r − rc|2

2R2
0

)
, (32)

where rc is the transverse radius-vector of the soliton cen-
ter, defined in the polar coordinate system (rc, ϕc) by the
expressions

rc = q0, ϕc = εzc + δy (33)

[see (19) under conditions qx0 = qy0 = q0, εx = εy = ε, and
δx = δy + π/2].

Here, Lissajous figures take the form of circles with the
radius q0. In this case, the center of the soliton moves along a
helical spatial line with a pitch

h = 2π

ε
= 2πn0a√

n2
0 − 1

.

The surfaces of constant intensity of the soliton (6), (31), and
(32), corresponding to different time points, are schematically
shown in Fig. 3. This axially symmetric soliton propagates
along a helical spatial line.

FIG. 3. Schematic representation of the dancing light bullet,
which propagates in axially symmetric fiber along a spatial helical
line. Designations t1 < t2 < t3 < t4 correspond to the different points
in time t .

Instead of two equalities (16), in the axially symmetric case
we have a single equality

ε2 = μ2

4l2
D

+ 2sgn(β2)

ld lD
. (16′)

In Figs. 4 and 5 the dependencies U (R) [see (26)] are
displayed when the conditions (27) are carried out and when
they are violated, respectively. The normal line in Fig. 4 shows
the function U (R) for a homogeneous bulk medium. It can be
seen that in the absence of a fiber, the function U (R) has a
local maximum. Therefore, a stable light bullet cannot form.
In the presence of a focusing fiber, a local minimum exists
only if conditions (27) are satisfied. If these conditions are
violated, then this local minimum disappears and the pulse
undergoes irreversible self-focusing (Fig. 5).

The third inequality (27) can be rewritten in another form.
From (6) it follows that the temporal amplitude ψm of the soli-
ton satisfies the equality |ψm|2 = |β2|

α
ρ2. Then for the inten-

sity, we have I = c
4πn0

〈E2〉 = c
2πn0

|ψm|2 = c
2πn0

|β2|
α

ρ2. Here
the operation 〈· · · 〉 denotes a temporal averaging. Taking into
account (32) we find for peak power P = ∫ +∞

−∞ dx
∫ +∞
−∞ Idy =

c
2n0

|β2|
ατ 2

p
R2

0. Taking into account also the expressions (3) and

(15), we obtain

P = 2π

n0n2

( c

ω

)2 lD
ld

= λ2

2πn0n2

lD
ld

. (34)

FIG. 4. Dependence of the potential energy U on the dimension-
less soliton aperture R/R0 in case of axially symmetric fiber. The
bold line corresponds to the presence of fiber when the conditions
(27) are satisfied. The normal line corresponds to the absence of a
fiber.
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FIG. 5. Dependence of the potential energy U on the dimension-
less soliton aperture R/R0 in the presence of fiber and if at least one
of the conditions (27) is violated.

From (34) it is easy to see that the third inequality (27) can
be rewritten as a condition on the power of the pulse,

P < Pcr, (35)

where the critical power

Pcr = πμ2

6n0n2

( c

ω

)2
= 0.032

λ2

n0n2
. (36)

We emphasize that the critical power defined by expression
(36) differs from the critical power that is characteristic of ho-
mogeneous Kerr media [1]. In such media under the condition
P > Pcr , the focusing nonlinearity prevails over the diffrac-
tion broadening. As a result, the pulse is experiencing self-
focusing. If P < Pcr , the diffraction broadening suppresses
self-focusing. In this case, however, the formation of a stable
light bullet is impossible, because the pulse experiences an
irreversible diffraction broadening (see the normal line in
Fig. 4). In the fiber, under the condition (35), a stable light
bullet is formed. It is important to note that the power in
inequality (35) is not the input power of the pulse, but the
power of the formed spatiotemporal soliton.

Assuming in (17) and (18) q j0 = 0, we have, in conjunc-
tion with (6), a solution in the form of a light bullet propagat-
ing parallel to the axis of the fiber. Following [22], we call this
bullet a fundamental spatiotemporal soliton. The expressions
(31) and (32) under the condition rc = 0 correspond to the
axially symmetric fundamental soliton (Fig. 6).

It is important to note that in (16), (21)–(23), and also in
(16′), (27)–(30), (35), and (36), there are no parameters q j0

and rc. That is, the stability conditions are the same for both
the dancing light bullet and the fundamental soliton. These
conditions do not depend on the trajectory along which the
spatiotemporal soliton propagates.

We present some numerical estimates. Let the optical
fiber be made of fused silica. In the near-infrared range for
λ = 1.55 μm we have n0 ≈ 1.5, β2 = −2.0 × 10−28 s2/cm,

FIG. 6. Schematic representation of a constant-intensity surface
of the fundamental spatiotemporal soliton in an axially symmetric
fiber.

and n2 = 3.2 × 10−16 cm2/W [6]. Putting a ∼ 0.1 cm, from
(28) and (29) we find Rmin ∼ 10 μm, τmin ∼ 10−14 s. Let
R0 ∼ 100 μm and τp ∼ 1 ps. Then we have lD = 2πn0R2

0/λ ∼
1 cm, ld ∼ 104 cm. From (36) and (34) we find Pcr ∼ 106 W,
P ∼ 103 W  Pcr .

Thus, here the diffraction limit condition (A9) is satisfied
with a good margin. This condition can also be written as
P  Pcr .

The parameters chosen above are typical for nonresonant
optical pulses and fused silica fibers. At the same time, with
the shortening of the duration of the light pulse, it becomes
more difficult to satisfy conditions (29) and (30). In addition,
the parameters of the fiber may vary. This relates, for example,
to the parameters β2 and a. In this regard, the conditions (27)
and (28)–(30) are very important for the formation of a stable
light bullet in a focusing fiber.

IV. DIFFRACTION LIMIT

The numerical estimates given at the end of the previ-
ous section correspond to the diffraction limit: P  Pcr or
lD/ld  μ2/12. In this case, in the formulas describing the
transverse dynamics of the pulse, we can formally consider
ld → ∞. Then the stability conditions (27) are automatically
satisfied.

In this section, we restrict ourselves to the consideration of
an axially symmetric fiber. The generalization to the case of
an anisotropic fiber is obvious and not difficult.

From (16′) in the limit ld → ∞ for the axially symmetric
case we have lD = μ

2ε
. That is, the soliton aperture is uniquely

determined by the parameter a of the fiber:

R0 =
⎛
⎝ μ

4π

√
n2

0 − 1

⎞
⎠

1/2
√

λa ≈ 0.35

√
λa(

n2
0 − 1

)1/4 . (37)

The expression (37) is in agreement with inequality (28).
It is easy to see that the aperture defined by expression
(37) corresponds to the first transverse mode of the optical
fiber. In the diffraction limit, the transverse dynamics of a
soliton is practically independent of its longitudinal dynamics.
Therefore, in the theoretical description of the propagation
of a pulse in an optical fiber, a factorized representation
ψ (z, r, τ ) = �(z, τ )�(r) is often used [1,6]. After averag-
ing Eq. (1) over the transverse coordinates for the function
�(z, τ ), the one-dimensional nonlinear Schrödinger equation
is derived [1,6].

Under the condition ld → ∞, the formulas (16′), (31), and
(32) correspond to the nonstationary coherent state of a two-
dimensional quantum harmonic oscillator. The corresponding
solution can be obtained from (12) with β2 = 0 and by taking
into account (2) and (13), by means of the well-known Green’s
function for the harmonic oscillator [23].

A large number of other solutions of the linear Schrödinger
equation are known [24]. Using these solutions, one can
describe various modes of propagation of light bullets cor-
responding to the diffraction limit. For example, in the case
of an axially symmetric fiber, we write the solution for
the stationary state of a two-dimensional quantum harmonic
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oscillator,

�mx,my (x, y, z) = 1√
τp

Hmx

(
x

R0

)
Hmy

(
y

R0

)
exp
(−iwmx,my z

)

× exp

(
−x2 + y2

4R2
0

)
, (38)

where Hmj are the Hermite polynomials,

wmx,my = ε(mx + my + 1) =
√

n2
0 − 1

n0a
(mx + my + 1), (39)

where mx, my = 0, 1, 2, · · · ; aperture R0 is defined by the
expression (37).

Because Eq. (12) under the condition β2 = 0 is linear, then
in accordance with the principle of superposition we write

�(x, y, z) =
∑

mx,my

Cmx,my�mx,my (x, y, z), (40)

where Cmx,my are the dimensionless complex constants deter-
mined by the conditions at the input to the fiber.

The case when all the constants Cmx,my are zero, except C0,0,
corresponds to the fundamental soliton under the condition
P  Pcr .

Putting

Cmx,my = 1

mx!my!

(
iq0

2R0
e−iδx

)mx
(

iq0

2R0
e−iδy

)my

× exp

(
− q2

0

4R2
0

)
, (41)

where R0 is defined by the expression (37), δx,y and q0 are
the constants, we have a coherent state of a two-dimensional
quantum harmonic oscillator described by Eq. (12) under the
condition β2 = 0. It is easy to see that this state corresponds
to the axially symmetric dancing light bullet considered above
in the diffraction limit (ld → ∞).

Let C1,0 = 1, and all others, Cmx,my , be zero. Then from
(38), (39), and (11) we have

ρ = x2

2τpR2
0

exp

(
−x2 + y2

2R2
0

)
, θ = 2μ

√
n2

0 − 1

n0a
z.

This solution coincides qualitatively with the stationary
version of the two-mode (dipole) solution found in [22].
However, the dipole solution obtained in [22] is more general,
since it goes beyond the diffraction limit.

Now suppose that on the input to the fiber we have a
coherent superposition (40) of the fundamental soliton (only
C0,0 �= 0, Fig. 6) and the quadrupole soliton mode of the fiber
(only C1,1 �= 0, Fig. 7). In this case, we have

ρ = 1

τp

[
C2

00+
C2

11

4R4
0

x2y2+ C00C11

R2
0

xy cos (2εz)

]
exp

(
−x2+ y2

2R2
0

)
.

(42)

As can be seen from (6) and (42), in the process of
propagation, the shape of such a spatiotemporal soliton peri-
odically repeats with a spatial period π/ε = πn0a/

√
n2

0 − 1
(see Fig. 8). This phenomenon is called the self-imaging

FIG. 7. Schematic representation of constant-intensity surfaces
of a soliton quadrupole fiber mode.

effect in a multimode fiber [25–27]. In our case, we have
described the soliton version of the self-imaging effect. Of
course, it is possible to take a superposition of a much larger
quantity of modes than in the considered example. Then the
self-imaging effect will manifest itself in the form of spatial
beats of a large number of the fiber modes. On the other hand,
the problem of the realization of such superposition states
under experimental conditions seems to be difficult. On the
other hand, any spatiotemporal signal can be approximately
represented as an expansion on the finite number of spatial
modes of the fiber. Then, as a result of the interference of these
modes, it will be possible to observe the self-imaging effect.

In the same way, solutions like localized vortices, entan-
gled states [28–30], etc., can be constructed and analyzed.

In the diffraction limit, it is easy to obtain a condition
in which the pulse is trapped by the focusing fiber. At the
boundary of an axially symmetric fiber, we have r = a. Then
the depth V of the potential well in Eq. (12) under the con-
dition β2 = 0 is determined by the expression V = |g/μ|r=a.
To form a stationary state �mx,my (x, y, z), the condition V >

wmx,my must be satisfied. Using here (2), (10), (13), (24), and

FIG. 8. Schematic illustration of soliton version of the self-
imaging effect. The light bullet is formed by a coherent superposition
of the fundamental soliton and the quadrupole spatiotemporal mode
of the fiber. Images (a–e) correspond to successive changes in the
shape of a light bullet when propagating in a fiber. Images (a) and
(e) are identical. That is, the light bullet periodically restores its
spatiotemporal profile.
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(39), we rewrite this condition as

a

λ

√
n2

0 − 1 > 0.5(mx + my + 1). (43)

Assuming here mx = my = 0, we find for a fundamental
soliton a

λ

√
n2

0 − 1 > 0.5. For the dipole (mx = 1, my = 0) and

quadrupole (mx = my = 1) solitons we have a
λ

√
n2

0 − 1 > 1

and a
λ

√
n2

0 − 1 > 1.5, respectively. With the parameters given
at the end of the previous section, these conditions are well
satisfied.

The dancing light bullet is a superposition (40), where mx

and my lie in the interval from zero to infinity. It is clear that
for very large mx and my the condition (43) is not satisfied.
Then, in order to trap a dancing light bullet into the fiber,
it is necessary that the contribution of stationary states with
large values of mx and my should be insignificant. From (41)
it can be seen that the absolute values of the coefficients
Cmx,my are decreased with the increasing of mx and my, if the
condition q0 < 2

√
2R0 ≈ 2.83R0 is satisfied. Thus, the center

of the dancing light bullet should not deviate too far from the
axis of the fiber. This condition is consistent with the paraxial
approximation.

Since in the diffraction limit the conditions (27) [see also
(28)–(30) and (35)] are performed with a good margin, in
this limit the transverse soliton dynamics is insensitive to
Kerr nonlinearity and group velocity dispersion. In this case,
however, the signs of the Kerr nonlinearity and the dispersion
of the group velocity are very important for the formation
of a soliton in the direction of its propagation. This once
again confirms the conclusion that under the conditions of the
diffraction limit, the longitudinal and transverse dynamics of
the light pulse are independent of each other.

The question arises of how a dancing light bullet can be
created under experimental conditions. To do this, you first
need to create a laser bunch of light energy, exponentially
localized in all directions. Then, this bunch should be directed
into the fiber at a certain small angle ∼qx,y/ax,y with respect to
axis of this fiber. At the same time, it is highly desirable that
the parameters of this bunch be connected by the equalities
(16) [or (16′)] and satisfy the conditions (21)–(23). This is
most easily seen in the case of an axially symmetric fiber. In
this case, the conditions (21)–(23) take the form of inequali-
ties (28)–(30). In the diffraction limit, conditions (29) and (30)
are automatically satisfied. At the same time, the aperture of
the laser bunch directed into the fiber should be close to the
value determined by formula (37). In this case, one can hope
that a dancing light bullet will be formed in the fiber. If the
laser bunch is directed into the fiber along its axis, then there
is reason to believe that in the fiber it will be transformed into
a fundamental spatiotemporal soliton.

In fibers, the temporal solitons are usually observed. Ap-
parently this is due to the fact that the transverse structure
eludes observation. In the diffraction limit the transverse
structure of solitons is determined by the spatial eigenmodes
of the fiber.

The light bullets discussed here, including the soliton effect
of self-imaging, can find applications in information transmis-
sion and coding systems.

V. CONCLUSION

Thus, on the basis of the averaged Lagrangian method, one
can describe the propagation of a wide class of spatiotemporal
solitons in optical fibers.

The dancing light bullet, described by expressions (6), (17),
and (18), has been studied in most detail here. The parameters
q10 and q20 have the meaning of the amplitudes of the de-
viation of the center of the bullet from the fiber axis along
the x and y axes, respectively. Under the conditions qx0 =
qy0 = 0 the dancing light bullet transforms into a fundamental
spatiotemporal soliton, propagating along the fiber axis with a
constant group velocity.

It is important to note that the stability conditions (21)–(23)
look the same for a dancing light bullet and for a fundamental
spatiotemporal soliton. This is due to the nontrivial result that
the dynamics of the transverse coordinates qx and qy of the
center of the light bullet does not depend on the dynamics
of its aperture. If the fiber and the light bullet are axially
symmetric, the stability conditions (21)–(23) have the most
visual meaning, taking the form of restrictions (28)–(30) for
the aperture R0 and temporal duration τp. In this case, the
condition (30) can be written in the form of a restriction (35)
for the power P of the light bullet, where the critical power Pcr

is determined by expression (36).
In the diffraction limit P  Pcr , the transverse and longitu-

dinal dynamics of the light bullet are practically independent
of each other. In this case the transverse dynamics is described
by Eq. (12) under the condition β2 = 0. At the same time, let
us note that in the expression (6) β2 �= 0. In this case Eq. (12)
coincides with the linear quantum-mechanical Schrödinger
equation for a particle in a two-dimensional potential well.
This greatly facilitates the analysis of the transverse structure
and dynamics of the spatiotemporal soliton. The role of the
potential here belongs to the coefficient g(r)/μ characterizing
the spatial distribution of the refractive index over the cross
section of the graded-index fiber. In this case we can use pro-
files of g(r) ∼ f (r) [see (2)], which differ from the parabolic
profile (13).

In this paper, we described the soliton self-image effect
in the diffraction limit P  Pcr . It is of interest to study this
effect in a more general case. For this, it is necessary to find
multimode solutions of Eq. (12) under the condition β2 �= 0.

It is clear that the parabolic dependence of the re-
fractive index on x and y is valid only near the axis
of the fiber. Approaches are known for obtaining nonsta-
tionary solutions of the quantum-mechanical Schrödinger
equation in the case of different profiles of g(r)/μ [24].
This includes refractive index profiles that are close to real
profiles.

Here we used the averaged Lagrangian method for Eq. (1).
It does not take into account the dependence of the nonlinear
refractive index n2 on r. However, by means of the approach
used here, this can be done. There are no principal difficulties
this way.

Equation (1) can be used for pulses whose duration satisfies
the condition τp � 100 fs. If τp ∼ 10 fs, then Eq. (1) must
be supplemented with higher orders of linear and nonlinear
dispersion [1,6]. It is desirable to develop the averaged La-
grangian method for these cases.
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It is also of interest to develop this approach to study the
propagation of an optical pulse in a system of coupled parallel
optical fibers. The consideration of few-cycle spatiotemporal
solitons [31,32] deserves special attention here. In this case,
one cannot use the approach of slowly varying envelopes.

It is known that in homogeneous media under the con-
dition P � Pcr the small-scale self-focusing modes can be
implemented, followed by the filamentation of optical pulses
[33,34]. It is of interest to generalize the averaged Lagrangian
approach for describing a small-scale self-focusing of pulses
in the fiber.

Of considerable interest is the study of the mutual in-
teraction of spatiotemporal solitons in fibers. Here we can
talk, for example, about the interaction of the polarization
components of a pulse in a birefringent fiber [35,36]. In this
case, instead of one Eq. (1), we must write the system of
two nonlinear equations for the envelopes of the ordinary ψo

and extraordinary ψe pulse components. In addition to the
Kerr nonlinearity composed of ψo and ψe, these equations
contain waveguide terms go(r)ψo and ge(r)ψe. To use the
averaged Lagrangian method here, it is necessary to choose
trial solutions correctly. For this, in turn, it is desirable to have
exact solutions of the original nonlinear system of equations
in the form of one-dimensional (temporal) solitons. After this,
there should be no fundamental difficulties.
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APPENDIX

Generalizing the results of works [11,13,18,20], we find a
solution of system (8) and (9) in the following form:

ρ = 1

τp

Rx0Ry0

RxRy
F (ξ, η), (A1)

ϕ = α + σxx + γx
x2

2
+ σyy + γy

y2

2
, (A2)

where τp, Rx0, and Ry0 are the constants; F is the dimension-
less unknown function of variables;

ξ = x − qx

Rx
, η = y − qy

Ry
, (A3)

and Rx,y(z), qx,y(z), α(z), σx,y(z), and γx,y(z) are the unknown
functions of the z coordinate.

The parameter τp has the meaning of the equilibrium tem-
poral duration of the spatiotemporal soliton [see (5) and (6)].
At the same time, through the parameters Rj0 the diffraction
scale lengths lD j are determined [see (15)].

The coefficient α(z) determines a nonlinear part of the re-
fractive index, the coefficients σx,y(z) determine the rotation of
the wave fronts with respect to the direction of propagation of
the pulse, and the coefficients γx,y(z) determine the curvature
of the wave fronts.

Near the local maximum of the soliton profile, we have
F ∼ 1. On the other hand, in order for the soliton energy to

be finite, it is necessary to satisfy the condition F (ξ, η) → 0
at
√

ξ 2 + η2 → ∞.
Substituting (A1) and (A2) into (8) with accounting for

(A3), we obtain

1

RxRy

(
γx − R′

x

Rx
+ γy − R′

y

Ry

)
F

+ 1

R2
xRy

[
σx − q′

x + R′
x

Rx
qx +

(
γx − R′

x

Rx

)
x

]
∂F

∂ξ

+ 1

RxR2
y

[
σy − q′

y + R′
y

Ry
qy +

(
γy − R′

y

Ry

)
y

]
∂F

∂η
= 0,

where the prime above denotes the derivative with respect
to z.

From here we set

γ j = R′
j

R j
, (A4)

σ j = q′
j − R′

j

R j
q j . (A5)

Substituting (A1) and (A2) into (9), and taking into account
(2), (13), (A3), and (A4), we obtain

α′ + 1

2

(
σ 2

x + σ 2
y

)+
(

σ ′
x + R′

x

Rx
σx

)
x +

(
σ ′

y + R′
y

Ry
σy

)
y

+
(

R′
x

Rx
+ ε2

x

)
x2

2
+
(

R′
y

Ry
+ ε2

y

)
y2

2
+ cβ2

2n0ωτ 2
p

R2
x0R2

y0

R2
xR2

y

F 2

= μ2

2

(
c

n0ω

)2 1√
F

(
1

R2
x

∂2
√

F

∂ξ 2
+ 1

R2
y

∂2
√

F

∂η2

)
. (A6)

Now we need to find the function F (ξ, η). The ratio of the
last term on the left-hand side of Eq. (9) to the right-hand
side of this equation is on an the order of magnitude equal
to ∼lD j/ld .

To obtain an exact solution, the third term on the left-hand
side of (9) and the right-hand side of this equation must be
second-degree polynomials with respect to the variables x and
y. At the same time, the function F must be localized on these
variables.

In the approximation of geometrical optics,

lD j/ld � 1 (A7)

should be neglected from the term on the right-hand side of
(9), ∼μ2�⊥

√
ρ/

√
ρ. Then, putting F in the form

F (ξ, η) =
√

1 − (ξ 2 + η2), (A8)

we have the exact solution of system (8) and (9) under the
formal condition μ = 0.

Obviously, the condition ξ 2 + η2 � 1. If ξ 2 + η2 > 1, then
we have F = 0.

Now let the diffraction limit condition be satisfied:

lD j/ld  1. (A9)

In this case we can neglect the third term cβ2

2n0ω
ρ2 on the left-

hand side of (9).

043828-9



SERGEY V. SAZONOV PHYSICAL REVIEW A 100, 043828 (2019)

Then at

F (ξ, η) = exp

(
−ξ 2 + η2

2

)
, (A10)

the right-hand side of Eq. (A6) will be a polynomial of second
degree with respect to the variables x and y.

Thus, under opposite limits (A7) and (A9) we can assume
formally in (9) μ = 0 and β2 = 0, respectively. In these limits
the exact solutions of system (8) and (9) can be found. Now
we find an approximate solution that is valid under both
conditions (A7) and (A9) and in the intermediate case. To
do this, we note that the right-hand sides of (A8) and (A10)
transform into each other, if ξ 2 + η2  1:

F (ξ, η) ≈ 1 − ξ 2 + η2

2
. (A11)

It is this vicinity near the maximum of the function
F (ξ, η) that has the most significant effect on the dynamics
[11,13,18,20].

Taking this into account, we approximately consider the
expression (A10) to be fair, using the expansion (A11) in the
third term of the left-hand side of Eq. (9).

Let us note that such an approximate approach agrees well
with numerical simulations in solving other similar problems
[12,20].

Then, equating to each other the coefficients at various
degrees and on the left- and right-hand sides of Eq. (9), we
obtain the set of equations

α′ = −1

2

∑
j=x,y

[
σ 2

j +
(

μc

n0ω

)2 1

2R2
j

(
1 − q2

j

2R2
j

)]

− sgn(β2)

ld

c

n0ω

R2
x0R2

y0

R2
xR2

y

⎛
⎝1 −

∑
j=x,y

q2
j

R2
j

⎞
⎠, (A12)

σ ′
x,y+

R′
x,y

Rx,y
σx,y= − c

n0ω

[
μ2

4

c

n0ω

1

R4
x,y

+sgn(β2)

ld

R2
x0R2

y0

R4
x,yR2

y,x

]
qx,y,

(A13)

R′′
x,y = − ∂U

∂Rx,y
, (A14)

U (Rx, Ry) = ε2
x

2
R2

y + ε2
x

2
R2

y + μ2

8

(
c

n0ω

)2
(

1

R2
x

+ 1

R2
y

)

+ c

n0ω

sgn(β2)

ld

R2
x0R2

y0

R2
xR2

y

. (A15)

As a result, we have a self-consistent system of Eqs. (A4),
(A5), and (A12)–(A15) for the dynamic parameters, which are
introduced in (A1)–(A3).

Differentiating (A5) with respect to z, we obtain

q′
j =

(
R′

j

R j
− R′2

j

R2
j

)
q j + σ ′

j + R′
j

R j
q′

j

=
(

R′
j

R j
− R′2

j

R2
j

)
q j + σ j + R′

j

R j

(
R′

j

R j
q j + σ j

)

= R′
j

R j
q j + σ ′

j + R′
j

R j
σ j .

Using now (A13)–(A15), we have

q′′
j = −ε2

j q j . (A16)

Thus, the dynamic variables qj describing the motion of the
soliton center obey the harmonic oscillator equation (A16).
It is important that these variables do not depend on the
dynamics of the soliton apertures Rx,y(z).

From (A16) we find

q j = q j0 sin(ε j z + δ j ), (A17)

where q j0 and δ j are the amplitudes and phase shifts,
respectively.
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