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Magnitude- and orientation-steerable beam deflection in self-induced harmonic potentials
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In self-induced harmonic potentials, the coaxial superposition of a fundamental Gaussian beam and a (0,1)
mode Laguerre-Gaussian beam yields a two-dimensional (2D)–deflection-steerable breathing beam. The magni-
tude (orientation) of the deflection can be steered by tuning the ratio (initial phase difference) between the two
input constituent beams. Besides, the beam rotates around the deflecting straight trajectory the mass center (not
the constituent beams’ center) undergoes. The results provide an approach for the 2D steering of beam trajectory,
which might be of interest for the applications in all-optical information processing.
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I. INTRODUCTION

In recent years, the propagation of light beams in media
with harmonic potentials has aroused considerable interest.
Harmonic potentials act as effective tools to manipulate the
evolution of beams and give rise to various interesting ef-
fects, such as the periodic focusing [1], the designable self-
Fourier beams [2], the shape-invariant rotating beams [3],
the anharmonic oscillation [4–6], the phase transition [5,6],
and the periodic inversion [6,7]. We can roughly classify
harmonic potentials into two categories: the medium-induced
harmonic potentials and the self-induced harmonic poten-
tials. The medium-induced harmonic potentials can be easily
achieved in linear gradient-index media, whereas the self-
induced harmonic potentials are closely related to the nonlocal
nonlinear propagation of beams. It has been found that, in
the case of strongly nonlocal nonlinearity, the nonlinearity-
induced change of refractive index acts as a harmonic po-
tential, and therefore the nonlinear Schrödinger equation can
be simplified to a linear model called the Snyder-Mitchell
model (SMM) [8]. Based on the SMM, various localized
shape-invariant waves, such as vortex solitons [9–12], mul-
tipole solitons [13–15], and soliton clusters [16], have been
predicted. Some interesting effects related to the strongly
nonlocal nonlinearity, such as large phase shift [17], power-
variation-induced three-dimensional nonuniform scaling [18],
and self-induced fractional Fourier transform [19], have been
revealed on the basis of the SMM.

In this paper, we introduce another effect in self-induced
harmonic potentials: magnitude- and orientation-steerable
beam deflection. The input field of the deflecting beam is a
combined field composed of a fundamental Gaussian beam
and a (0,1) mode Laguerre-Gaussian beam. The beam ex-
periences deflection and rotation during propagation. It is
particularly interesting that the magnitude and orientation of
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the deflection can be steered by tuning the ratio and the initial
phase difference between the two input constituent beams,
respectively.

II. THE ANALYTICAL SOLUTION

Let us first recall the governing equation. We consider
a beam propagating in a self-induced harmonic potential,
in which the evolution of the complex amplitude envelope
of the field [represented as �(x, y, z)] is governed by the
Schrödinger equation

2ik
∂�

∂z
+ ∂2�

∂x2
+ ∂2�

∂y2
− V (r, z)� = 0, (1)

where k is the wave number in the media without nonlinearity.
V (r, z) is the self-induced harmonic potential. It has been
discovered that when a beam is propagating in the strongly
nonlocal nonlinear media, the beam itself would induce a
power-dependent harmonic potential [8],

V (r, z) = k2γ 2P0|r − rc(z)|2, (2)

where γ is a coefficient related to the nonlocal degree of
the nonlinearity. r = (x, y), rc = (xc, yc) is the mass center of
the beam. P0 = ∫ ∞

−∞ |�(r, 0)|2dxdy is the power of the input
field.

For most beams, the transverse location of the mass center
stays invariant during propagation [i.e., rc(z) ≡ 0]; therefore,
Eq. (1) is deduced to

2ik
∂�

∂z
+ ∂2�

∂x2
+ ∂2�

∂y2
− k2γ 2P0r2� = 0, (3)

which is the so-called SMM. [We call it the standard SMM
here. Correspondingly, we call Eq. (1) the modified SMM.]

However, in this paper we construct a special type of beam,
of which the potential transversely moves with the mass center
of the beam. This type of beam is a combined field resulting
from the coaxial superposition of a fundamental Gaussian
beam and a (0,1) mode Laguerre-Gaussian beam,

�(r, 0) = �1(r, 0) + �2(r, 0), (4)
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where

�1(r, 0) = �0 exp

(
− r2

2w2
0

)
, (5)

�2(r, 0) = b�0
r

w0
exp

(
− r2

2w2
0

)
exp [iϕ(0)] exp (iδ)

= b�0
x + iy

w0
exp

(
− r2

2w2
0

)
exp (iδ), (6)

�0 is the amplitude coefficient which ensures that P0 =∫ ∞
−∞ |�(r, 0)|2dxdy, b is the ratio coefficient of the two con-

stituent beams, δ is the initial phase difference between the
two constituent beams, w0 is the width of the beam waist,
and ϕ(·) is the azimuthal angle around the beam center of the
constituent beams.

Because of the mathematical complexity, it is not easy to
directly solve the modified SMM [i.e., Eq. (1)] for the input
field shown in Eq. (4). However, the modified SMM can be
transformed to an equation which is in form the same as the
standard SMM, by utilizing the technique of variable trans-
formation [20], as follows. According to Ehrenfest’s theorem,
the mass center of the field undergoes a straight trajectory,
i.e.,

rc(z) = rc(0) + M
P0

z, (7)

where

rc(0) =
∫ ∞

−∞
r|�(r, 0)|2dxdy/P0 (8)

is the position of the mass center at the entrance plane and

M = i

2k

∫ ∞

−∞
(�∇⊥�∗ − �∗∇⊥�)dxdy (9)

is the transverse momentum of the input field. Therefore, if
one introduces a comoving reference frame

r′(z) = r − rc(z), z′ = z, (10)

and makes the variable transformation

�(r, z) = �(r′, z′) exp

(
ikM · r′

P0
+ ikM2

2P2
0

z′
)

, (11)

Eq. (1) becomes [20]

2ik
∂�

∂z′ + ∂2�

∂x′2 + ∂2�

∂y′2 − k2γ 2P0r′2� = 0, (12)

which is in form the same as the standard SMM [i.e., Eq. (3)]
and is mathematically simpler than the modified SMM [i.e.,
Eq. (1)]. In the following, we still call Eq. (12) the standard
SMM.

For the standard SMM [i.e., Eq. (12)] in the comoving
reference frame (r′, z′), the input field becomes

�(r′, 0) = �1(r′, 0) + �2(r′, 0), (13)

where

�1(r′, 0) = �0 exp

[
−|r′ + rc(0)|2

2w2
0

]
exp

(
− ikM · r′

P0

)
,

(14)

�2(r′, 0) = b�1(r′, 0)
[x′ + xc(0)] + i[y′ + yc(0)]

w0
exp(iδ).

(15)
Comparing Eqs. (12) and (13) with Eqs. (1) and (2) in our

previous work (i.e., Ref. [3]), we found that the input beam
in the comoving reference frame (r′, z′) in the self-induced
harmonic potential is analogous to the input beam with the
initial kick −kM/P0 and the initial transverse displacement
−rc(0) in the laboratory reference frame in the medium-
induced harmonic potential. Therefore, following the method
used in Ref. [3], we can straightforwardly get the analytical
solution of Eq. (12),

�(r′, z′) = [�1(r′, z′) + �2(r′, z′)] exp[iu(z′) · r′ + iζ (z′)],

(16)

where

�1(r′, z′) = �0
w0

w(z′)
exp

[
−|r′ + s(z′)|2

2w2(z′)

]
exp

[
ik|r′ + s(z′)|2

2R(z′)

]
exp

(
−i

{
aπ + arctan

[
zp0

z0
tan

(
z′

zp0

)]})
, (17)

�2(r′, z′) = b�1(r′, z′)
|r′ + s(z′)|

w(z′)
exp[iϕ(z′)] exp(iδ) exp

(
−i

{
aπ + arctan

[
zp0

z0
tan

(
z′

zp0

)]})
, (18)

w(z′) =
w0

{
1 + [ zp0

z0
tan

(
z′

zp0

)]2}1/2

[
1 + tan2

(
z′

zp0

)]1/2 , (19)

R(z′) = 1

1 + tan2
(

z′
zp0

) zp0 tan
(

z′
zp0

)
1

1+1/

[
zp0
z0

tan
(

z′
zp0

)]2 − 1[
1+1/ tan2

(
z′

zp0

)] , (20)

s(z′) = 1

(−1)a
[
1 + tan2

(
z′

zp0

)]1/2

[
rc(0) + M

P0
zp0 tan

(
z′

zp0

)]
, (21)

u(z′) = 1

(−1)a
[
1 + tan2

(
z′

zp0

)]1/2

[
k

rc(0)

zp0
tan

(
z′

zp0

)
− k

M
P0

]
, (22)

ζ (z′) = k

4

[
r2

c (0)

zp0
− M2zp0

P2
0

]
sin

(
2z′

zp0

)
+ k

M · rc(0)

P0
sin2

(
z′

zp0

)
, (23)
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FIG. 1. Propagation dynamics of the deflecting breathing beam for different input powers P0 and different initial phase differences δ

between the two input constituent beams. Upper row: P0 = 0.5(z0γ )−2, δ = 0. Bottom row: P0 = 2(z0γ )−2, δ = π . The ratio coefficient b = 1.

a(z′) = 1/π{z′/zp0 − arctan [tan (z′/zp0)]}, zp0 = (γ 2P0)−1/2,
and z0 = kw2

0.
Therefore, from Eqs. (10), (11), and (16), we can obtain

the analytical solution of the modified SMM [i.e., Eq. (1)] in
the laboratory reference frame,

�(r, z) = [�1(r, z) + �2(r, z)] exp[iv(z) · r + iα(z)], (24)

where

�1(r, z) = �0
w0

w(z)
exp

[
−|r − r0(z)|2

2w2(z)

]
exp

[
ik|r − r0(z)|2

2R(z)

]

× exp

(
−i

{
aπ + arctan

[
zp0

z0
tan

(
z

zp0

)]})
,

(25)

�2(r, z) = b�1(r, z)
|r − r0(z)|

w(z)
exp[iϕ(z)] exp(iδ)

× exp

(
−i

{
aπ + arctan

[
zp0

z0
tan

(
z

zp0

)]})
,

(26)

α(z) = ζ (z) − rc(z) ·
[

k
rc(0)

zp0
sin

(
z

zp0

)

− k
M
P0

cos

(
z

zp0

)
+ k

M
P0

]
+ kM2

2P2
0

z, (27)

r0(z) = rc(z) − s(z), (28)

v(z) = k
M
P0

+ u(z). (29)

Equation (24) is the main result of the 2D-deflection-
steerable breathing beam in the self-induced harmonic po-
tential. The propagation properties will be discussed in detail
below.

III. PROPAGATION PROPERTIES

We discuss the propagation properties of the deflecting
breathing beam based on Eq. (24). As shown in Fig. 1, during
propagation, the beam pattern stays shape invariant, but the
beam size increases and decreases alternatively (that is why
we call it a breathing beam). It is particularly interesting is that
(i) the mass center of the beam undergoes a steerable straight
trajectory deflecting from the z axis and (ii) the pattern rotates
around the trajectory the mass center (not the constituent
beams’ center) undergoes.

A. Magnitude- and orientation-steerable deflection

According to Eq. (7), it is the transverse momentum that
induces the deflection of the beam. For the input field shown
in Eq. (4), the slope of the trajectory of the mass center with
respect to the z axis is

Mp = M
P0

= b sin δ

kw0(1 + b2)
ex + b cos δ

kw0(1 + b2)
ey. (30)

Obviously, the magnitude of the slope is

|Mp| = b

kw0(1 + b2)
. (31)

As shown in Fig. 2, with the increase of the ratio parameter
b, the deflection slope |Mp| increases first, then arrives its
maximum at b = 1, and then decreases with b. As expected,
there is no deflection (i.e., |Mp| = 0) when b = 0 or ∞, which
means that only one constituent beam is input. Besides, the
azimuth orientation of the deflection is determined by the
initial phase difference (i.e., δ) between the two constituent
beams through the relation

θM = π

2
− δ. (32)

Therefore, according to Eqs. (31) and (32), the amplitude (i.e.,
|Mp|) and orientation (i.e., θM) of the deflection can be steered
by tuning the ratio coefficient b and the initial phase difference
δ, respectively.

043820-3



CHEN, CAI, LU, AND HU PHYSICAL REVIEW A 100, 043820 (2019)

0 5 10 15 20

b

0.1

0.3

0.5

|r c
(0

)|/
w

0,
|M

p
|/(

k
w

0)
− 1 (a)

0

δ

0

θ r
c
,θ

M
(r

a
d
)

(b)

FIG. 2. (a) The magnitude for the slope of the trajectory (|Mp|, solid line) and for the initial displacement of the mass center from the center
of the constituent beams [rc(0), circle symbols] vs the ratio coefficient b of the two input constituent beams. (b) The azimuth orientation for
the deflection (θM , solid line) and for the initial displacement of the mass center from the center of the constituent beams (θrc, circle symbols)
vs the initial phase difference δ between the two input constituent beams.

The deflection is closely related to the initial displacement
of the mass center for the combined field from the center of
the constituent beams. Based on Eq. (8), we have

rc(0) = bw0 cos δ

1 + b2
ex − bw0 sin δ

1 + b2
ey, (33)

of which the amplitude and the azimuth orientation are

|rc(0)| = bw0

1 + b2
(34)

and

θrc = −δ, (35)

respectively. Comparing Eq. (31) with Eq. (34), we have an
interesting relation between the trajectory slope Mp and the
initial displacement rc(0), reads

|rc(0)|
|Mp| = kw2

0 = z0. (36)

In addition, according to Eqs. (32) and (35), we have θrc =
θM − π/2, which means that the beam always deflects in
the direction which is vertical to the orientation of the initial
displacement of the mass center, as shown in Figs. 1 and 2(b).

B. Rotation of the beam around the deflecting trajectory

Beyond the deflection of the trajectory of the mass center,
the beam also elliptically rotates around the deflecting trajec-
tory during propagation. In fact, the rotation results from three
aspects: the breath, the rotation of the combined field around
the constituent beams’ center, and the rotation of constituent
beams’ center around the mass center. The synchronous evo-
lution of the three aspects results in the elliptical rotation of
the intensity pattern around the trajectory of the mass center.

First, we study the evolution of the displacement of the
constituent beams’ center [i.e., r0(z)] from the mass center
[i.e., rc(z)] of the combined field. According to Eq. (28), the

displacements in the x and y directions are

x0(z) − xc(z) = −
[

M2
x

P2
0

z2
p0 + r2

cx(0)

]1/2

cos

[(
z

zp0

)
+ θx

]

(37)

and

y0(z) − yc(z) = −
[

M2
y

P2
0

z2
p0 + r2

cy(0)

]1/2

cos

[(
z

zp0

)
+ θy

]
,

(38)

respectively, where

θx = arctan

[−Mxzp0

P0rcx(0)

]
+ χ [rcx(0)],

θy = arctan

[−Myzp0

P0rcy(0)

]
+ χ [rcy(0)],

χ (ξ ) = 0 (for ξ � 0) or π (for ξ < 0). The oscillations in
the x and y directions would result in the elliptical rotation
of the constituent beams’ center [i.e., r0(z)] around the mass
center [i.e., rc(z)] of the combined field with the period
2πzp0, just as the beam does in the medium-induced harmonic
potential [3].

Second, we study the evolution of the displacement of an
arbitrary individual point A [located at rA(z)] in the intensity
pattern from the constituent beams’ center [i.e., r0(z)]. It
might be constructive to explain the reason for the rotation
of the intensity pattern in advance. According to Eq. (24), the
intensity of the combined field is

|�(r, z)|2 = �2
0

w2
0

w2(z)
exp

[
−|r − r0(z)|2

w2(z)

]∣∣∣∣1 + b
|r − r0(z)|

w(z)

× exp [iϕ(z) − iϕ0(z)]

∣∣∣∣
2

, (39)
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where

ϕ0(z) = −δ + δg(z), (40)

δg(z) = aπ + arctan

[
zp0

z0
tan

(
z

zp0

)]
(41)

is the Gouy phase shift difference between the two con-
stituent beams. At the entrance plane (i.e., z = 0), as shown in
Eq. (39), it is the phase vortex ϕ(0) that induces the circular
asymmetry of the pattern. For example, at the azimuthal
angle ϕ = 0 (ϕ = π ), the two constituent beams interfere
constructively (destructively), and the intensity of the com-

bined field here is stronger (weaker). During propagation, the
Gouy phase shift difference δg(z) and thereby ϕ0(z) increase
monotonously; thus, the intensity pattern rotates anticlock-
wise continuously. At z = z, the pattern is rotated by the
angle δg(z).

On the other hand, due to the breath of the beam, the
evolution of the displacement for the individual point A from
the constituent beams’ center [i.e., r0(z)] obeys the relation

|rA(z) − r0(z)| = w(z)

w0
|rA(0) − r0(0)|. (42)

Therefore, in the x and y directions, we have

xA(z) − x0(z) = |rA(z) − r0(z)| cos[θA + ϕ0(z)] =
{[

rA0zp0 sin(θA − δ)

z0

]2

+ [rA0 cos(θA − δ)]2

}1/2

cos

[(
z

zp0

)
+ γ1

]
, (43)

yA(z) − y0(z) = |rA(z) − r0(z)| sin[θA + ϕ0(z)] =
{[

rA0zp0 cos(θA − δ)

z0

]2

+ [rA0 sin(θA − δ)]2

}1/2

cos

[(
z

zp0

)
+ γ2

]
, (44)

where

rA0 = |rA(0) − r0(0)|,

γ1 = arctan

[
zp0 sin(θA − δ)

z0 cos(θA − δ)

]
+ χ [cos(θA − δ)],

γ2 = arctan

[−zp0 cos(θA − δ)

z0 sin(θA − δ)

]
+ χ [sin(θA − δ)],

and θA is the angle between the initial azimuthal orientation of the individual point A and that of the mass center [i.e., rc(0)].
Consequently, according to Eqs. (37), (38), (43), and (44), the motion of the individual point A relative to the mass center

rc(z) becomes

xA(z) = xc(z) +
{[

rA0zp0 sin(θA − δ)

z0
+ Mx

P0
zp0

]2

+ [rA0 cos(θA − δ) − rcx(0)]2

}1/2

cos

[(
z

zp0

)
+ β1

]
, (45)

yA(z) = yc(z) +
{[

rA0zp0 cos(θA − δ)

z0
− My

P0
zp0

]2

+ [rA0 sin(θA − δ) − rcy(0)]2

}1/2

cos

[(
z

zp0

)
+ β2

]
, (46)

where

β1 = arctan

[ rA0zp0 sin(θA−δ)
z0

+ Mx
P0

zp0

rA0 cos(θA − δ) − rcx(0)

]
+ χ [rA0 cos(θA − δ) − rcx(0)],

β2 = arctan

[ − rA0zp0 cos(θA−δ)
z0

+ My

P0
zp0

rA0 sin(θA − δ) − rcy(0)

]
+ χ [rA0 sin(θA − δ) − rcy(0)].

Equations (45) and (46) mean that each individual point in
the pattern of the combined field rotates elliptically around
the deflecting straight trajectory of the mass center (as shown
in Fig. 3). When P0 > Pc (P0 < Pc), the initial position of the
individual point is at the endpoint of the major (minor) axis of
the ellipse, and the ellipse becomes a circle when P0 = Pc.

IV. DISCUSSION: THE EXTENSION TO THE GENERAL
CASE OF NONLOCAL NONLINEARITY

The analytical results in Secs. II and III are based on
the assumption that the combined beam is propagating in a
self-induced harmonic potential, which is corresponding to
the limit case of strongly nonlocal nonlinearity. Therefore,

the question arises of what would happen if the strongly
nonlocal nonlinear condition is not satisfied. To answer this
question, we extend the study to the general case of nonlocal
nonlinearity, in which the potential becomes [21]

V (r, z) = −2k2

n0
�n, (47)

where

�n = n2

∫ ∞

−∞
R(|r − ra|)|�(ra, z)|2d2ra (48)

represents the nonlinear refractive index, R(·) is the nonlin-
ear spatial response function of the media, n0 is the linear
refractive index, n2 is the nonlinear index coefficient, and
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FIG. 3. The trajectory of an individual point in the intensity pattern of the deflecting beam for different input powers and initial phase
differences. Upper row: The intensity pattern at the entrance plane. The small circle represents the initial location of the individual point A.
Middle row: Projection of the trajectory for the individual point on the x′-y′ plane in the comoving reference frame (x′, y′, z′). Bottom row: The
trajectory for the individual point in the 3D space of the laboratory reference frame (x, y, z). The ratio coefficient b = 3. Pc = (z0γ )−2.

ra = (xa, ya). In this case, Eq. (1) becomes the general non-
local nonlinear Schrödinger equation [21]

2ik
∂�

∂z
+ ∂2�

∂x2
+ ∂2�

∂y2

+ 2k2

n0
n2�

∫ ∞

−∞
R(|r − ra|)|�(ra, z)|2d2ra = 0. (49)

Based on Eq. (49), we first consider the steerable deflection
in the case of general nonlocal nonlinearity. As shown in
Refs. [20,21], the transverse momentum M is a conserved
quantity for Eq. (49). Therefore, the equation

rc(z) = rc(0) + M
P0

z

= rc(0) + bz sin δ

kw0(1 + b2)
ex + bz cos δ

kw0(1 + b2)
ey, (50)

which describes the deflecting straight trajectory the mass
center and thereby the moving potential undergo, is also
valid in the general nonlocal case, whatever the degree of
nonlocality is. If the ratio parameter b 	= 0,∞, the transverse
momentum would be nonzero, and thereby the mass center
of the combined field would undergo a 2D steerable deflect-
ing straight trajectory. The deflection in the case of general
nonlocal nonlinearity acts the same as that in the case of
self-induced harmonic potential.

However, the evolution of the intensity pattern of the
combined beam would be quite different for different de-
grees of nonlocality. The reason is as follows: In the case
of strong nonlocality, the potential agrees well with the

harmonic one. Therefore, the propagation characteristics of
the two constituent beams and thereby the combined field
would be the same as that predicted by the analytical solu-
tion [i.e., Eq. (24)]. But, with the decrease of the degree of
nonlocality, the potential induced by the nonlinear refractive
index gradually deviates from the harmonic one. Therefore,
we can reasonably expect that the evolution of the combined
beam would be more different from the prediction obtained
based on Eq. (24).

In Fig. 4, we numerically simulate Eq. (49) to verify the
above predictions. In numerical simulation, we assume that
the material is with nonlocal Gaussian response [10,12,21],
i.e.,

R(r) = 1

2πw2
m

exp

(
− r2

2w2
m

)
. (51)

where wm represents the characteristic length of the material
response function. As shown in Fig. 4, when the degree of
nonlocality is strong enough (σ = wm/w0 � 10), the numer-
ical result is in good agreement with the analytical solution
[i.e., Eq. (24)], which is obtained based on the assumption
of self-induced harmonic potential. With the decrease of the
degree of nonlocality, the numerical result deviates more from
the analytical solution. When the degree of nonlocality is
reduced to σ = 5 (row 3), although the shape of the intensity
pattern of the numerical result still approximates well to the
analytical result, the azimuthal orientation is slightly different
from the analytical result (the deflecting beam rotates a lit-
tle slower than theoretically predicted). However, when the
degree of nonlocality is reduced to σ = 1.5 (row 4), not
only the azimuthal orientation but also the pattern shape are
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FIG. 4. The comparison of the propagation dynamics of the deflecting beam based on the analytical solution [Eq. (24), row 1] and that
based on the numerical simulation of Eq. (49) for different degrees of nonlocality (rows 2–4). In rows 2–4, the degrees of nonlocality are
σ = wm/w0 = 10, 5, and 1.5, respectively. δ = 0, b = 1, and P0 = Pc.

distinctly different from the analytical result. It is noted that
the slope of the deflection is always identical to that obtained
from the analytical solution [i.e., Eq. (24)], whatever the
degree of nonlocality is, just as expected.

V. CONCLUSION

In conclusion, we have discovered another effect in self-
induced harmonic potentials, i.e., magnitude- and orientation-
steerable beam deflection. The input field for the deflecting
beam is a combined field composed of a fundamental Gaus-
sian beam and a (0,1) mode Laguerre-Gaussian beam. The
magnitude and orientation of the deflection can be steered
by tuning the ratio and the initial phase difference between
the two input constituent beams, respectively. During propa-
gation, the beam rotates around the deflecting straight trajec-
tory that the mass center (not the constituent beams’ center)
undergoes. We have also extended the study to the general

case of nonlocality and numerically simulated the general
nonlocal nonlinear Schrödinger equation. It is shown that, in
the case of strong nonlocality, the numerical result is in good
agreement with the analytical solution based on the assump-
tion of self-induced harmonic potential. With the decrease of
the degree of nonlocality, the shape and azimuthal orientation
of the combined beam become increasingly different from
the analytical results. However, the slope of the deflection is
always identical to the analytical result, whatever the degree
of nonlocality is. The 2D-steerable beam deflection might
be of interest for the applications in all-optical information
processing.
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