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Optical mode conversion through nonlinear two-wave mixing
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Hermite-Gaussian (HG), Laguerre-Gaussian (LG), and Ince-Gaussian (IG) modes have been of considerable
importance for photonics. They have revealed a unique way to optical manipulation and are particularly
promising for optical communications. This paper combines HG modes, as a basis, inside the nonlinear crystal
and the generated second harmonic field turns to LG and IG modes. Here we present a way to use second order
nonlinear media to convert optical beam modes as we wish.
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I. INTRODUCTION

Undoubtedly, photonics achieved a great position in the
present scientific picture. Among the many applications it has
led us to, the enhancements in the communication system
and optical micromanipulation are the most highlighted ones.
Spatially structured light, which can be defined as a bidimen-
sional design of the transverse higher-order light modes, is
one of the ways to code information or be used in optical
tweezers and trapping. The potential of higher order spatial
light modes with defined, complex propagation properties,
such as the Hermite-Gaussian (HG), Laguerre-Gaussian (LG),
and, recently, Ince-Gaussian (IG) modes, has attracted steady
attention of researchers over the last decades. Particularly, LG
modes are of highest interest in optical micromanipulation [1]
and communication [2]. Since its discovery [3], many studies
on fundamental properties [4,5], optical tweezers [6], spin-
orbit coupling [7], teleportation schemes [8,9], imaging [10],
manipulation of ultracold atoms [11], and quantum protocols
[12,13] to cite a few, were realized.

On other hand, nonlinear responses can be useful in order
to mediate some photonic processes. Nonlinear media can
bring very interesting effects like second harmonic generation
[14] and sum-difference frequency generation [15], optical
parametric oscillation [16], parametric fluorescence [17], non-
linear mixing [18,19], and four-wave mixing in atomic media
[20,21]. The beam coupling due to two-wave mixing has been
studied [22–24], showing how optical vortices behave in the
second harmonic generation (SHG). The nonlinear media acts
like a mode selector, leading to mode superposition in the
second harmonic field. This effect happens when the wave
mixing is under longitudinal and transversal phase match, and
this role is played by the overlap integral within the nonlinear
media.

Optical mode conversion is mainly realized by using
diffractive and linear optics [25–27]. Here we present a way
to use second order nonlinear media to convert optical beam
modes as we wish. It is well known that HG and LG are
transversal eigenmodes of typical laser resonators and can
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easily be created with high efficiency [28,29]. These two
modes separately form two complete families of exact and
orthogonal solutions of the paraxial wave equation (PWE)
in rectangular and cylindrical coordinates, respectively. More
recently, IG modes have been proposed as a third complete
family of PWE solutions in elliptic coordinates [30]. By using
HG modes as a basis, we combine multiple beams inside
the nonlinear crystal and the generated second harmonic field
turns as a combination of HG modes, leading to the conversion
into LG and IG modes. In order to better visualize the mode
decomposition, Fig. 1(a) shows a Poincaré sphere for a set
of mode conversions in a particular HG basis. Modal conver-
sion and decomposition of HG modes in the spatial-temporal
degree of freedom were considered before for tailoring its
temporal-mode structures [31–34]. The results presented here,
together with previous works on spatial-temporal control of
structured beams [35,36], are important for communication
systems.

II. NONLINEAR TWO-WAVE MIXING OF
HERMITE-GAUSSIAN BEAMS

In the paraxial approximation, the second harmonic gen-
eration under longitudinal and transversal phase match con-
ditions is described by a coupled evolution for the incoming
fields Uh and Uv, orthogonally polarized in respect of each
other and frequency ω, generating a field U2ω [24,37]. The
expansion of these fields in an orthonormal basis is [24]

Uj =
√

ω j

n j

∑
m,n

A j
mnu j

mn(r, z), (1)

where n j is the refractive index for the Uj field, u j
mn is the

mode basis, and Aj
mn is the amplitude with j = h, v, 2ω.

Although the basis of the expansion is arbitrary, it must be
chosen carefully. In our case, the bases used are the HG
modes. Figure 1(c) shows a sketch of the nonlinear two-wave
mixing process considered here. Notice that the generated
field U2ω is a sum-frequency field but, since its frequency is
2ω and for convention reasons, we will call U2ω as a second
harmonic generated field.
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FIG. 1. (a) Three-dimensional graphical representation of IGe
42

mode with various eccentricity values expanded in the HG mode
basis. (b) General idea of the nonlinear two-wave mixing process.
(c) Sketch of the experimental setup. HWP: half-wave plate; PBS:
polarized beam splitter; SLM: spatial light modulator; L: lens; PH:
pinhole; BBO: beta barium borate; CCD: coupled-charged device.

After this mode decomposition, the coupled equations for
the amplitudes can be written as [24]

dAh
mn

dz
= ig

∑
m′n′

∑
m′′n′′

�n′nn′′
m′mm′′A2ω

m′n′
(
Av

m′′n′′
)∗

,

dAv
mn

dz
= ig

∑
m′n′

∑
m′′n′′

�n′n′′n
m′m′′mA2ω

m′n′
(
Ah

m′′n′′
)∗

, (2)

dA2ω
mn

dz
= ig

∑
m′n′

∑
m′′n′′

(
�nn′n′′

mm′m′′
)∗

Ah
m′n′Av

m′′n′′ .

Here we consider χ = χ∗ and �ll ′l ′′
pp′ p′′ = (�ll ′l ′′

pp′ p′′ )∗ by ne-
glecting nonlinear losses and the Gouy phase acquired inside
the crystal, respectively. The introduced parameters are [24]

Rnn′n′′
mm′m′′ =

∫
u2ω

mn

(
uh

m′n′
)∗(

uv
m′′n′′

)∗
d2r,

�nn′n′′
mm′m′′ = Rnn′n′′

mm′m′′

R000
000

, (3)

g = χ

2c

√
2ω3

nhnvn2ω

R000
000.

The overlap integral �nn′n′′
mm′m′′ plays the main role in the

mode conversion acting as a mode selector for the mixed fields
inside the nonlinear crystal. For HG modes, the normalized
overlap integral is [38]

�nn′n′′
mm′m′′ = �000

000C
nn′n′′
mm′m′′

∂m′+m′′

∂tm′
1 ∂tm′′

2

[
(t1 + t2)me−(t1+t2 )2

/
2
]∣∣∣

ti=0

× ∂n′+n′′

∂t n′
1 ∂t n′′

2

[
(t1 + t2)ne−(t1+t2 )2

/
2
]∣∣∣

ti=0
. (4)

where Cnn′n′′
mm′m′′ =

√
2−(m+m′+m′′+n+n′+n′′ )

m!m′!m′′!n!n′!n′′! and �000
000 is a normalizing

constant. An interesting effect is worth noting here. For HG
mode mixtures, the second harmonic generated field has a
single mode with indexes equal to m = m′ + m′′ and n = n′ +
n′′, not a superposition of modes with m � m′ + m′′ and n �
n′ + n′′ observed in the LG mode mixing. All the lower orders
in the expansion vanish due to the overlap integral acquiring
undetermined values, remaining only a higher order term.
This is not an intuitive effect, since for a Laguerre-Gaussian
(LG) mode mixture the generated field is a superposition of
different radial modes [23] and will be better treated in a
coming work. For this reason, HG modes form a unique basis
for this purpose, since for an efficient conversion we must
make sure that a specific mode will be created.

Now, instead of using a single mode as input beam, a
combination of HG with different indexes is considered. This
means that, from now on, Uh = ∑

mn αmnHGmn and Uv =∑
mn βmnHGmn, where αmn and βmn are the weights of each

mode in the sum and, physically, can be understood as in-
tensity control parameters. Notice that after performing the
overlap integral, we have a sum of normalized overlaps

�Net =
∑

i

�i, (5)

where each �i must select the HG mode superposition in the
second harmonic field. By choosing these modes properly, it is
possible to convert them into different kind of modes, such as
IG or LG modes. The basis is chosen by expanding IG and
LG modes in terms of HG ones [30]. The SHG process is
illustrated in Fig. 1(b) which shows two orthogonally polar-
ized beams, Uh and Uv . In each beam we have a superposition
of HG modes, going through a process of nonlinear mixture
inside the BBO crystal and generating the desired IG or LG
mode in the second harmonic field U2ω. A detailed look on
how the weights are chosen can be found in Appendix A.

III. BEAMS WITH DEFINED PARITY

Theoretical calculations, along with experimental valida-
tion, were performed. When the Rayleigh length is much
larger than the size of the nonlinear crystal, the coupled equa-
tions for the amplitude evolution in Eq. (2) can be simplified
and analytically solved [16]. Here the Rayleigh length is
around 20 cm. The resulting second harmonic field, which is
composed by a superposition of HG modes, is then calculated
at the Fraunhofer zone.

Figure 1(c) shows a sketch of the experimental setup. A
pulsed Ti:sapphire laser tuned at 780 nm illuminates a spatial
light modulator (SLM), generating two HG superposition
beams with a linear phase difference. A computer-generated
double-phase hologram [39,40] is used to encode the resulting
field. After the beams are separated, each one passes through
a half-wave plate (HWP) in order to set an orthogonally
polarization in respect of each other, then another HWP is
used to obtain a most efficient SHG from a type II beta
barium borate (BBO) nonlinear crystal with size 10 × 10 ×
3 mm and phase-matching angle θ = 33.5◦. After the beam of
interest is generated, a spectral filter separates it from the near
infrared beams and its far field intensity pattern is captured by
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TABLE I. Input beams decomposition in HG basis that generates
a specified IG or LG mode through a nonlinear two-wave mixing
process. Modes marked with ∗ denotes those in which it is not
possible to find a solution for linear system for the weights (αm′n′

and βm′′n′′ ) that compensates the overlap integral �nn′n′′
mm′m′′ that arises

from the selection rule.

Mode Uh Uv

IGe
22 HG10 + 0.486HG01 3.892HG10 − 1.892HG01

IGe
42 HG20 − 0.155HG02 −12.000HG20 − 25.843HG02

IGo
31 2.072HG20 + 4.462HG02 HG01

LGe
01 HG10+HG01 HG10 − HG01

LGe
12 HG20+HG02 HG20 − HG02

LGo
11 HG20+HG02 HG01

LG02 HG10 − 1.017iHG01 −2.828HG10+2.779iHG01
∗LG12 HG20+HG02 HG20 − HG02 − iHG02

IG22 HG10 − 1.267iHG01 −3.892HG10+0.726iHG01
∗IG31 2.859HG20+0.983HG02 1.577iHG10+2.405HG01

a coupled-charged device (CCD) camera. An interesting fact
about using this setup is that it assures both beams have the
same optical path, implying no need for a translation stage
to temporally match the pulses. It becomes much easier to
conduct these kinds of experiments.

The input beams must be chosen properly in each branch
Uh and Uv. For example, for the IGe

2,2 mode we need to expand

FIG. 2. Exact IG mode (a), (d), and (g) compared with the
theoretical (b), (e), and (h) and experimental (c), (f), and (i) intensity
patterns for even and odd parities.

FIG. 3. Exact LG mode (a), (d), and (g) compared with the
theoretical (b), (e), and (h) and experimental (c), (f), and (i) intensity
patterns for even and odd parities.

it in terms of the modes HG20 and HG02. But, in order to
generate a combination of these modes in the second harmonic
beam, we must use

Uh = α10HG10 + α01HG01 (6)

and

Uv = β10HG10 + β01HG01. (7)

Here the values for αm′n′ and βm′′n′′ are determined by
combining the beams in Eqs. (6) and (7) as shown in Table I.
The normalized overlap integral �nn′n′′

mm′m′′ is the one responsible
for mixing the input modes, creating the field superposition in
the second harmonic beam. Therefore, we need to compensate
its values while choosing the weights αm′n′ and βm′′n′′ . The
expansions for the other modes studied in this paper are also
displayed in Table I.

First, we selected a group of three different modes with
well-defined beam parities. The results for the IG and LG con-
versions can be seen in Figs. 2 and 3, respectively, following
the first to seventh line of Table I. The first column shows
the exact intensity distribution for the desired IG and LG
modes, obtained as solutions for the paraxial wave equation
in an elliptical coordinate system. Expressions for the exact
transverse field can be found in Ref. [30]. The second column
shows theoretical results which represent the second harmonic
field calculated using the normalized overlap expression in
Eq. (4) for HG beams in the nonlinear mixture and then
propagated until the Fraunhofer zone. The third column shows
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FIG. 4. Far field second harmonic intensity distribution for vari-
ous eccentricity values of the IGe

42 mode. Here we show the transition
between LG and HG modes by changing the eccentricity from 0 to
1000.

the experimental results to validate our theory. The weights
αmn and βmn were calculated by considering the expansion
of the IG and LG modes in the HG basis [41] and taking
into account the value of the normalized overlap �nn′n′′

mm′m′′ ,

leading to a set of equations that can be easily solved (see
Table I). As a helpful visualization sketch, the Poincaré sphere
in Fig. 1(b) can be used for a better understanding of the
mode transformations. These points were also considered for
the computer generated holograms used in the experimental
results. The weights values for the input beams were in-
serted in the hologram expression already anticipating the
usual normalized overlap weight acquired by each beam in
the nonlinear mixture. By means of a convex lens (L5),
the generated second harmonic beams were propagated until
the Fourier plane, where their intensity profiles were captured
and can be seen in the experiment column of Figs. 2 and 3.
Additionally, we show the transition between LG and HG
modes by changing the eccentricity parameter of a IGe

42 mode.
Figure 4 shows the intensity distributions of the second har-
monic generated beam at the Fraunhofer zone, theoretically
and experimentally, for eccentricity values between 0 and
1000. Here we can always find a set of weights so that the
output SHG field will have the exact decomposition of the
desired mode in HG basis. Although the similarities between
the theoretical and experimental results compared with the
exact transverse field distribution are remarkable, we can
note a shear in the measured intensity patterns. A slightly
spatial-temporal mismatch at the nonlinear crystal may occur,
where such experimental error leads to an imperfect intensity
distribution.

FIG. 5. Exact LG (a) and (d) and IG (g) and (j) modes compared
with the theoretical (b), (e), (h), and (k) and experimental (c), (f), (i),
and (l) intensity patterns for beams carrying OAM.

IV. BEAMS CARRYING ORBITAL
ANGULAR MOMENTUM

As we are converting HG beams into LG beams with
well-defined parity, they do not possess OAM. In order to
generate a beam carrying a specific topological charge, the
superposition in the second harmonic field must combine
beams with even and odd parities. Figure 5 shows a set of
IG and LG beams generated by the combination of HG modes
that carries OAM. In this case, we must add a eiπ/2 phase to
one of the mode parities in order to access a specific point in
the Poincaré sphere. The last four lines of Table I show the
mode superposition used with its weight value, to generate
beams carrying OAM in SHG. Note that, for instance, the
theoretical and experimental results for the LG12 do not match
perfectly its exact transverse field mode. In this case, the set
of equations for the weight values cannot be solved exactly.
Although the intensity profile cannot be obtained precisely
as it should be, in fact the results in Fig. 5 possess OAM
(see Appendix B for more details on the limitations of the
presented method). In order to prove that, we measure the
topological charge by using the tilted-lens method [42] for
the second harmonic generated beams presented in Fig. 5. In
Fig. 6 we show the intensity distributions for the considered
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FIG. 6. Far field second harmonic intensity distribution for
beams possessing OAM referring to the modes (a) ∗LG02, (c) LG12,
(e) IG22, and (g) ∗IG31, together with the associated topological
charge measure performed using the tilted-lens method (b), (d), (f),
and (h), respectively. Modes marked with ∗ denotes those in which
it is not possible to find a solution for linear system for the weights
(αm′n′ and βm′′n′′ ) that compensates the overlap integral �nn′n′′

mm′m′′ that
arises from the selection rule.

beams, where the topological charge is equal to the number of
maxima minus one.

V. CONCLUSIONS

In summary, by means of a theoretical and experimental
approach, we present an alternative way of using nonlinear
two-wave mixing to convert HG modes into IG and LG
modes. When multiple modes are used as input beams, the
selection rule played by the normalized overlap integral se-
lects the needed modes which will be converted into new
modes possessing different symmetry. Results for beams with
well-defined parity and carrying OAM were generated. Our
paper could be helpful for designing new types of modes,
where the beam shape could be selected by the user, implying
new ways to optical manipulation as well as promising for
optical communications.
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APPENDIX A: MODE DECOMPOSITION

Let us consider each parity separately. The first step is to
expand the desired mode into the HG basis [30,41]. As an
example for odd parities, let us use the IGo

31 for the following
explanation. This mode can be expanded in terms of HG
modes as

IGo
31 = AHG21 + BHG03 (A1)

with constants A and B depending on the eccentricity of the
beam. Now we need to choose the combination of HG modes

as input beams in order to result in the above modes after the
second harmonic generation (SHG). For example, if we want
to generate the mode HGmn we must use HGm′n′ and HGm′′n′′

as input modes Uh and Uv on any order. Following this idea,
one possible configuration can be

Uh = α20HG20 + α02HG02,

Uv = β01HG01, (A2)

where α20, α02, and β01 constants must be determined. Notice
that these constants can be seen as intensity control parame-
ters. Using the above expressions and following the steps of
the main article, the SHG field, carrying the overlap integral
constant, is

U2ω = α20β01�
101
220HG21 + α02β01�

321
000HG03. (A3)

Since we want the generated field to be the one from
Eq. (1), we must adjust α20, α02, and β01 for that purpose.
This forms a linear system to be solved for those constants

α20β01�
101
220 = A,

α02β01�
321
000 = B, (A4)

with one possible solution being

α20 = A

�101
220

, α02 = B

�321
000

, β01 = 1. (A5)

This method can be generalized for any mode with odd
parity written in the HG basis:

IGo
pm =

∑
m′n′

αm′n′HGm′n′ , (A6)

with input beams

Uh =
∑
m′′n′′

βm′′n′′HGm′′n′′ , (A7)

Uv = HG01 or Uv = HG10, (A8)

and weights

βm′′n′′ = αm′n′

�nn′n′′
mm′m′′

. (A9)

For modes with even parity, we use IGe
42 as an example. It

is written in the HG basis as

IGe
42 = AHG40 + BHG22 + CHG04. (A10)

In this case, we can decompose the input beams as follows:

Uh = α20HG20 + α02HG02,

Uv = β20HG20 + β02HG02, (A11)

with α20,α02,β20, and β02 constants to be determined. Using
those input beams, the SGH field takes the form

U2ω = α20β20�
000
422HG40 + α20β02�

202
220HG22

+α02β20�
220
202HG22 + α02β02�

422
000HG04. (A12)
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We can group the HG22 terms since �202
220 = �220

202, and thus
we have

U2ω = α20β20�
000
422HG40 + (α20β02 + α02β20)�202

220HG22

+α02β02�
422
000HG04. (A13)

This leads to the following linear system:

α20β20�
000
422 = A,

(α20β02 + α02β20)�202
220 = B,

α02β02�
422
000 = C. (A14)

One possible solution is given by

α20 = 1, α02 =
B
/
�202

220 ±
√(

B
/
�202

220

)2− 4AC
/
�202

220�
422
000

2A
/
�000

422

,

β20 = A

α20�
000
422

, β02 = C

α02�
422
000

. (A15)

APPENDIX B: LIMITATIONS OF THE METHOD

Differently than odd parity modes, we cannot always find a
nontrivial combination for the input beams in which the SGH
field is the desired mode. In those cases, the linear system to
be solved for the weights is inconsistent, and thus a solution
is not available. Take for example IGe

62:

IGe
62 = AHG60 + BHG42 + CHG24 + DHG06, (B1)

which is decomposed in the input beams

Uh = α40HG40 + α04HG04,

Uv = β20HG20 + β02HG02. (B2)

The linear system for the weights takes the form

α40β20�
000
642 = A,

α40β02�
202
440 = B,

α04β20�
440
202 = C,

α04β02�
642
000 = D, (B3)

which is inconsistent and does not have a solution.

A similar behavior occurs with OAM carrying beams. As
for demonstration of this limitation let us consider the LG12
mode which decomposes in HG basis as follows:

LG12 = LGe
12 + iLGo

12 = HG40 − HG04 + i(HG31 + HG13),

(B4)

with all different multiplicative constants, as in the previous
IGe

62 case. This means that we will end up with a similar
inconsistent linear system for the weights. Even though, in this
case, we cannot generate the exact LG12 mode, it is possible to
find a decomposition for the incoming beams Uv and Uh that
U2ω will possess OAM, as demonstrated Figs. 2(c), 2(f), 2(g),
and 2(h).

In the case of Fig. 2(c) we use the following superposition:

Uh = HG20 − HG02 − iHG11,

Uv = HG20 + HG02. (B5)

The SHG field U2ω takes the form

U2ω = �000
422HG40 + �202

220HG22 − �220
202HG22

−�422
000HG04 − i�110

312HG31 − i�312
110HG13. (B6)

Notice that if all �nn′n′′
mm′m′′ were equal, we would have U2ω =

LG12 up to some proportionality constant. Since they are not
the same, the overlap integral imposes different weights to
the HG modes than those which would have generated the
exact LG12 mode. Regardless of this variation, U2ω transverse
intensity pattern still resembles the LG12 mode and carry
optical singularities, as can be seen in Figs. 2(e) and 2(f).

On the other hand, even if we cannot find appropriate
weights to compensate the overlap integral, it is possible to
numerically optimize them using various minimum search
methods for multivariable functions [43,44]. In our case,
we are trying to find weights αm′n′ and βm′′n′′ such that the
resulting second harmonic field U2ω approximate the desired
IG mode with specified eccentricity ε and parity σ , IGσ

pm. This

is achieved by minimizing the quantity
∑

i, j |U2ω − IGσ
pm|2

where the indices i and j goes through all sampled points of
the discretized fields. The result of this process is depicted in
Figs. 5(g) and 5(h) which shows that the optimized solution
still possess OAM.
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