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Speckled cross-spectral densities and their associated correlation singularities
for a modern source of partially coherent x rays
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We consider a realistic model for calculating the cross-spectral density of partially coherent beams from an
x-ray undulator in a modern storage ring. This two-point coherence function is seen to have a speckled structure
associated with the presence of x-ray coherence vortices and domain walls. Such cross-spectral density speckle
is associated with a network of spatial pairs of points for which there is zero correlation. X-ray coherence
vortices and domain walls are seen to emerge naturally as the number of coherent modes required increases.
An understanding of the existence and nature of such correlation singularities enhances our ability to exploit
partially coherent x-ray radiation from new or upgraded synchrotron sources, for both imaging and diffraction
applications.
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I. INTRODUCTION

Synchrotron radiation has witnessed enormous growth in
recent decades, largely due to its applicability to multidisci-
plinary applied science. In particular, many experimental tech-
niques have recently (or relatively recently) been developed
to exploit the coherence of synchrotron radiation, such as x-
ray photon correlation spectroscopy [1], coherent diffraction
imaging [2], propagation-based phase contrast imaging [3],
and ptychography [4].

Many storage-ring based x-ray synchrotron facilities are
building or planning upgrades to increase brilliance and co-
herent flux by one to three orders of magnitude. The first
upgrade of a large facility will be the EBS (Extremely Brilliant
Source) [5] at the European Synchrotron Radiation Facility
(ESRF), aiming to build a storage ring of 150 pm emittance to
significantly boost the associated x-ray coherence.

Accurate calculation and quantitative evaluation of the
parameters related to x-ray coherence, in such new storage
rings, is of paramount importance for designing, building, and
exploiting the new beamlines. In this context an algorithm to
calculate the cross-spectral density (CSD) of radiation emitted
by modern x-ray undulators has been developed [6]. The CSD
quantifies two-point correlation properties of partially coher-
ent statistically stationary fields [7,8]. For Gaussian statistics,
the CSD completely characterizes the properties of a beam
since the Gaussian moment theorem implies all higher-order
correlation functions either (1) vanish or (2) are expressible
in terms of the two-point correlation. Two-point correlation
functions are therefore a key input to model x-ray experiments
in which x-ray CSDs are streamed through subsequent optical
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elements and samples, and finally through to the detected
spectral density.

We consider the role played by the CSD phase [9–11].
This governs the position of Young-type interference fringes
formed when the disturbance from two different spatial points
is combined at a given angular frequency [8]. It thereby
influences detected spectral densities in both imaging and
nonimaging contexts.

As discussed later, this CSD phase can and typically will
possess a network of both (1) domain walls across which
the CSD phase is discontinuous and (2) branch lines around
which it has a nonzero winding number. At either of these
CSD phase singularities, the CSD vanishes [12,13]. Thus,
even for highly coherent sources such as that considered in the
present paper, a complicated network of infinitely many pairs
of points will typically exist, for which the x-ray disturbance
is totally uncorrelated.

While such “correlation singularities” have received at-
tention in a visible-light setting [9–19], relatively little work
exists in an x-ray context. An exception is a model for a
partially coherent x-ray source, which contains embedded
correlation singularities in its CSD phase [20]. Note also
that the Schell model of partially coherent scalar fields [8],
which has been applied to x rays [21,22], can contain em-
bedded CSD correlation singularities when generalized, e.g.,
to Laguerre-Gauss Schell beams [15,23]. Gauss-Schell beams
do not contain correlation singularities; however, when such
beams pass through samples, such singularities may develop.

One key aspect of correlation singularities must be em-
phasized from the outset. While it is very well known that
complex scalar wavefields vanish at phase singularities such
as points coinciding with coherent phase vortices [24] and
phase domain walls [25], the correlation singularity—which
is associated with a vanishing correlation between a pair
of points—is not in general associated with a field zero at
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any single point [10,12,16,18,26]. Gbur and Visser note in
this context that “the intensity of the field at such a pair of
points is not required to vanish, and in general will not . . . a
coherence vortex cannot be associated with any single point
of a wavefield, but only pairs of points; it might be said that it
is a ‘virtual’ feature of the wavefield” [10]. It is for precisely
these reasons that Gbur, Visser and Wolf speak of correlation
singularities as “hidden” singularities [26] whose presence
is not heralded by wavefield zeros, in stark contrast to their
coherent counterparts. The relation between coherent phase
singularities (wavefield phase vortices and wavefield domain
walls) and correlation singularities (coherence domain walls
and coherence vortices) is rather indirect [12,16,18], with this
relation being a topic of ongoing research [27].

In the visible-light regime, there are several experimental
studies on correlation singularities. These experiments typi-
cally deliberately engineer a vortical correlation singularity,
e.g., via a Laguerre-Gauss LG0±1 vortex mode [11], spiral
phase plate [15], spiral zone plate [17], or multiple-wave
interference [28] (see also Basano and Ottonello [29] for an
acoustic analog). This gives coherent vortices in the limit of
strict monochromaticity, which evolve into correlation singu-
larities when the radiation is partially coherent. This approach
may be contrasted with the view, aligned with the optical
concept of “natural focusing and fine structure” [30], whereby
fine wavefield structures such as coherent vortices—together
with their partially coherent generalizations, the correlation
singularities—may be naturally or spontaneously formed,
rather than needing to be deliberately engineered. Examples
of spontaneously nucleated correlation singularities include
those associated with the two-pinhole interferometer [9], the
three-pinhole interferometer [27], focused partially coherent
light [14], and a certain simple model for paraxial partially
coherent fields in the absence of any sources or optical ele-
ments [20].

In the present study we find spontaneously nucleated cor-
relation singularities in the CSD, together with an associated
speckled CSD structure, to be implied by a realistic mod-
ern x-ray undulator model. This is of practical importance
since such correlation singularities can have subtle effects on
both imaging and diffraction data. For example, we predict
a suppression in the visibility of both the near-field and
far-field interference fringes that we would otherwise expect
when radiation from two scattering centers separated by less
than a coherence width is overlapped, if these two centers
coincide with a pair of spatial positions associated with a
correlation singularity. This will be of particular influence in
the inside-source method for x-ray Fourier holography [31],
but will also apply, e.g., to pairs of points within an extended
scattering volume under the first Born approximation, as well
as scattering from multilayer mirrors. As another example
of the practical importance of x-ray correlation singularities,
the transverse location of interference fringes in Young-type
interference experiments—such as may be used to measure
the coherence properties of an x-ray beam [32–36]—may
cycle through all possible locations for very similar sets of
two pinholes, and therefore jump unexpectedly for particular
sets of pinhole positions, if the pair of pinholes lies close to
the subclass of correlation singularities known as a coherence
vortex. It is also of practical importance that correlation

singularities can be formed spontaneously for focused fields
[14] and are therefore to be expected in focused x-ray
nanoprobes, particularly when aberrations are present.

The broader conclusions and formalism of the present work
extend beyond x-ray and visible light optics, to any partially
coherent paraxial complex scalar fields obeying the Helmholtz
equation in the monochromatic (mono energetic) limit. As
such, all x-ray applications considered above have directly
analogous applications in visible-light optics, electron optics
and neutron optics.

This paper is structured as follows. Section II reviews rele-
vant background regarding the cross-spectral density, includ-
ing its coherent-mode representation and subsequent numeri-
cal evaluation for partially coherent sources. This section also
briefly reviews relevant background on coherence vortices and
coherence domain walls, these being the two key correlation-
function phase singularities for complex scalar fields. All
of this is formulated using the space-frequency description
of partially coherent complex scalar electromagnetic fields.
Section III presents a numerical study of the cross-spectral
density associated with an x-ray undulator, calculated at the
source position. Coherence vortices and domain walls, to-
gether with an associated speckled structure in the CSD, are
seen to arise. Section IV discusses propagation of the CSD
calculated at the source, to different distances in the near field,
intermediate field and far field. Section V discusses broader
implications of this work, and outlines avenues for future
research. We conclude with Sec. VI.

II. BACKGROUND

This section is divided into two parts. We begin by briefly
reviewing some relevant background regarding the space-
frequency description of partially coherent scalar electromag-
netic fields. We then review some basic results regarding
coherence vortices and domain walls in the cross-spectral
density of partially coherent fields.

A. Cross-spectral density for x-ray synchrotron radiation

The synchrotron radiation emitted by present storage rings
is partially coherent, due to superposed single-electron emis-
sion. A single electron emits a spatially coherent wave-
front that can be calculated using classical electrodynamics
[37]. However, emission of individual electrons is incoher-
ent among distinct electrons, since the bunch length greatly
exceeds the radiation wavelength. This latter point is always
the case for storage-ring x-ray sources, but not for x-ray free
electron lasers. The fact that storage ring emittance is low
implies the bunch transverse sizes to be small. An observer
placed at a sufficiently long distance from the source (typical
beamline lengths are 30–200 m) would observe radiation with
a relatively high degree of spatial coherence. Furthermore, if
required, a high degree of temporal coherence can be obtained
via a monochromator. Whether or not the x-ray beam is
energy filtered, its partial coherence is due to the statistical
distribution of the electrons in the storage ring.

To completely describe second-order partial coherence
properties, the CSD [7,8] may be used:

W (x1, y1, z1, x2, y2, z2, ω)

= 〈E∗(x1, y1, z1, ω)E (x2, y2, z2, ω)〉. (1)
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Here E is the complex (scalar) electric field at two spatial
points �r1 = (x1, y1, z1) and �r2 = (x2, y2, z2), h̄ω is the photon
energy, h̄ is the reduced Planck constant h/(2π ), and ω is
the angular frequency. We follow the usual convention that
z denotes the optic axis with respect to which the elec-
tromagnetic disturbance is paraxial. The average, denoted
by angular brackets above, is over a statistical ensemble of
strictly monochromatic fields, all of which have the same
angular frequency. We have implicitly assumed wide-sense
statistical stationarity, which is satisfied by emission from
storage rings [38]. Also, the two observation points are usually
in a plane perpendicular to the beam at a distance z = z1 = z2

from the source. Therefore, for practical purposes the CSD is
a four-dimensional function for a given z and ω:

W (x1, y1, x2, y2, z, ω) = 〈E∗(x1, y1, z, ω)E (x2, y2, z, ω)〉.
(2)

Calculation of the CSD can be performed knowing the
distribution of the electrons and the characteristics of the
synchrotron-radiation emission. The “convolution theorem”
of Kim [39] gives a practical procedure for calculating Wigner
functions [40] and also the CSD. Note that one-to-one map-
pings exist that transform the Wigner-function representation
of the second-order coherence properties of a partially coher-
ent field, to the CSD representation, and vice versa [41]. How-
ever numerical evaluation and storage for either representation
is very computationally expensive, as we need to sample such
two-point correlation functions with high resolution (about
103 samples per dimension, leading typically to on the order
of 1012 complex numbers, requiring gigabytes to terabytes of
computer memory storage). Moreover, propagation in vac-
uum of the CSD from a plane with fixed z1 = z2 = z′ to
another plane with z1 = z2 = z′′ > z′ must be done using four-
dimensional integrals with the corresponding Green functions
[8], which is certainly beyond the possibilities of present
computers in scenarios with realistic levels of complexity.

A significantly more efficient means to store the CSD uses
the property that it can be represented in terms of eigenvalues
λ j (ω) and coherent modes ψ j (�r, ω), via the coherent-mode
expansion [7,8]:

W ( �r1, �r2, ω) =
∞∑
j=0

λ j (ω) ψ∗
j ( �r1, ω)ψ j ( �r2, ω). (3)

It can be shown that a fully coherent beam has a single
coherent mode (index j of zero). For a partially coherent beam
with high coherent fraction the first modes contain a large
fraction of the total spectral density, so a truncated series is
a good representation of the CSD. The main advantage of this
expansion is that the four-dimensional CSD can be computed
as a (truncated) sum of two-dimensional modes, therefore
making storage possible. Also, the propagated CSD can be
computed from the sum of the propagated modes, each of
which propagate in the same manner as a strictly coherent
field. Therefore we can propagate the CSD by performing
two-dimensional integrals (for each mode in the CSD) instead
of four-dimensional integrals (directly for CSD itself).

The eigenvalues and associated coherent modes may be
obtained as solutions of the following homogeneous Fredholm

FIG. 1. (a) The cross-spectral density W (x, y, x′, y′, z = z′, ω)
associated with a statistically stationary field F quantifies the de-
gree of correlation of the disturbance at points (x, y, z) ≡ A and
(x′, y′, z′ = z) ≡ B. (b) For fixed (x′, y′), ω and z = z′, the phase (arg)
of W (x, y, x′, y′, z = z′, ω) has a coherence vortex as a function of x
and y, at a point enclosed within the contour �, about which the phase
winds by an integer multiple m of 2π rad. Here m = 1. See Eq. (6).

integral equation of second kind:∫∫∫
d3 �r1W ( �r1, �r2, ω)ψ j ( �r1, ω) = λ j (ω)ψ j ( �r2, ω). (4)

These solutions may then be assembled into the coherent-
mode representation of the CSD [7]. This can be solved nu-
merically, e.g., using the computer package “COherent Modes
for SYnchrotron Light” (COMSYL) [6].

B. Coherence vortices in the cross-spectral density

Assume that the medium, through which a given sta-
tistically stationary partially coherent forward-propagating
complex scalar electromagnetic field propagates, contains no
discontinuities for any of the points (x1, y1, z) and (x2, y2, z)
at which the cross-spectral density W (x1, y1, x2, y2, z, ω) is
to be computed. This implies W to be a continuous and
single-valued complex function of all its arguments. Using
reasoning closely related to that of Dirac in a different context
[24], important general CSD properties may be derived from
the assumption of single-valuedness and continuity, without
needing to make any specific reference to the underpinning
equations that govern the CSD [13].

Let the CSD phase be denoted by

�(x1, y1, x2, y2, z, ω) = arg[W (x1, y1, x2, y2, z, ω)]. (5)

This quantity governs the position of Young-type interference
fringes which would be formed, if one were to combine the
disturbances α and β scattered from points (x1, y1, z) ≡ A and
(x2, y2, z) ≡ B, respectively, at energy h̄ω [8]; see Fig. 1(a).
The CSD phase is complemented by the magnitude of the
CSD, which governs the visibility of the previously mentioned
Young-type fringes.

While W ∈ C and |W | ∈ R are both single-valued, �

will in general be multivalued. Indeed, since the phase of a
complex number is only defined modulo 2π , it may wind by
an integer multiple m of 2π [see Fig. 1(b)] [10,19]:∮

�

d�(x1, y1, x2, y2, z, ω) = 2πm. (6)

Here � is any simple smooth closed clockwise-traversed one-
dimensional curve embedded in the six-dimensional space
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with coordinates (x1, y1, x2, y2, z, ω), and d� is the increment
in � corresponding to an infinitesimal line segment of �.
Admissible curves � are those for which W is nonzero at
every point on �, ensuring � and hence d� to be well defined
at each point on �. We consider ω to have a fixed arbitrary
value throughout the paper. Nonzero m indicates nontrivial
topology in the phase of W , with the corresponding phase
map in Fig. 1(b) being one of infinitely many Riemann sheets
describing a screw dislocation threaded by a coherence-vortex
core.

Nonzero m indicates a coherence vortex [10] to be present,
with topological charge given by the integer m. Such struc-
tures are a partially coherent analog of phase vortices that
may form in the phase of coherent optical fields [30,42–
44], including x-ray fields [25,45–51], together with electron
fields [52–55] and matter-wave fields [56] etc. Two key con-
sequences of nonvanishing m are outlined below. These argu-
ments are topological in nature, regarding generic structures
that are stable with respect to continuous deformation of the
underlying fields.

The existence of any one circuit � for which m is
nonzero implies the presence of a (nodal) manifold of points
in (x1, y1, x2, y2, z, ω)-space, at each of which W vanishes
[13,19]. This is remarkable, since vanishing W corresponds to
the disturbance at two spatial points being totally incoherent
(i.e., totally uncorrelated), even though the field may have
a very high state of coherence. Such points—namely, single
points in (x1, y1, x2, y2, z, ω) space, which correspond to pairs
of points (x1, y1, z) and (x2, y2, z) in physical space—are
termed correlation singularities, nodal points, nodal lines, or a
nodal manifold.

If � lies in a particular two-dimensional hyperplane 


with coordinates (ξ, η) within (x1, y1, x2, y2, z, ω)-space, the
coherence vortex will typically occur at a (zero-dimensional)
nodal point (ξ0, η0) in the said hyperplane, serving as a branch
point for �, about which � winds by 2πm rad (cf. the m = 1
case in Fig. 1(b)]. The set of nodal points becomes a (one-
dimensional) nodal line, or a connected set of nodal lines
which either form closed loops or extend to the boundary of
the considered region, when we consider the one-dimensional
loop � to be embedded within a three-dimensional hyperplane
in (x1, y1, x2, y2, z, ω)-space. This set of nodal lines (any point
on which is a singular point for �) may form a treelike
structure, e.g., if an m = 2 coherence vortex decays to a
pair of m = 1 coherence vortices [12,57] (cf. an analogous
phenomenon for vortices in the phase of coherent fields [58]).
Knotted and braided coherence-vortex nodal lines in W are
also topologically possible, albeit exotic. Permissible nodes
in treelike nodal-line structures in W are governed by the
law of conservation of topological charge. This set of nodal
lines becomes a two-dimensional network of nodal sheets
(zero sheets) in any four-dimensional hyperplane within the
(x1, y1, x2, y2, z, ω)-space, and a three-dimensional manifold
of nodal points in any five-dimensional hyperplane subset of
(x1, y1, x2, y2, z, ω)-space. Finally, in the full six-dimensional
(x1, y1, x2, y2, z, ω)-space, the set of nodal points of W will
form a four-dimensional network of points ϒ , at each of
which W vanishes [13].

These nodal points in W exhibit “complete destruc-
tive interference of coherence.” More precisely, any point

FIG. 2. Ratcheting of Young interferograms associated with m =
1 coherence vortex corresponding to the pair of points A, B. (a) A
series of Young interferometers is constructed. In all setups, radiation
illuminates a screen in which the first of two pinholes is always at B.
The second pinhole is placed at A, before being moved through the
cycle of locations C1 → C2 → C3 → C4 → C1. (b) The resulting
interferograms, over some plane downstream of the point scatterers,
are shown in curves 1 (pinholes A and B), 2 (C1 and B), 3 (C2 and B),
4 (C3 and B), 5 (C4 and B), and 6 (C1 and B) respectively. Note that
curves 2 and 6 are identical. Also, I (x) denotes the spectral density
of the interferogram as a function of the transverse coordinate x,
perpendicular to the optic axis.

(x′
1, y′

1, x′
2, y′

2, z′, ω) ∈ ϒ will correspond to a pair of spa-
tial points (x′

1, y′
1, z′) ≡ A and (x′

2, y′
2, z′) ≡ B for which the

partially coherent disturbance is completely uncorrelated at
energy h̄ω [9–11]. If, e.g., a point scatterer were to be placed at
A, with another point scatterer at B, and the radiation scattered
from both points allowed to overlap, no interference fringes
would be observed at energy h̄ω. See the gray curve (curve
1) in Fig. 2. The nodal manifold ϒ , which will typically
permeate much of the (x1, y1, x2, y2, z, ω)-space associated
with cross-spectral densities calculated for nontrivial systems
[10,12], is “a web of incoherence” spun through a partially
coherent field’s cross-spectral density. For reasons outlined
earlier, such a web does not exist in physical space, since
correlation singularities do not occur at particular points in
space, but rather corresponds to a network of pairs of spatial
points [10].

A second key consequence of the nodal manifold ϒ is
again related to the visibility of interference fringes associated
with pairs of scattering points. As previously stated, when
pinholes are placed at locations A and B in Fig. 1 that corre-
spond to a coherence vortex [see also Fig. 2(a)], there is zero
fringe visibility in the associated Young-type pattern filtered
to energy h̄ω; see, once more, curve 1 in Fig. 2(b). However,
the nonzero fringe visibility is regained if we move “off the
coherence vortex” by shifting the first pinhole from location A
to location C1; see curve 2 in Fig. 2(b). The vortical nature of
the coherence vortex is then evident if we perform a sequence
of Young-type interference experiments, where the pinhole at
B is kept fixed, while the pinhole at C1 is moved through the
cycle C1 (curve 2) → C2 (curve 3) → C3 (curve 4) → C4
(curve 5) → C1 (curve 6 = curve 2). If we trace the evolution
of the intensity maxima associated with the resulting sequence
of interferograms in curves 2 to 6, the physical meaning of m
becomes clear: during the cycle, if m = 1 then the maxima of
the interferograms “ratchet” to the right by one fringe during
the cycle. If m = −1 they would instead ratchet to the left by
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FIG. 3. Cumulative mode occupation for emission of undulator
U18 placed at EBS lattice and tuned to 17.226 keV. Occupation of
lowest mode (coherent fraction) is 0.028.

one fringe during the cycle. For general m, fringes ratchet to
the right (left) by |m| fringes, if m is positive (negative) [13].

In addition to the coherence vortex, a second type of
CSD phase singularity exists: domain walls. These were the
first discovered form of CSD singularity [9]. Such defects
are stable for real correlation functions, but not for complex
correlation functions such as the CSD. Nevertheless CSD
phase domain walls may exist, especially if a small number
of coherent modes is present, with π phase shift at points
where the CSD changes sign. As with the coherence vortex,
|W | = 0 at CSD domain walls. The dimension of a domain-
wall CSD singularity network in (x1, y1, x2, y2, z, ω)-space, if
it exists, is one higher than for a corresponding coherence-
vortex network.

III. SIMULATIONS OF UNPROPAGATED X-RAY
UNDULATOR BEAMS

The coherent mode decomposition is performed using
COMSYL [6] for x-ray radiation emitted by a 1.4-m-long U18
undulator of 18.3 mm period, which is to be placed at the
center of the straight section of the EBS (6 GeV, 147 pm rad
emittance storage ring with electron beam size values from
Dimper et al. [5] and electron energy dispersion neglected).
The undulator is taken to be tuned to 17.226 keV (K = 0.411),
and the flux is taken as 2.8 × 1014 photons/s/0.1%bw in a
1 × 1 mm2 aperture at 30 m. Figure 3 shows the cumulative
mode occupation

dn(ω) =
∑n−1

j=0 λ j (ω)∑∞
j′=0 λ j′ (ω)

(7)

versus the total number of coherent modes n.
The 1100 coherent modes calculated contain almost all

(98%) of the emitted radiation. The coherence fraction (oc-
cupation of first mode) is 2.8%. The accumulation of the first
10 modes contains 21.7% of the emitted intensity, followed
by 33.0% (20 modes), 73.3% (100 modes), and 97.9% (1000
modes). Figure 4 shows the spatial extension of the spectral

FIG. 4. (a) Spectral density (intensity) distribution at source
plane. (b) Intensity of the first coherent mode at source plane.

density at the source plane, and also the extension of the first
mode.

Figure 3 shows that hundreds of modes are needed in
order to represent more than 90% of the spectral density. The
spectral density FWHM (full width at half maximum) has
dimensions 71.3 × 10.9 μm2. This agrees well with simple
estimates considering the source size as a convolution of
the undulator emission size (σγ ≈ (2.74/4π )

√
λL ≈ 9.6 μm,

where λ is the radiation wavelength and L is the undulator
length) with the electron-bunch size (σx = 30.2 μm, and σy =
1.37 μm for the EBS straight section). The resulting FWHM
values are 71.3 × 10.0 μm2. The first mode FWHM is 12.4 ×
6.11 μm2.

Note from Fig. 4 that the first coherent mode is nonzero (or,
more precisely, non-negligible) over an area which is smaller
than the area over which the spectral density is nonzero (non-
negligible). Such a property will typically be true for a large
class of partially coherent beams, which will necessarily have
at least two coherent modes since they are not fully coherent,
by assumption. This typical property follows directly from
the fact that the spectral density of the beam is given by
the sum of the spectral densities of each of the coherent
modes, hence the area over which the spectral density is non-
negligible is always noncontracting as we add progressively
more coherent modes, irrespective of the particular nonzero
eigenvalues associated with the modes.

For the example in Fig. 4(a), the region over which
the total spectral density is greater than some threshold
value (say, 1% of the maximum value) is roughly elliptical.
Denote this essential support of the spectral density by S .
If the cross-spectral density were to vanish for any pair of
points (�r1, �r2), with �r1 ∈ S and �r2 ∈ S , then this must be
associated with a zero of the spectral degree of coherence
μ (normalized cross-spectral density; see, e.g., p. 171 of
Mandel and Wolf [8]) [57]. If there is one dominant coherent
mode, it will typically be difficult to attain such zeros of the
spectral degree of coherence, when both �r1 and �r2 lie within
the region where the intensity of the first coherent mode is
large. This restriction vanishes when either or both of �r1 and

043813-5



PAGANIN AND SÁNCHEZ DEL RÍO PHYSICAL REVIEW A 100, 043813 (2019)

FIG. 5. Schematic representation of the different positions
(A, B,C) for the point �r2, which is kept fixed in several subsequent
figures (see text). The largest oval represents the spectral density
[Fig. 4(a)], and the inner circle the region over which the squared
modulus of the first mode is non-negligible [Fig. 4(b)]. The gray oval
represents the emission of a single electron. The points’ coordinates
(in μm) are A = (0, 0), B = (9.52, 4.76), and C = (20.83, 9.82).

�r2 lie outside the essential support of the dominant coherent
mode.

Returning to the numerical simulation, our next task is to
extract the CSD phase �. Being a four-dimensional function
when both z and ω are fixed, it is convenient to fix two
further variables (e.g., components of the position �r2) and
observe how � depends on the other two transverse spatial
coordinates. Several fixed points have been chosen; see Fig. 5.
The first position (point A) is at the center of the emission. The
second (point B) is at a noncentered position where the first
mode has appreciable intensity. The third (point C) is outside
the first mode, but in a place with appreciable intensity.

When �r2 is set to position A, we have the plot of the
phase �(x, y, xA, yA) of the CSD in the left column of Fig. 6,
as a function of the coordinates (x, y) of �r1, with z1 = z2 =
z and h̄ω all having the previously indicated fixed values.
The brightness of the displayed phase has been taken to
be proportional to |W (x, y, xA, yA)|, since CSD phase is not
meaningful when |W (x, y, xA, yA)| is negligible. The figure
shows four maps for the CSD phase, corresponding to the
number n of coherent modes being 1, 10, 100, and 1000
(top to bottom). When only one coherent mode is included,
there are no topological defects in the CSD phase. However,
when 10 coherent modes are included, domain-wall defects
in the CSD appear. Across each of these CSD-phase domain
walls, the phase � of the CSD jumps by π rad, with the
CSD itself vanishing along each of the lines through which �

changes discontinuously. Adding more coherent modes, with
n = 100, the domain walls become curved and the region over
which the CSD is non-negligible widens. Finally, for n =
1000, the effect of the increasing number of coherent modes
is to narrow this region over which the CSD is non-negligible.
The general trend from top to bottom panels is a reduction in
the spatial extent over which two-point field correlations have
a magnitude |W (x, y, xA, yA)| that is non-negligible, when one
of the points is taken to be A = (xA, yA), at the beam center.

When �r2 is set to position B, we have the plot of the CSD
phase �(x, y, xB, yB) in the middle column of Fig. 6, as a func-
tion of the coordinates (x, y) of �r1. This figure again shows
four CSD phase maps, corresponding to n = 1, 10, 100, 1000
coherent modes. A similar trend to the left column is observed
with regard to CSD domain walls. However, in the middle
column the additional feature of coherence vortices is present.
As we add more coherent modes, to the singularity-free case
of n = 1 in row 1 (n = 1 mode), the topologically unstable

FIG. 6. Phase of W (x, y, xP, yP ) as a function of (x, y) with fixed
point P = (xP, yP ) = A (left column), P = B (middle column), and
P = C (right column), when the number n of coherent modes is
(from top to bottom) 1, 10, 100, and 1000. The brightness of the
displayed phase is proportional to |W (x, y, xP, yP )|, as CSD phase is
not meaningful when |W (x, y, xP, yP )| is negligible. In each image, a
circle marks the position of the point P.

domain walls in row 2 (n = 10 modes) begin to dissolve
(n = 100 modes) into topologically stable CSD-phase defects,
namely, coherence vortices. As mentioned previously, an in-
dicator of coherence-vortex cores is any points where all CSD
phase-value colors converge like spokes on a wheel, with
an associated vanishing of |W (x, y, xB, yB)|. Such coherence
vortices are evident in both the third (n = 100 modes) and
fourth (n = 1000 modes) rows of the middle column. For
example, in the n = 1000 case, the point B (dark circle in
the bottom row of the middle column) lies midway between
a coherence vortex-antivortex dipole with topological charges
of m = ±1. Another feature evident in the CSD is its speckled
structure in the n = 100 case. Such a “patchy” structure,
which is also observed, e.g., in the Wigner function associated
with chaotic quantum systems [59], will influence quantities
that are derived from the cross-spectral density via suitable
coarse graining.

As a third and final example, when �r2 = C we have the
CSD phase maps �(x, y, xC, yC ) in the right column of Fig. 6.
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FIG. 7. (a) Spectral density (intensity) distribution over a plane
placed 30 m from the source. (b) Intensity of the first coherent mode
over the same plane.

Unlike the previous two examples, now the fixed spatial
coordinate C lies outside the dominant first mode’s intensity
distribution, but within the region where the spectral density
of the entire beam is non-negligible. We again see the pre-
viously described trends, but with coherence vortices being
somewhat more prevalent in other columns of the figure. Also,
in the n = 1000 case, a weak speckled halo persists about the
core patch where the CSD has non-negligible modulus.

IV. SIMULATIONS OF PROPAGATED
X-RAY UNDULATOR BEAMS

In the previous section, calculation of the coherent mode
decomposition for undulator radiation was performed in the
source plane, located in the middle of the undulator. It is
more realistic to propagate the radiation downstream from
the source, e.g., to a position at which a potential two-slit
Young experiment would be feasible. As mentioned earlier,
the propagated CSD is calculated by adding propagated co-
herent modes. Propagation is performed using a Fourier rep-
resentation of the Fresnel propagator, including a zoom factor
[60,61] that enables adaptation of the window for different
propagated distances. The propagated first mode and total
spectral density at a distance z = 30 m is shown in Fig. 7.
The FWHM of the spectral density is 431 × 316 μm2. Again,
for a consistency check, this size can be compared with the
propagation (30 m) of the beam divergence estimated as
the convolution of the undulator emission divergence σ ′

γ =
0.68

√
λ/L with the electron divergences (σ ′

x = 3.64 μrad and
σ ′

y = 1.37 μrad giving 498 × 366 μm2 FWHM).

FIG. 8. Phase of W (x, y, xC′ , yC′ ) as a function of (x, y) at z =
1 m (left column), 5 m (middle column), and 30 m (right column),
when the number n of coherent modes is (top row) 1; (second-top
row) 10; (second-bottom row) 100; (bottom row) 1000. The bright-
ness of the displayed phase is proportional to |W (x, y, xC′ , yC′ )|, as
CSD phase is not meaningful when |W (x, y, xC′ , yC′ )| is negligible. In
each image, a circle marks the position of the point C′. The curvature
of field, as given in Eq. (8), has been removed from all plots. The
color table is as given in Fig. 6.

Before proceeding further, recall that Fresnel diffraction
of a coherent field through a distance z > 0 results in de-
velopment of a “curvature of field” coherent background.
This gives a multiplicative factor of exp[ik(x2 + y2)/(2z)] for
the propagated field, where k = 2π/λ; see, e.g., p. 16 of
Paganin [25]. When combined with the expression for the
CSD in Eq. (1), we see that the CSD develops a corresponding
multiplicative term exp(i�̃) given by

exp[i�̃(x1, y1, z1, x2, y2, z2, ω)]

= exp

[
ik

2

(
x2

2 + y2
2

z2
− x2

1 + y2
1

z1

)]
. (8)

The curvature of field �̃ has been subtracted from all further
CSD phase maps presented here, to avoid CSD domain walls
and coherence vortices being rendered unclear by a strong
continuous parabolic background, with respect to which such
topological defects are invariant.

For the simulations in Fig. 8, the CSD was propagated from
the undulator source to distances z = 1, 5, 30 m. The CSD
phase � was calculated as a function of �r1 for different fixed
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points �r2 = A′, B′,C′. These fixed points depend on z. For z =
30 m, the coordinates have been selected to be homothetic
with respect to the positions of A, B,C at the source. That is,
the FWHMx and FWHMy values at the source for the x and
y directions, respectively, transversely scale linearly into the
propagated FWHM′

x and FWHM′
y with ratio γx,y(z = 30) =

FWHM′
x,y/FWHMx,y. For other distances γx,y(z) = γx,y(z =

30)z/30.0. Figure 8 shows the resulting CSD phase maps, for
fixed point C′, with propagation distance z increasing from left
to right and the number of coherent modes n increasing from
top to bottom. These CSD phase maps are rich in both phase
domain walls and phase coherence vortices. (1) For z = 1 m
(left column of Fig. 8) the case of n = 1 coherent modes is
topologically trivial, but several almost-parallel domain walls
form as soon as we pass to n = 10 coherent modes. These
aligned domain walls partially dissolve as we move to n =
100, with several coherence vortices forming, such as those
marked a and b. Finally, for n = 1000 coherent modes, the
region of large |W | in the vicinity of C′ has contracted to a
smaller area, although there is a large halo of CSD speckle
containing a significant fraction of the total area over which
|W | is non-negligible. (2) Similar trends are seen for the
propagation distance z = 5 m (middle column of Fig. 8); see,
e.g., the parallel coherence domain walls marked c, d, e, f
and the coherence vortex marked g. It is also interesting
to note that, over the region where |W | is non-negligible
for n = 1000 modes, the CSD phase becomes progressively
flatter. (3) Finally, we have z = 30 m (right column of Fig. 8),
where the far-field regime is attained. In this regime, the shape
of the magnitude and phase of the CSD is unchanged upon
propagation, beyond a simple expansion with increasing z. A
vortex-antivortex dipole has been indicated by hi, with another
such dipole at jk.

Next, we investigate how CSD phase maps evolve under
free-space propagation [12,13,19]. See Fig. 9, which shows
the propagated CSD phase �(x, y, xC′ , yC′ , z = D) for n = 20
modes, with propagation distance z = D varying from D =
4.00 m to D = 6.00 m in 0.25 m steps, plotted as a function
of (x, y) with the point C′ = (xC′, yC′ ) kept fixed. This fixed
point is indicated by a small circle, in all phase plots. The
topologically irrelevant curvature of field in the CSD phase,
as given in Eq. (8), has again been removed from all plots.
Coherence domain walls such as a, b, c persist for all propa-
gation distances, albeit with some distortion as D increases.
Note the persistence of certain coherence vortices, but with
some transverse displacement; see, e.g., the coherence vortex
labeled d, e, f , g, h, which persists from frame to frame and
which is therefore threaded by a core (CSD nodal line) like
that in Fig. 2 of Marasinghe et al. [13]. Such persistence
is a direct consequence of the topological stability of CSD
vortices. A CSD coherence vortex-antivortex pair i j is nucle-
ated in passing from D = 5.50 m to D = 5.75 m, indicating
a hairpin-shaped CSD nodal line [13,19]. This CSD dipole
persists; see kl at D = 6.00 m. In this last frame, another CSD
vortex dipole has nucleated, labeled mn; a similar structure
has been illustrated in a different context, in Fig. 7 of an
earlier paper [13]. Such CSD nodal-line dynamics, which are
constrained by the topological conservation laws discussed
earlier, evidence the dynamics permitted for such “threads of
incoherence” [12,19].

FIG. 9. Phase of W (x, y, xC′ , yC′ ) as a function of (x, y) at
different distances in the interval z = 5 ± 1 m, with n = 20 co-
herent modes. The brightness of the displayed phase is propor-
tional to |W (x, y, xC′ , yC′ )|, as CSD phase is not meaningful when
|W (x, y, xC′ , yC′ )| is negligible. In each image, a circle marks the
position of the point C′. The curvature of field, as given in Eq. (8),
has been removed from all plots. The color table is as given in Fig. 6.

Last, we simulate a Young-type experiment by model-
ing the placement of two circular apertures in the plane to
which the CSD has been propagated (z = 5 m downstream
of the source). These apertures are at points (xD, yD) =
(−10 μm, −25 μm) and (xE , yE ) = (10 μm, 25 μm). The
diameters of the apertures are 3.6 and 3 μm for points D and
E , respectively. The radiation passing through the apertures
is numerically propagated 30 m further downstream. At the
image plane a screen records the resulting spectral density (di-
agonal of the cross-spectral density). When the apertures are
illuminated by a coherent source containing only the zeroth
coherent mode, an interference pattern with high-visibility
fringes is produced; see the top row of Fig. 10. Note that the
circles, in the phase plots of the CSD, represent the positions
where the two pinholes are located. For the single-mode case,
there are no topological defects in the CSD phase. Adding
coherent modes in the construction of the CSD progressively
reduces the visibility; see, e.g., the case of four coherent
modes in row 2 of Fig. 10. In this second row we see a domain
wall in the CSD phase, although this domain wall does not
coincide with either pinhole. When we move to the case of
five coherent modes in row 3 of Fig. 10, we notice that a
CSD domain wall now coincides with one of the pinholes.
This heralds a dampening of the visibility in the associated
Young-type fringes. Such a dampening is evidenced by the
fact that, as we add more coherent modes, the fringe visibility
improves—thus the fringe visibility with 19 modes (fifth row
of Fig. 10) is higher mid-way between the pinholes, than
for the case of 5 modes in the third row. This revival of
fringe visibility, which may be compared to that reported
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FIG. 10. Left column: phase of W (x, y, xD, yD ). Circles represent
the position of apertures at D (red) and E (black) used for a simulated
Young experiment. Right column: spectral density produced by
propagating 30 m downstream from aperture plane. From top to
bottom, the number of coherent modes used to build the CSD is
varied (1, 4, 5, 7, 19, 20 modes, respectively). Curvature of field [see
Eq. (8)] has been removed from all plots of CSD phase. The color
table for all phase plots is as given in Fig. 6.

in Thompson and Wolf [62], corresponds to neither of the
pinhole locations coinciding with a singularity in the CSD
phase. A CSD singularity again colocates with one of the
pinholes for the case of 20 coherent modes (bottom row of
Fig. 10), with a corresponding large drop in visibility when we
pass from 19 coherent modes (second-bottom row of Fig. 10)
to 20 modes (bottom row of Fig. 10). Note also that there is
a contrast reversal in the Young-type fringes, each time an
additional CSD domain wall is interposed between the red and
black circles in Fig. 10. For example, interferogram maxima
are exchanged with minima, and vice versa, in passing from
row 1 to row 2 of Fig. 10.

Although this procedure of adding modes to build the CSD
is an artificial way to study fringe visibility depending on
the beam coherence, in a real synchrotron experiment the
beamline optics play a similar role. Some optical elements of
the beamline (ideal reflectors, ideal focusing elements) do not
alter the occupation spectrum of the modes. They are nonab-
sorbing elements that conserve the Smith-Helmholtz invariant
[63]. However, if an optical element removes photons from
the beam, or “cuts” intensity, then its effect is different for
different modes. The new transformed “modes” can be used to
build the CSD, but they cannot be considered coherent modes
as they are no longer an orthonormal basis for expanding
the CSD. A new coherent mode decomposition could be
calculated on the transmitted CSD in order to obtain the new
coherent modes. In the case of slits or pinholes centered on
the optical axis, the lower-order coherent modes localized
near the center of the beam axis will propagate, whereas the
higher-order coherent modes that extend far from the axis will
be absorbed. This will push the occupation spectrum to the
lower-order modes with a consequent increase of coherence
fraction but an obvious decrease of the spectral density (total
intensity).

V. DISCUSSION

This discussion has three parts. Section V A considers the
influence of CSD correlation singularities on measured spec-
tral densities. Section V B explores the connection between
unresolved speckle and the formalism of partially coherent
light, with particular reference to the role of CSD correlation
singularities. Finally, Sec. V C outlines some possible avenues
for future work.

A. Influence of CSD correlation singularities on measured
spectral densities

The speckled CSDs, considered in this paper, will influence
measured intensity data in a variety of experiments. This
influence may be subtle. We have already seen a specific
example corresponding to a two-pinhole mask in Fig. 10,
which by a near-field version of Babinet’s principle [63] is
closely related to scattering from a simple object consisting of
two separated point scatterers. Here we generalize to a broader
class of scatterers.

Consider the CSD scattered from a static deterministic
nonmagnetic sample with scattering potential [64,65]

F (x, y, z, ω) = k2

4π
[n2(x, y, z, ω) − 1], (9)
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where n(x, y, z, ω) is the complex refractive index. The first
Born approximation gives the scattered CSD, resulting from
an incident CSD of W (i), as [65]

W (s)(r⊥1, z1 = z, r⊥2, z2 = z, ω)

=
∫∫∫

V

∫∫∫
V

W (i)(r′
⊥1, z′

1, r′
⊥2, z′

2, ω)

× F ∗(r′
⊥1, z′

1, ω) F (r′
⊥2, z′

2, ω)G∗(r⊥1, z1 =z; r′
⊥1, z′

1; ω)

× G(r⊥2, z2 = z; r′
⊥2, z′

2; ω)d2r′
⊥1 dz′

1 d2r′
⊥2 dz′

2, (10)

where G is the outgoing free-space Green function

G(r⊥1, z1; r⊥2, z2; ω)

= exp[iωc−1
√

|r⊥2 − r⊥1|2 + (z2 − z1)2]√
|r⊥2 − r⊥1|2 + (z2 − z1)2

, (11)

c is the speed of light in vacuum, r⊥ j ≡ (x j, y j ) where j =
1, 2, z = 0 is the exit surface of the sample, z1, z2 � 0, and V
is the volume occupied by the sample.

Now, the first Born approximation is a single-scattering
approximation, implying that the field is either scattered from
a single point within the object, or is not scattered at all.
Equation (10) shows that, under this same approximation,
the scattered two-point correlation function (i.e., the CSD)
may be viewed as being singly scattered from every pair of
points within the scattering volume. Thus, letting (r⊥ j, z j ) ≡
r j, j = 1, 2, we see from Eq. (10) that (1) the incident CSD
W (i)(r′

1, r′
2, ω) at the pair of points (r′

1, r′
2) is multiplied by the

scattering potential product F ∗(r′
1, ω)F (r′

2, ω), with (2) the
resulting correlations scattered from this pair of points then
being propagated to a pair of points (r1, r2) via the double
Green function G∗(r1; r′

1; ω)G(r2; r′
2; ω), and finally (3) the

resulting scattered correlations being summed over every pair
of points within the scattering volume.

We now show that pairs of points, within the scattering vol-
ume, which correspond to a correlation-singularity zero of W ,
scatter in a fundamentally different manner to those that do not
coincide with a correlation singularity. To see this, consider a
sample that consists of a pair of pointlike scatterers, whose
positions happen to coincide with the locations A = (r′′

⊥1, z′′)
and B = (r′′

⊥2, z′′) associated with a coherence-vortex core.
This amounts to Fig. 1(a), with the screen removed and the
pinholes at A and B being replaced with small scatterers at the
same locations. The associated scattering potential is

F (r⊥, z, ω) = P (ω) δ(r⊥ − r′′
⊥1, z − z′′)

+ Q(ω) δ(r⊥ − r′′
⊥2, z − z′′), (12)

where the scattering amplitudes P and Q are complex
functions of energy h̄ω, and δ is a Dirac delta. Since
W (i)(r′′

⊥1, z′′, r′′
⊥2, z′′, ω) vanishes due to the coherence vortex,

and the Hermitian character of the CSD [8] implies that
W (i)(r′′

⊥2, z′′, r′′
⊥1, z′′, ω) also vanishes, substituting Eq. (12)

into Eq. (10) leads to

W (s)(r⊥1, z1 = z, r⊥2, z2 = z, ω)

= W (s)
A (r⊥1, z1 = z, r⊥2, z2 = z, ω)

+ W (s)
B (r⊥1, z1 = z, r⊥2, z2 = z, ω). (13)

FIG. 11. A statistically stationary x-ray source S generates a
paraxial CSD illuminating the nominally planar entrance surface
z = Z− of a thin object O. The exit surface of the object is denoted
by z = Z+, with the CSD propagating from this exit surface through
a free-space distance �, to the surface z = Z + � of a position-
sensitive detector.

Here W (s)
A (r⊥1, z1 = z, r⊥2, z2 = z, ω) is the scattered CSD

that would have been obtained if the scatterer at A were
to be present but scatterer B were to be removed, with
W (s)

B (r⊥1, z1 = z, r⊥2, z2 = z, ω) being the scattered CSD that
would have been obtained if scatterer B were to be present
but scatterer A were to be removed. Upon setting r⊥1 = r⊥2

to convert the CSD to spectral density, we see that the spectral
densities scattered from A and B merely add incoherently.
The interference term that would otherwise be present in the
spectral interference law [8] is suppressed by the coherence
vortex; cf. Fig. 10. If the pair of scatterers at A and B were to
be rigidly transversely displaced or rotated in the beam, such
that the pair no longer coincides with a coherence vortex, the
interference term would reappear.

For a more realistic example of the influence that coherence
vortices have on measured x-ray spectral densities, consider
Fig. 11. Here the previously considered pair of point scatterers
has been replaced by an arbitrary compact scattering distribu-
tion (i.e., an “object”), and the first Born approximation has
been supplanted by the projection approximation [25]. The
thin object with complex transmission function T (r⊥, ω) is
assumed to lie immediately upstream of the plane z = Z−,
with object-to-detector distance � > 0. Use the coherent-
mode expansion [Eq. (3)] to give the CSD in the plane
z = Z− immediately upstream of the object, then apply the
projection approximation to multiply each (paraxial) coherent
mode by the complex transmission function of the object.
Next, use the Rayleigh-Sommerfeld diffraction integrals of
the first kind [8,66,67] to propagate each coherent mode from
the nominally planar exit surface z = Z+ of the object to the
detector plane z = Z + �. This gives the CSD for pairs of
points on the detector surface:

W (r⊥1, r⊥2, z1 = z2 = Z + �,ω)

=
∑

j

λ j (ω){[ψ j (r⊥1, Z−, ω) T (r⊥1, ω)] �1 K (r⊥1,�, ω)}∗

×{[ψ j (r⊥2, Z−, ω) T (r⊥2, ω)] �2 K (r⊥2,�, ω)}, (14)

where

K (r⊥, z, ω) = − 1

2π

∂

∂z
G(r⊥, z; 0⊥, 0; ω) (15)

is the Rayleigh-Sommerfeld convolution kernel, 0⊥ ≡ (0, 0)
and �1,2 denotes convolution with respect to r⊥1 and r⊥2,
respectively. Maps of the corresponding spectral density, ob-
tained by setting r⊥1 = r⊥2 ≡ r⊥ in the CSD, may be viewed
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as interferograms or inline holograms that are generated by
many pairs of point scatterers.

Whether we consider a pair of point scatterers under the
first Born approximation [Eqs. (10)–(13)], or a thin object
under the projection approximation [Eq. (14)], a similar
conclusion is reached regarding the influence of correlation
singularities on measured spectral densities: coherence vor-
tices, and coherence domain walls, have an influence upon
measured spectral densities.

B. Role of unresolved speckle in partial coherence

Unresolved speckle underpins many phenomena exhibited
by partially coherent classical optical fields [25,68–70]. Here
speckles are considered to be unresolved if they are coarse
grained over space (via the spatial extent of a detector pixel)
or coarse-grained over time (via the acquisition time during
which photons are detected), to an extent that either (1) no
speckles are detected or (2) the length and/or temporal scales
of the measured speckles exceed those of the underpinning
speckle fields. “Speckle” is here used to describe functions
that exhibit rapid intensity variation with respect to spatial
(and, where appropriate, temporal) variables. This definition
is more suitable for our purposes than merely equating the
term “speckle” with “fully developed speckle.”

As a first example, consider the time-dependent and
position-dependent intensity I (x, y, t ) = |E (x, y, t )|2 of a par-
tially coherent beamlike z-directed paraxial field illuminating
a region � of a two-dimensional detector in a plane of
constant z. At each instant of time t , the field will typically be
a highly speckled function of transverse position (x, y). These
speckles will typically evolve appreciably over timescales on
the order of the coherence time. The characteristic transverse
extent of these speckles may be rather small, and—for the
case of fully developed speckle, which is in fact typical when
considering the instantaneous intensity I (x, y, t ) of a classical
partially coherent scalar field—on average there will be about
one vortex in the instantaneous phase arg E (x, y, t = t0), for
each speckle. These intensity speckles are coarse-grained in
space and time, due to both the pixel size and acquisition time
of the detector. Phase-vortex velocities will typically evolve in
a highly nonlinear and indeed chaotic manner with time [71].
The spatiotemporally coarse-grained intensity distribution is
manifest as partial coherence, namely, a loss of the maximal
visibility that is associated with speckles which are simulta-
neously fully developed and fully resolved [25].

The concept of unresolved speckle harmonises with the
idea that spatiotemporal coarse-graining influences the degree
to which the coherence of the field affects measured intensity
data. We saw an example of such coarse graining of dynamic
spatiotemporal speckles, in the previous paragraph. Now
consider the simpler case of static fully developed coherent
speckle. Such a speckled beam would typically be infused by
a spatially random “gas” of phase vortices, with an equal num-
ber of clockwise and anticlockwise vortices, one per speckle
[25,72]. Classically, the field intensity vanishes at vortex cores
[24], which may be viewed as exhibiting a high degree of
coherence since the visibility of the generalized interference
“fringes”—namely, the intensity speckle—approaches unity.

However, this near-unity visibility will only be manifest
if one’s detector has sufficiently fine pixels, namely pixel
dimensions significantly smaller than the transverse length
scale associated with the speckles. If, conversely, exactly the
same temporally static fully developed coherent speckle field
were to have its intensity measured with a pixellated detector
whose spatial dimensions are much larger than the character-
istic speckle size, the resulting coarse-grained intensity map
would be smoother, hence of correspondingly lower visibility
and lower “coherence.” What is perhaps surprising about
correlation singularities, when viewed from this perspective,
is their association with pairs of points for which there is not
just low coherence, but zero coherence.

For a third and final example, of the fact that spatiotem-
poral coarse-graining influences the effective degree of co-
herence that is manifest in optical experiments utilizing par-
tially coherent radiation, recall the experiment of Magyar and
Mandel [73]. This studies Young-type interference fringes
produced by superposing independent maser beams, with the
associated spectral density being measured over a time that
is shorter than the coherence time. Here ensemble-averaged
quantities such as the CSD are inapplicable. For two inde-
pendent quasimonochromatic sources, whose relative phases
drift over times on the order of the coherence time: (1) we
will measure Young-type fringes in a random position if
the exposure time is shorter than the coherence time and
there are enough photons registered to form an image and
(2) these fringes will be washed out if the exposure time
is significantly longer than the coherence time. Also, (3)
even if the exposure time is sufficiently small compared to
the coherence time for fringes to persist after temporally
averaging over the measurement interval, they will only be
resolved if the spatial averaging implied by the pixel size does
not smear the said fringes away. This may be immediately
applied to a correlation-singularity context: If two points in
space are such that the magnitude of W vanishes at some
given angular frequency for that particular pair of points, then
(1) the combination of disturbances scattered from each point
will yield time-averaged Young-type interference fringes with
suppressed visibility (as seen in Fig. 10), but (2) if the inten-
sity were to be averaged over timescales much shorter than the
coherence time, instantaneous Young-type fringes of stronger
visibility would typically be observed.

Since we are working with a space-frequency descrip-
tion of partially coherent radiation [7,8,65], the time vari-
able has been Fourier transformed away. Speckles, initially
present in the physical fields underpinning the calculation of a
given CSD, manifest as the speckled CSD structures that will
often be present in the CSD for realistic sources such as the
modern x-ray undulator considered here. This nuances the
concept of a coherence area, in a sense that we now describe.
The area of the region � in (x, y) space, centered on (x0, y0),
where |W (x0, y0, x, y)| is non-negligible, defines a coherence
area in the usual sense of the term. However, if the patch � of
xy-space (where |W (x0, y0, x, y)| is non-negligible) possesses
speckled phase structure then it is partitioned into cells of a
second, smaller characteristic length scale associated with
the CSD speckles. These CSD speckles are cells bounded by
correlation singularities where the CSD vanishes, and across
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FIG. 12. Speckle structure associated with coherence area.
Shaded in gray is the manifold M of points over which
|W (x, y, x′, y′, z = z′, ω)| is non-negligible, for fixed x′, y′, z′, ω.
This coherence area has characteristic horizontal and vertical scales
Lh and Lv respectively. When speckled, the coherence area may
be partitioned into cells α, β, γ , δ, . . ., between which the CSD
phase fluctuates significantly. Such cells, of respective characteristic
horizontal and vertical scales L̃h, L̃v, may be flanked by CSD phase
domain walls such as w1, w2 and/or coherence vortices shown as
triangles.

which the CSD phase changes markedly. As a simple example
of this, the second row of Fig. 6 has the “first coherence area”
(region where |W | is non-negligible) partitioned into nine (left
column) or ten (middle and right columns) fragments that are
separated by domain walls. More complicated examples of the
same idea are given in CSD phase maps such as those in the
third row of Fig. 8.

The ideas of the preceding paragraph are abstracted in
Fig. 12. Shaded in gray is the manifold of (x, y) points M
at which the CSD W (x, y, x′, y′, z = z′, ω) is non-negligible,
with (x′, y′) and energy h̄ω being fixed, in a given plane of
fixed z = z′. The vertical transverse coherence length Lv and
horizontal coherence length Lh are as indicated, corresponding
to coherence area

A = LvLh. (16)

This coherence area is appropriate insofar as light from any
point (x, y) ∈ M will be able to exhibit interference fringes of
nonzero visibility when combined with light from (x′, y′) ∈
M, at energy h̄ω, provided that (x, y, x′, y′) ∈ M × M\ϒ does
not coincide with CSD correlation singularities such as the
domain walls w1 and w2 or the CSD vortices indicated by
triangles. The “coherence patch” M is broken into N coher-
ence cells labeled α, β, γ , δ etc., with the CSD phase varying
significantly between such domains. Hence the position of the
interference fringes, resulting when light from two different
domains [e.g., (x′, y′) ∈ α and (x, y) ∈ β], will be affected
by the phase difference between domains. Also, if light from
many pairs of points straddling many different coherence cells
is combined [e.g., via Eq. (10) or (14)], coherence effects
may be suppressed by the many essentially random phase
shifts corresponding to different cells. These cells have char-
acteristic vertical and horizontal transverse dimensions L̃v, L̃h

respectively, corresponding to a second relevant coherence
area

Ã = L̃vL̃h. (17)

The number of cells into which M is partitioned, which may
be viewed as an order parameter [74], is

N = A/Ã. (18)

As mentioned earlier, we may speak of coherence-vortex
cores as coordinate pairs for which there is “complete destruc-
tive interference of coherence.” This is because of the vanish-
ing of W for pairs of points that correspond to a correlation
singularity. The web of CSD zeros associated with coherence
vortices is five-dimensional and embedded in seven dimen-
sions corresponding to the coordinates (x, y, z, x′, y′, z′, ω) of
W [13]. CSD zeros associated with domain walls are six-
dimensional. These webs of incoherence, embedded within
the CSD, are naturally formed rather than being an exotic
construct, in a manner not unrelated to the spontaneous for-
mation of a gas of phase vortices in the complex wave-field
associated with fully developed speckle [75] or the sponta-
neous formation of phase vortices in the focal volume of an
aberrated lens [76]. Such a web of incoherence influences,
for example, spectral densities calculated by setting both
spatial coordinates equal after the integration in Eq. (10).
Moreover, an uncountable infinity of pairs of points, within
a given scattering volume, generate scattered radiation that is
incoherently superposed, even though the incident radiation is
partially coherent.

C. Further work on x-ray correlation singularities

1. Topological reactions of x-ray correlation singularities

An interesting topic for future work would be the topo-
logical reactions associated with x-ray coherence vortices
and domain walls [12,13,57]. We already saw an example
of this in Fig. 9. Such topological reactions include the
annihilation of a clockwise coherence vortex with an anti-
clockwise coherence vortex and the spontaneous creation of
a clockwise–anticlockwise pair of coherence vortices [12].
Other reactions are possible such as the decay of higher-order
coherence vortices to multiple lower-order coherence vortices
[12], together with mutual annihilation of a CSD phase saddle
point and a local phase maximum or minimum. Note that
the topological conservation laws for coherence vortices (i.e.,
conservation of topological charge) must be augmented with
a second conservation law (conservation of topological index)
when coherence vortices are considered in relation to maxima,
minima and saddle points of CSD phase. See, e.g., Mays et al.
[77], and references therein, for further information on such
additional conservation laws.

2. Tensorial x-ray correlation defects

Correlation singularities assume a more general character
when the vector nature of the electromagnetic field cannot be
ignored. In such cases, the cross-spectral density generalizes
from a complex scalar field to a tensor field [8,65]. This
correlation tensor is of second rank for paraxial fields, and
third rank for nonparaxial fields. Note also, that when con-
sidering partial coherence for vector electromagnetic fields,
partial polarization should also be taken into account [65].
We already saw that scalar cross-spectral densities admit
topological defects such as CSD-phase coherence vortices and
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domain walls; similarly, CSD tensors associated with partially
coherent (and partially polarized) vectorial electromagnetic
fields also admit defects. Permissible defects in correlation
tensors are classifiable via homotopy theory [78,79]. Coher-
ence skyrmions, coherence textures, and other exotic tensorial
defects are to be expected.

3. Pulsed fields

Periodically pulsed fields, rather than being considered sta-
tistically stationary, may instead be cyclo-stationary [80,81].
The cross-spectral density is then a function of two angular
frequencies, rather than one. It would be interesting to con-
sider correlation defects in this more general setting, e.g., in
the context of periodically pulsed sources such as x-ray free
electron lasers.

4. Experimental observation

To the best of our knowledge, to date there is no direct ex-
perimental evidence for CSD vortices and CSD domain walls
in the x-ray domain. Experiments to observe x-ray coherence
vortices, both directly and indirectly, therefore warrant atten-
tion. There could be several reasons why these singularities
have not been detected so far. One reason is the difficulty of
working with circular apertures with diameter smaller than the
characteristic size of a correlation singularity core (for CSD
vortices) or domain-wall width (for CSD domain walls). It
would be desirable to position these small-diameter pinholes
at a pair of positions where a correlation singularity exists.
However, for practical reasons this is difficult, thus an aperture
with finite size averages the CSD over an area that includes
more than the CSD vortex or CSD domain wall. This is clear
in our simulations (Fig. 10) where there is an appreciable
change in visibility when a singularity enters the aperture
pair, but it is not as dramatic an effect as might be expected
(see, e.g., Fig. 2, curve 1). It may also be possible that the
effect of singularities in the CSD has degraded the coherent
properties of existing beams without being recognized as such
in experiments.

The implementation of upgraded storage-rings at x-ray
synchrotron facilities such a EBS at ESRF, where the coherent
fraction will improve by roughly two orders of magnitude,
opens the possibility for new experiments. The partially co-
herent flux through small pinholes will certainly improve, thus
the CSD-vortex-sensitive Young experiment as discussed in
this paper may become feasible. If a beamline images the
source as a secondary source where a slit is placed, the slit
aperture would act as a coherent-mode filter: the more closely
spaced the aperture, the smaller the number of coherent modes
that would be transmitted. Therefore, a further screen with a
double pinhole and a detector could reproduce the situation
presented in Fig. 10. Moreover, if one pinhole can move in
a trajectory around a singularity, ratcheting interferometers
could be obtained, as sketched in Fig. 2.

The experimental observation of x-ray correlation singu-
larities has a more applied aspect beyond those considered
above. Rather than considering x-ray correlation singularities
as objects that could be at the focus of certain experimental
studies—as has been done in both the preceding paragraphs
(for the x-ray case) and also in previous works (for the

visible-light [11,15,17,28] and acoustic [29] cases)—we can
instead ask the following question: In view of the complex-
ities involved in computation, can we ever expect to be able
to disentangle the effects of correlation singularities from
imaging or diffraction data, so as to reconstruct samples
illuminated by partially coherent x-ray beams that contain
such singularities? A first step towards such disentanglement
is to establish the role of these singularities in observable x-ray
intensity data, which has been a main theme of the present
paper. The effects are subtle but measurable, according to
our realistic simulations where the parameter controlling the
partial coherence is the number of coherent modes. This in
turn implies that correlation singularities have an effect upon
reconstructions that are obtained based on intensity data that
are themselves influenced by correlation singularities. In real
x-ray experiments, it is well known that a lack of complete
beam coherence influences intensity images and makes it
necessary to take into account several coherent modes, e.g. in
ptychographic reconstruction [82]. In this sense, x-ray corre-
lation singularities are expected to play at least an implicit role
in object-reconstruction procedures. In this context, ptycho-
graphic paradigms [83] have the strength of data redundancy:
since each point on the entrance surface of the sample is
illuminated more than once, information that may be missing
from one image due to the presence of correlation singularities
that suppress interference between particular pairs of points in
a given illumination patch, may be “filled in” with information
from an adjoining illumination patch. It is an interesting open
question to ask whether correlation singularities might be
more challenging to account for, either implicitly or explicitly,
in single-shot approaches to x-ray inverse imaging problems
such as the inside-source method for x-ray Fourier holography
[31] or x-ray coherent diffractive imaging [2]. Such interesting
avenues for future investigation give context to the present
work, on account of the previously mentioned fact that a
first step towards an ability to address the inverse problem—
of disentangling the effects of correlation singularities upon
an object that is reconstructed from measured intensity data
obtained using partially coherent x-ray beams—is to have an
accurate forward-problem model for how those intensity data
are influenced by such x-ray correlation singularities that may
be present in the illuminating beam.

VI. CONCLUSION

Coherence vortices and domain walls will exist in many
nontrivial x-ray fields. Such correlation singularities influence
the images that one takes, in ways that may lead to mislead-
ing results if one simply ignores their existence. Correlation
singularities were seen to be present in the field generated by
a modern x-ray undulator. Such singularities, which are not
present in many simple models for partially coherent sources,
were seen to imply a speckled structure in the associated
cross-spectral density. Coherence vortices were seen to persist
even if the most populated coherent mode has a relatively
large fraction of the total optical power, corresponding to a
high coherent fraction and a source that has a high degree of
coherence. In light of this investigation, the concept of a single
transverse coherence length was extended. Some avenues for
future work were sketched.
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