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Conditional nonclassical field generation in cavity QED
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We introduce a method for the conditional generation of nonclassical states of light in a cavity. We consider
two-level atoms traveling along the transverse direction to the cavity axis and show that by conditioning on
one of the output measurements nonclassical field states are generated. The two-level atoms are prepared
in the ground state and we conditioned them on the events in which they are also detected in the ground
state. Nonclassical properties of the cavity mode are identified and characterized. This includes quadrature
squeezing, sub-Poissonian photon-number distributions, and negative Wigner functions. We determine the
optimal parameter regions where the corresponding nonclassical features are most distinct.
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I. INTRODUCTION

The generation and verification of nonclassical states are
key tasks in quantum optics and quantum information. Be-
sides their fundamental role in the understanding of quantum
effects and correlations, the preparation and identification of
genuine quantum features are becoming increasingly impor-
tant as they are necessary for applications in quantum tech-
nologies such as communication [1,2], metrology [3,4], and
computation [5–8]. In particular, continuous-variable non-
classicality has been identified as a resource for quantum
technologies [9,10]. In the context of these resource theories,
entanglement may be considered as a secondary effect, as it
is easily obtained by nonclassical states and passive linear
optics. Notably, a given amount of nonclassicality is fully
equivalent, as a resource, to exactly the same amount of
entanglement (when the quantification is based on the quan-
tum superposition principle) [11]. Therefore, it is crucial to
develop efficient strategies for the preparation of nonclassical
states.

An ideal platform for engineering and studying nonclassi-
cal states is cavity quantum electrodynamics (QED) [12–14].
In cavity QED one investigates the interaction of a radiation
field inside a cavity with atoms and the resulting transfer of
quantum information from matter to radiation and vice versa.
The basic interactions and resulting dynamics is described
via the Jaynes-Cummings Hamiltonian [15]. Different effects
have been characterized using this model, such as Rabi oscil-
lations [16,17], the collapse and revival of probabilities [18],
or its nonclassical correlations [19]. Other nonclassical effects
such as quantum jumps have been also observed in a cavity
[20].
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In particular, it is possible to generate nonclassical states of
the cavity field, by a careful control of the light-atom interac-
tion. This includes the preparation of sub-Poissonian photon
statistics [21], photon-number states [22–25], squeezed states
[26], or superposition states such as the Schrödinger-cat state
[27,28].

In cavity QED, several strategies for the conditional-state
preparation have been introduced. Among them is the gener-
ation of Fock states by the conditional addition of photons
to a cavity vacuum state [22,29]. In this case one uses the
fact that an atom in the excited state can add a photon to
the cavity field. Other approaches use adaptive measurements
on the atomic state for enhancing squeezing [30,31], for hole
burning in the Fock space [32,33], or photon amplification
[34,35]. More general strategies for the conditional quantum-
state engineering of the cavity field have been also discussed
[36–39].

In this paper, we introduce a method for a conditional
generation of nonclassical cavity field states based on postse-
lection. In particular, we consider the situation where the two-
level atoms enter and exit the cavity (which is prepared in a
coherent state) in its ground state. Although, in this case, in the
end no photons are added to or subtracted from the initial cav-
ity field, the obtained field state features various nonclassical
properties. We derive the corresponding conditional field state
in the photon-number basis and calculate the success proba-
bility of the protocol. We present and analyze different non-
classical characteristics of the generated quantum state. This
includes quadrature squeezing, negative values of the Mandel
parameter, and negativities of its Wigner function. Optimal
parameter regions for these different quantum features are
identified. Importantly, the proposed protocol is applicable to
scenarios with a rather low atom-field coupling parameter,
which assures the applicability to many experimental reali-
sations. Thus our approach presents an easily implementable
method for the generation of nonclassical cavity fields.
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The paper is structured as follows. In Sec. II, we introduce
the conditional state-preparation protocol and the correspond-
ing quantum state of the cavity field. In Sec. III, we study
and characterize the nonclassicality features of the generated
conditional state. The results are discussed and compared in
Sec. IV. We summarize the findings and conclude in Sec V.

II. CONDITIONAL NONCLASSICAL STATE GENERATION

In this section, we present the protocol for the conditional
generation of nonclassical cavity-field states. First, we intro-
duce the considered setup and motivate the protocol. Second,
we describe the proposed protocol mathematically and derive
the conditional quantum state of the cavity field. Finally, we
calculate the success probability of the adaptive strategy.

A. Setup and motivation

The physical scenario we are interested in is a QED system
which consists of two-level Rydberg atoms passing through
a high-quality microwave cavity. We consider the standard
configuration in cavity QED [12], where ground and excited
states are related to Rydberg states with n = 50 and n = 51,
respectively. As initial conditions, we have a two-level atom
prepared in its ground state and a cavity field initially prepared
in a (classical) coherent state. We consider the case in which
the frequency of the cavity mode is resonant with the atomic
transition. In this case, the atom-cavity interaction can be
described via the resonant Jaynes-Cummings model [15] in
the strong coupling regime. The corresponding interaction
Hamiltonian in the rotating-wave approximation reads

Ĥ (I ) = h̄�0(σ̂+â + σ̂−â†)/2, (1)

with the atomic transition operators σ̂+ and σ̂− and the photon
annihilation and creation operators â and â†, respectively.
The coupling constant �0 describes the interaction strength
between the cavity field and the atoms which depends on the
systems characteristics such as the dipole transition between
the states |g〉 and |e〉 and the amplitude of the cavity field.

B. Protocol

We analyze the case in which the atoms enter the cavity
in the ground state, i.e., ρ̂A(0) = |g〉〈g|, and the cavity field
is initially prepared in a coherent state, ρ̂F (0) = |α〉〈α|. The
composite atom-field system is described by its density oper-
ator at t = 0,

ρ̂(0) = ρ̂F(0) ⊗ ρ̂A(0) =
(

0 0
0 ρ̂F(0)

)
.

Here the matrix expansion of ρ̂ is given in the basis of the
atomic states. The system evolves according to the interaction
Hamiltonian in Eq. (1) to

ρ̂(t ) = e−iĤ (I )t/h̄ ρ̂(0) eiĤ (I )t/h̄,

where the matrix elements are explicitly

ρ̂11(t ) = − Ŝ′ρ̂F(0)Ŝ, ρ̂12(t ) = Ŝ′ρ̂F(0)Ĉ′,

ρ̂21(t ) = − Ĉ′ρ̂F(0)Ŝ, ρ̂22(t ) = Ĉ′ρ̂F(0)Ĉ′.

The operators Ŝ′, Ŝ, and Ĉ′ are defined as

Ŝ = − iâ† sin
(

�0
2 t

√
ââ†

)
√

ââ†
,

Ŝ′ = − iâ
sin

(
�0
2 t

√
â†â

)
√

â†â
,

Ĉ′ = cos

(
�0

2
t
√

â†â

)
.

These operators describe the time evolution of the atom-
field system. The first element, ρ̂11(t ), corresponds to the
atom absorbing one photon of the cavity field, while ρ̂22(t )
corresponds to the atom staying in the ground state.

Let us introduce the coupling parameter r = �0t/2 which
is the relevant parameter in the description of the interaction
between the cavity field and the atoms. The operators ρ̂11(r)
and ρ̂22(r) are given by

ρ̂11(r) = e−|α|2 ∑
n,m

c′
nm(α)|n − 1〉〈m − 1|,

with c′
nm(α) = αnα∗m

√
n!m!

sin(r
√

n) sin(r
√

m),

and

ρ̂22(r) = e−|α|2 ∑
n,m

cnm(α)|n〉〈m|,

with cnm(α) = αnα∗m

√
n!m!

cos(r
√

n) cos(r
√

m),

respectively. We focus on the field state which is obtained
by postselecting the atom to be in the ground state after
the interaction with the cavity field. This state is expressed
through projecting ρ̂(r) onto the atomic ground state and
renormalizing the corresponding field density operator

ρ̂ps(r) = ρ̂22(r)

Tr[ρ̂22(r)]
. (2)

The state ρ̂ps(r) relates to the conditional field-state generation
by postselection (PS) using one atom.

We can further generalize this approach to the subsequent
interactions and PS with N atoms. We assume that all atoms
have the same properties and interact for the same time with
the cavity field, i.e., the coupling parameter r is equal for all
atoms. Note that it is possible to tune the coupling parameter
through the control of the interaction time, for example, using
a stark shift [13]. In the case of postselecting on all N atoms
being measured in the ground state after the interaction with
the cavity field, we obtain the PS density operator ρ̂N

ps(r).
To calculate ρ̂N

ps(r), we successively apply the time evolution
of each atom with the corresponding cavity-field state and
subsequently project on the atomic ground state. Thus, the
N-atoms PS density operator ρ̂N

ps(r) is given by

ρ̂N
ps(r) = ρ̂N

22(r)

Tr
[
ρ̂N

22(r)
] ,
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which can be calculated through the iterative operation

ρ̂N
22(r) = Ĉ′ ρ̂N−1

22 (r)

Tr
[
ρ̂N−1

22 (r)
] Ĉ′,

starting from the one-atom PS state ρ̂1
22(r) = ρ̂22(r). Applying

this procedure eventually yields

ρ̂N
ps(r) =

∑
n,m cnm(α, N )|n〉〈m|∑

n cnn(α, N )
, (3)

with

cnm(α, N ) = αnα∗m

√
n!m!

cosN
(
r
√

n
)

cosN (r
√

m).

We are interested in identifying the nonclassicality prop-
erties of the state in Eq. (3) which depends on the coupling
parameter r, the number of atoms N , and the amplitude of
the initial coherent state α. In our consideration, we will
focus on the parameter range of 0 � r � 3 and up to five PS
atoms. If we assume a typical vacuum Rabi frequency of �0 =
314 kHz [12,13], a coupling parameter r = 3 corresponds
to an effective atom-cavity interaction time of 19 μs. These
timescales are short compared to typical cavity damping times
which are of the order of milliseconds. Note that, to consider
noninteracting successive atoms, there is a limit distance
between them which is of the order of few micrometers.
Considering typical atomic velocities (cf. [12,13]) the neces-
sary time gap between successive atoms can be estimated to
be 7 ns. This assures the feasibility of the introduced state-
preparation protocol even for several atoms, and allows us to
neglect decoherence effects. In the following, we will fix the
initial cavity-field state to be a coherent state with coherent
amplitude α = √

10. The obtained results are qualitatively
similar for different initial coherent amplitudes. We note that
our analytical treatment allows for a general description with
arbitrary α. Before discussing the nonclassical properties, we
will calculate the success probability of the postselection.

C. Success probability

To prepare the cavity field in the state described by the
density operator in Eq. (3), we have to successfully postselect
all N atoms. The overall success probability for N atoms is,
thus, the product of the success probability of each individual
atom

PN =
N∏

i=0

pi.

Here pi corresponds to the probability of finding the ith atom
in the ground state after it passed the cavity provided that also
all atoms before had been detected in the ground state. This
probability is obtained via tracing over the field states in the
ith-atom density operator and projecting to the ground state of
the atom pi = 〈g|Tr[ρ̂ i(r)]|g〉.

For one atom, we easily calculate the PS probability P1 =
Tr[ρ̂1

22(r)]. To calculate P2 it is vital to take into account the
normalization of the density operator after the first PS, given

0.0 0.5 1.0 1.5 2.0 2.5 3.0
coupling parameter r

0.00

0.25

0.50

0.75

1.00

P
N

N = 1
N = 2
N = 5

FIG. 1. Variation of the success probability PN of the PS state
in terms of the coupling parameter r for N = 1 (blue, solid), N = 2
(orange, dashed), and N = 5 (green, dash-dotted).

in Eq. (2). This then yields

P2 = p1 p2 = Tr
[
ρ̂1

22(r)
]Tr

[
ρ̂2

22(r)
]

Tr
[
ρ̂1

22(r)
] = Tr

[
ρ̂2

22(r)
]
.

Similarly, by repeating this procedure, we find the N-atom
success probability to be

PN = Tr
[
ρ̂N

22(r)
]
.

The success probability of the conditional field-generation
protocol is shown in Fig. 1 for three different numbers of
atoms. We observe that PN oscillates with respect to the
coupling parameter r. In particular, for one atom it is exactly
given by the probability of observing the atom in the ground
state after it passes the cavity, which is nothing else than its
Rabi oscillation. With more atoms, the success probability
decreases faster while the oscillatory behavior of the one-atom
case is preserved. Overall, the success probabilities are rather
high (above 10% , except for r ≈ 0.5) which guarantees the
applicability of the protocol in reasonable experimental times.
Furthermore, the probability of observing N atoms in the
ground state is higher than the N th power of the probability
of the first atom, i.e., PN > pN

1 . Accordingly, finding the first
atom in the ground state, in general, increases the likelihood
of finding the subsequent ones in the ground state as well.

In the following, we will examine the nonclassical prop-
erties of the obtained cavity-field state for N = 1, 2, and 5
atoms. For this number of atoms pronounced nonclassical
features can be observed. Higher values of N do not improve
the observed features significantly or produce new effects.

III. NONCLASSICAL FEATURES

In this section, we investigate various aspects of the con-
ditionally generated state of the cavity field. This includes
quadrature squeezing, sub-Poissonian photon-number distri-
butions characterized by the Mandel QM parameter, and nega-
tivities of the Wigner phase-space distribution. We discuss the
variations of these properties with the coupling parameter and
the number of PS atoms.

A. Quadrature squeezing

Quadrature squeezing is the suppression of the quadrature
noise below the vacuum noise level. The quadrature operator
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FIG. 2. Variations on the quadrature squeezing with the cou-
pling parameter r for the N-atom state with one, two, and
five atoms and ϕ = 0. To show squeezing in dB, we consid-
ered 10 log10 (〈(�x̂(ϕ = 0))2〉/〈(�x̂)2〉vac). A quantum state shows
quadrature squeezing in dB if its variance fulfills 〈(�x̂(ϕ))2〉(dB) <

0, which corresponds to condition (4). For different sets of pa-
rameters, all studied states exhibit quadrature squeezing, which is
indicated through the shaded area.

is defined in terms of the phase parameter ϕ as x̂(ϕ) =
âe−iϕ + â†eiϕ . A quantum state shows quadrature squeezing if
its variance fulfills 〈(�x̂(ϕ))2〉 < 1. Consequently, squeezing
can be identified through the following condition:

〈:(�x̂(ϕ))2:〉 = 〈(�x̂(ϕ))2〉 − 1 < 0, (4)

where : : denotes the normal-order prescription (see,
e.g., [40]). Note that, additionally, any proper quantum
state needs to fulfill the uncertainty relation 〈(�x̂(ϕ))2〉
〈(�x̂(ϕ + π/2))2〉 � 1. The first and second moments of the
quadrature operator for the N-atom PS state are

〈x̂(ϕ)〉 = 2Re(αe−iϕ )e−|α|2

Tr
[
ρ̂N

22

] ∑
n

|α|2n

n!

× cosN (r
√

n) cosN (r
√

n + 1), and

〈x̂(ϕ)2〉 = e−|α|2

Tr
[
ρ̂N

22

] ∑
n,m

|α|2n

n!
[2Re(α2e−i2ϕ ) cosN (r

√
n)

× cosN (r
√

n + 2) + 2|α|2 cos2N

× (r
√

n + 1) + cos2N (r
√

n)],

respectively.
In Fig. 2, the variance of the quadrature operator in dB of

the generated state is shown for different numbers of PS atoms
in dependence on the coupling parameter r. We note that the
considered state is most squeezed along the amplitude quadra-
ture (ϕ = 0). This can also be seen for the Wigner function
representation in Sec. III C. Therefore, we only analyze and
show squeezing along the x̂(ϕ = 0) quadrature. We see that
quadrature squeezing can be observed in different intervals of
the parameter range for all considered numbers of atoms. In
particular, the strongest squeezing (≈4 dB of squeezing, with
〈(�x̂)2〉vac = 1) can be observed in the interval 0.7 < r < 1.3
for N = 5. It is worth mentioning that this parameter region
features high success probabilities; cf. Fig. 1. Additionally,
increasing the number of atoms only increases the maximal
value of squeezing marginally. However, the location of the
maximal squeezing is decreasing with increasing N , which

might be of interest in certain experimental scenarios. The
strongest antisqueezing is observed around r = 0.51 and 1.5.
This corresponds to the cases in which the quantum state is
broadly distributed in phase-space and its Wigner function
shows pronounced negativities as we will see in Sec. III C.

B. Sub-Poissonian light and Mandel QM parameter

We will now analyze the photon-number statistics of the
generated cavity-field state. The photon-number statistics cn

is obtained through the projection of the quantum state on the
Fock basis

cn = 〈n|ρ̂ps|n〉 = 1

Tr
[
ρ̂N

22

] |α|2n

n!
cos2N (r

√
n). (5)

In particular, we are interested in the parameter regime
where the PS state shows the nonclassical feature of sub-
Poissonian light, i.e., having a photon-number distribution
which is narrower than a Poissonian one. This characteristic
can be identified via the Mandel QM parameter [41], which is
defined as

QM = 〈(�n̂)2〉
〈n̂〉 − 1 = 〈n̂2〉 − 〈n̂〉2

〈n̂〉 − 1,

where n̂ is the photon-number operator. Sub-Poissonian light
is indicated through QM < 0.

To calculate the Mandel parameter for the conditional
cavity-filed state in Eq. (3), we evaluate the first two moments
of the photon-number operator. The mean photon number is
given by

〈n̂〉 = |α|2 β(1)

β(0)
,

and the second-order moment by

〈n̂2〉 = |α|2
β(0)

(|α|2β(2) + β(1)),

where we introduce the function β(k) as

β(k) =
∞∑

l=0

|α|2l

l!
cos2N (r

√
l + k).

Therefore, the Mandel QM parameter of the conditional
cavity-field state is

QM = |α|2
(

β(2)

β(1)
− β(1)

β(0)

)
.

The behavior of QM with respect to the coupling parameter
r and the number of PS atoms is shown in Fig. 3. We
observe sub-Poissonian light (QM < 0) for all considered
numbers of PS atoms. In particular, in the intervals 0.7 <

r < 1.3 and 1.7 < r < 2.2 the sub-Poissonian character of
the photon-number distribution is clearly certified. The former
interval concurs with a region for which we can also identify
quadrature squeezing; cf. Fig 2. This is an interesting finding
because the obtained quantum state shows these two impor-
tant nonclassical features simultaneously. Typically, these two
properties are studied independently which may lead to the
false impression that they are mutually exclusive quantum
attributes. Therefore, this case is particularly interesting, and
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FIG. 3. The Mandel QM parameter is shown for different num-
bers of PS atoms depending on the coupling parameter r. The states
with sub-Poissonian photon-number distribution are characterized by
parameters with negative QM (gray shaded area).

may also serve as a didactic example of a state that possess
squeezing and a sub-Poissonian photon-number statistic si-
multaneously. A similar behavior can also be observed for
the parameter region around r = 2. In this case, squeezing
can, however, only be achieved by using one atom and the
squeezing vanishes rapidly if one considers more atoms.

C. Wigner function

The Wigner function links the density operator to a
(quasi)probability distribution in phase space and it encodes
all information about the state of a given physical system
[42]. It is a so-called quasiprobability distribution due to its
possibility of attaining negative values. These negative values
are signatures of the nonclassicality of the state.

As initial condition, we consider the cavity field being
prepared in a (classical) coherent state, which has a Gaus-
sian Wigner function. We calculate the Wigner phase-space
distribution of the PS cavity-field state and identify the pa-
rameter sets for which it attains negative values. In this way
nonclassicality can be certified even if particular nonclassical
features such as quadrature squeezing or a sub-Poissonian
photon distribution cannot be observed. Although there exist
various ways to calculate the Wigner function, in this work it
proves most feasible to calculate the Wigner function using its
relation to the Weyl equivalent

W(γ ) = 2

π2
e2|γ |2

∫
d2β〈−β|ρ̂|β〉e2(β∗γ−βγ ∗ )

given in [43]. Inserting ρ̂ = ρ̂N
ps(r), it is possible to derive the

Wigner function of the PS cavity-field state which yields

W(γ ) = 2 e−2|γ |2−|α|2

πTr
[
ρ̂N

22

]
(∑

n

cnn(α, N ) (−1)nL0
n(4|γ |2)

+
∑
n>m

Cnm(γ , α, N ) (−1)m

√
m!

n!

2n

2m
Ln−m

m (4|γ |2)

)
,

(6)

with Cnm(γ , α, N ) = 2|γ |m−n|α|m+n cosN (r
√

n) cosN (r
√

m)
cos[arg(γ ) − arg(α)]/

√
n!m!. For details on the calculation

we refer to the Appendix A. The resulting Wigner function
is symmetric along the direction of the original displacement

of the cavity field (the real axis for the states in Fig. 4). We
can easily see this since the only phase-dependent term in the
Wigner function is the cosine of the relative phase arg(γ ) −
arg(α). In Fig. 4, we show the Wigner function of the
N-atom PS cavity mode, for one, two, and five atoms and the
interaction parameter r varying from 0.2 to 2.5. We observe
in a wide parameter range that the Wigner functions of the
obtained cavity-field states show negativities. This is a clear
indicator of the nonclassical character of the quantum state.
Let us study the behavior of the Wigner functions in more
detail. First, consider the case with one PS atom, i.e., the first
row in Fig. 4. For r = 0.2 the deviation of the Wigner function
from its original Gaussian form is still negligibly small and
shows no visible nonclassical effect. With increasing r the
phase-space distribution is distorted around a negative region.
The negativities are located first at the right side of the Wigner
function (r = 0.4) and then at the center (r = 0.51) along
the real axis of the phase space. While the negativity of the
Wigner function is located closer at its center (α = √

10 ≈
3.2) it becomes more negative. With further increasing r the
Wigner function takes negative values in more regions, all
along the real axes of the phase space. Overall it appears as
if the negative regions move along the real axis from positive
towards negative values. We observe similar behaviors for the
Wigner functions for N = 2 and N = 5 corresponding to the
second and third rows in Fig. 4, respectively. The Wigner
functions are also distorted and show negative regions, which
are symmetrically distributed around the real axis. They differ
in the number of negative regions, which are proportional
to the number of atoms in the PS protocol. In addition,
the states with the lowest success probabilities (cf. Fig. 1;
r = 0.51, 1.5, 2.5), coincide with the states with the most
negative values in the Wigner function. Note that the states
with r = 0.51 show the same symmetries as displaced cat
states; cf., e.g., [44]. In this sense theses states are interesting,
however, they are rather unlikely to obtain due to their low
success probabilities. Their success probabilities are ≈6.38%,
1.14%, and 0.06% for N = 1, 2, and 5 atoms. Furthermore,
it is important to mention that the observation of negativities
in the Wigner function is a clear feature of non-Gaussian
nonclassical states. Such states are highly interesting in the
context of quantum information applications as they cannot
be effectively simulated by classical computers [45,46].

IV. DISCUSSION

For the preparation of quantum states with specific non-
classical features, it is important to identify the parameter
regimes for which these properties can be achieved. We
identify the regions of the parameter space where the cav-
ity mode attains the different nonclassical behaviors. The
regions with negative Mandel Q parameter and negative
Wigner function barely change with the number of atoms
(cf. Figs. 3 and 4). In contrast, the appearance of squeezing
is more dependent on the number of postselected atoms
(cf. Fig. 2).

We perceive that the cavity mode shows no squeezing or
negative Mandel QM close to r = 0.51, 1.5, 2.5. The oscil-
latory behavior of these quantities is related to the atomic
Rabi oscillations. In contrast, the Wigner function shows
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FIG. 4. Wigner function of the conditional state. The rows correspond to the contour plot of the Wigner function in the phase space for
different coupling parameters r = 0.2, 0.4, 0.51, 1, 1.5, 2.5, while the columns indicate the different number of PS atoms, N = 1, 2, 5. The
horizontal and the vertical axes represent the real and imaginary values of γ , respectively. Red represents negative contributions, which clearly
indicates the nonclassical character of the corresponding state.

negativities for r � 0.3. Furthermore, we observe that squeez-
ing is the hardest feature to be achieved in the sense that the
parameter regions for which we can observe it are the small-
est. Unlike for squeezing, the parameter regions which feature
a negative Mandel QM parameter are larger and especially
also exist for higher values of r, and, therefore, have a larger
overlap with regions with negative Wigner function.

Let us also comment on the interpretation of the introduced
protocol. At first glance, it seams surprising that the atoms
entering and leaving the cavity in the ground state lead to
a nonclassical field state, as no photons are added to or
subtracted from the cavity field. They do, however, interact
with the initial coherent state of the cavity field which features
a Poissonian photon-number distribution. Importantly, for a
fixed coupling parameter each photon-number contribution
interacts differently with the passing atoms. Therefore, by the
PS on the events where the atoms stay in the ground state
certain photon-number contributions are more probable than
others which leads to a redistribution of the photon-number
statistics. Eventually, this leads to the observed nonclassical
features in the cavity mode.

We point out that the typical Jaynes-Cummings interaction
(one atom, no postselection) already leads to nonclassical
features of the cavity-mode and atom-field entanglement;
cf. [12–14]. The single-mode nonclassical field properties
are, however, rather weak for a wide parameter range. In
particular, no significant squeezing [47] or sub-Poissonian
photon-number statistics [48] can be observed in this case.
Furthermore, a cat state of the cavity field [13] can only
be reach for relatively high coupling parameters (r ≈ 10
for α = √

10). In addition, the introduced conditional-state
preparation protocol provides the possibility to generate states

with pronounced nonclassicality features for comparably low
coupling parameters (r < 1).

Note that a similar system and postselection approach
was studied in [49] in the context of attenuation without
absorption. There, the authors discussed the possibility of
attenuating and amplifying a coherent state of a traveling light
field through the interaction and postselection with several
atoms. By studying the Husimi Q phase-space distribution and
the photon-number distribution of the light field for certain
coupling parameters they argue that such a conditional-state
preparation method allows to attenuate or amplify the field.
Our analysis, however, shows that the action of the postse-
lection procedure does not only shift the overall amplitude of
state, but severely changes the characteristics of the quantum
state introducing various kinds of nonclassical properties.

V. CONCLUSION

We introduce a method for the conditional preparation
of nonclassical states of a cavity field. The studied system
consists of two-level atoms passing through a high-quality
cavity which interact with the cavity field in a resonant way.
The atoms are initially prepared in the ground state and the
cavity field is initialized in a coherent state. The preparation
of a nonclassical cavity-field state is achieved through condi-
tioning on the cases in which the atom is detected also in the
ground state after passing the cavity.

We calculate the conditional cavity-field state in the
photon-number basis. The obtained state depends on the cou-
pling constant, on the atom-light interaction, and the num-
ber of considered postselection atoms. By controlling the
coupling parameter, e.g., through control of the effective
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interaction time through a Stark switch, nonclassical states
with different quantum characteristics can be obtained. In
particular, we study quadrature squeezing, sub-Poissonian
photon-number distributions, and provided analytical expres-
sions for the squeezing and the Mandel parameter in depen-
dence on the coupling parameter and the number of passing
atoms. Furthermore, the Wigner function of the cavity-mode
was calculated and we could infer the state’s nonclassical
character from its negativities. For the preparation of states
with different nonclassical features optimal parameter regions
were identified. Summing up, the presented approach can
easily be implemented in current cavity QED experiments and

provides a versatile method for the engineering of nonclassical
states of cavity fields.
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APPENDIX: DERIVATION OF WIGNER FUNCTION

Here we show how the Wigner function of the postselected state (3) is derived. The Wigner function can be calculated via
[43]

W(γ ) = 2

π2
e2|γ |2

∫
d2β〈−β|ρ̂N

ps(r)|β〉e2(β∗γ−βγ ∗ ).

In a first step we calculate 〈−β|ρ̂N
ps(r)|β〉 obtaining

W(γ ) = 2

π2
e2|γ |2 e−|α|2

Tr[ρ̂22]

∑
n,m

cnm(α, N )
(−1)n

√
n!m!

∫
d2β e−|β|2 e2(β∗γ−βγ ∗ )βm(β )∗n.︸ ︷︷ ︸

IW

(A1)

The integral IW can be solved using derivative relations of the Fourier transformation

IW = (−1)m

2m+n

∂n

∂γ n

∂m

∂γ ∗m
πe−4γ γ ∗

.

At this point the order of applying the derivatives becomes important. To apply first ∂n

∂γ n corresponds to n � m and applying first
∂m

∂γ ∗m to m � n. In the following, IW is split in two parts corresponding to the two cases given above and then reordered to fit the
Rodrigues formula of the generalized Laguerre polynomial

Lα
n (x) = x−αex

n!

∂n

∂xn
(e−xxn+α ).

Defining I (1)
W for m � n and I (2)

W for n > m as

I (1)
W = 2m

2n
π n! e−4|γ |2γ m−nLm−n

n (4|γ |2), (A2)

and

I (2)
W = (−1)m−n 2n

2m
π m! e−4|γ |2γ ∗(n−m)Ln−m

m (4|γ |2), (A3)

respectively. Note that for n = m both parts of IW are equal. Plugging Eqs. (A2) and (A3) into Eq. (A1) leads to

W(γ ) = 2 e−2|γ |2−|α|2

πTr
[
ρ̂N

22

]
(∑

m�n

cnm(α, N ) (−1)n

√
n!

m!

2m

2n
γ m−nLm−n

n (4|γ |2) +
∑
n>m

cnm(α, N ) (−1)m

√
m!

n!

2n

2m
γ ∗(n−m)Ln−m

m (4|γ |2)

)

= 2 e−2|γ |2−|α|2

πTr
[
ρ̂N

22

]
(∑

n

cnn(α, N ) (−1)nL0
n(4|γ |2) +

∑
n>m

Cnm(γ , α, N ) (−1)m

√
m!

n!

2n

2m
Ln−m

m

(
4|γ |2)

)
,

with

Cnm(γ , α, N ) = 2 Re[cnm(α, N )γ (n−m)]

= 2|γ |m−n|α|m+n cosN (r
√

n) cosN (r
√

m)√
n!m!

cos[arg(γ ) − arg(α)].
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