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Quantum correlations from dynamically modulated optical nonlinear interactions
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We investigate optical nonlinear interactions in a dynamic environment by studying the generation of photons
in spontaneous parametric down conversion inside a nonlinear cavity where the optical path length is periodically
modulated in time. We show that the temporal dynamics of the cavity modify the nonlinear interaction and the
generated continuous-variable time-frequency entangled biphoton state evolves into a tunable discrete higher-
dimensional state in the nonadiabatic modulation regime where the modulation timescales are much faster than
the photon lifetime. In this regime, the system mimics effects of a quantum random walk in a photonic lattice
with many associated effects, including localized and delocalized wave functions of the generated photons. We
also propose generation of time-frequency hyperentangled states in the adiabatic limit. Our analysis shows that
the proposed system is promising for applications in quantum simulation and information processing in the
time-frequency domain.
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I. INTRODUCTION

Optical interactions in a cavity with time-varying bound-
ary conditions have led to interesting results from both a
fundamental and practical point of view [1]. In cavity QED,
optomechanical interaction [2] between a quantized cavity
field and a movable mirror has shown modifications of the
optical spectrum and coherence properties [3–5], as well as
the generation and control of exotic quantum states of light
and the mechanical motion [6–8]. In systems with single
emitters coupled to modulated cavities, the modification to
spontaneous emission rates [9], emission spectra, and emitter-
cavity coupling dynamics has been studied and tested [10,11].
Cavities modulated by periodic signals have also been shown
to be useful in optical isolation, nonreciprocity, and topologi-
cal photonics [12–14].

In this article, we investigate the behavior of entangled
biphoton states generated inside a cavity containing a non-
linear medium where the optical path length is modulated by
an arbitrary periodic signal. Studies have been done to some
extent in modulated cavities with nonlinear media [15,16];
however, these systems rely on a resonant optomechanical in-
teraction often requiring strong coupling at the single-photon
level and ultralow temperatures. In order to arbitrarily modu-
late a cavity, nonresonant processes such as the electro-optic
effect, cross-phase modulation, or free carrier dispersion are
needed. Our treatment is also applicable to optomechanical
systems when driven at the mechanical resonance frequency
at room temperature where the quantum effects of the me-
chanical motion can be ignored.

*qiang.lin@rochester.edu

Optical parametric processes such as spontaneous para-
metric down conversion (SPDC) and spontaneous four-wave
mixing (SFWM) are routinely used to generate entangled
states of light. In the weak-pumping regime, these processes
produce pairs of photons with continuous-variable (cv) en-
tanglement in time and frequency [17]. We show that this
initial state evolves into a discrete higher-dimensional state in
frequency with tunable amplitudes in the resolved-sideband
regime, where the modulation frequency exceeds the cavity
linewidth. This results in the generated photons experiencing
a time-varying cavity length. The dynamic system mimics
features of quantum random walks [18], including localized
and delocalized wave functions. Such systems have been
shown to be useful in quantum simulation [19,20] and imple-
menting information processing algorithms [21,22]. However,
unlike previous implementations of a quantum random walk
where a quantum state is inserted into a lattice, here the
photon-emission process itself is randomized. We also pro-
pose a method to generate time-frequency bin hyperentangled
states in the unresolved-sideband (adiabatic) regime where
the modulation frequency is much smaller than the cavity
linewidth. These states can be turned into higher-dimensional
cluster states [23] for measurement-based quantum compu-
tation [24]. The proposed system can be implemented on a
chip with a monolithic resonator carved from a nonlinear
material.

II. THEORY

Figure 1(a) illustrates the proposed system. A nonlinear
medium is placed inside a cavity where the optical path length
can be varied in time either by moving the cavity mirrors or by
changing the refractive index of the medium. For simplicity,
we take the case of SPDC, but our treatment can be extended
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FIG. 1. Illustration of the proposed system. (a) An optical cavity
with adjustable optical path length represented by f (t ) contains
a nonlinear crystal with χ (2) nonlinearity. (b) An energy diagram
showing a pump laser with frequency ωp driving an SPDC interaction
inside the cavity to generate a pair of photons with frequencies ωs

and ωi. (c) A practical scheme to implement the system in (a) using a
ring resonator coupled to a waveguide with electrodes to change the
refractive index using the electro-optic effect.

easily to any parametric nonlinear interaction. The cavity has
three resonant modes that are phase and frequency matched
for this interaction, labeled as pump, signal, and idler as
shown in Fig. 1(b). A pump beam couples from one side of the
cavity, spontaneously generating a pair of photons with dif-
ferent frequencies. These photons then leak out of the cavity
and are subsequently measured. Figure 1(c) shows a practical
scheme to implement such system on a nanophotonic chip.
A waveguide couples light into and out of a resonator etched
from a medium with χ (2) nonlinearity. The electro-optic effect
is used to modulate the refractive index of the resonator by
applying microwave signals to metallic electrodes in close
proximity to the resonator. The Hamiltonian of the closed
system can be described as

Ĥ = Ĥ0 + ĤMOD + ĤNL. (1)

In Eq. (1), H0 is the free-field Hamiltonian given by

Ĥ0 =
∑

n=p,s,i

h̄ω0nâ†
nân, (2)

where an [n = p (pump), s (signal), and i (idler)] is the
field operator inside the cavity, as shown in Fig. 1(c), with
unperturbed resonance frequency ω0n. HMOD is the part of

the Hamiltonian that generates modulation of the cavity
resonances,

ĤMOD = −
∑

n=p,s,i

h̄ f (t )â†
nân, (3)

f (t ) =
N∑

k=1

Gk cos(k�t + φk ). (4)

We have defined the modulation signal f (t ) in terms of its
Fourier components with amplitudes Gk , phases φk , and a
fundamental frequency �. We note that the Hamiltonian in
Eq. (3) is valid under the assumption that Gk, k� � ω0n for
all combinations of n and k, and k� is far shorter than the
cavity free spectral range (FSR) [25]. HNL is the nonlinear
part of the Hamiltonian given by

ĤNL = h̄gâpâ†
s â†

i + H.c., (5)

where g is the nonlinear coupling strength. The system
defined by the Hamiltonian H is coupled to two reservoirs:
The loss due to imperfections in the cavity walls constitutes
the intrinsic cavity linewidth γ0n and the coupling waveguide
introduces an additional external coupling loss γen. The
Heisenberg-Langevin equations of motion for this open
system are then expressed as

dân

dt
= 1

ih̄
[ân, Ĥ ] − (γ0n + γen)

2
ân + √

γ0nûn + i
√

γenb̂n,

(6)

where ûn and b̂n are the Langevin noise operators associated
with the decay rates γ0n and γen, respectively. We will treat
the reservoirs as broadband Markovian systems satisfying the
commutation relations

[ûm(t ), û†
n(t ′)] = δmnδ(t − t ′), (7)

[b̂m(t ), b̂†
n(t ′)] = δmnδ(t − t ′). (8)

The pump and the modulation signal are strong compared to
the generated signal and idler modes due to weak nonlinear
coupling (gap � γ0n + γen) and are treated classically. This
also justifies ignoring the effects of self- and cross-phase
modulation between the three modes. The equations of
motion for the open system then become

dap

dt
= −

{
i[ω0p − f (t )] + γt p

2

}
ap + i

√
γepbp(t )e−iωpt , (9)

dâs

dt
= −

{
i[ω0s − f (t )] + γts

2

}
âs − igapâ†

i

+ √
γ0sûs + i

√
γesb̂s, (10)

dâi

dt
= −

{
i[ω0i − f (t )] + γt i

2

}
âi − igapâ†

s

+ √
γ0iûi + i

√
γeib̂i, (11)

where γtn = γ0n + γen is the linewidth of the loaded cavity
resonance and ωp is the center frequency of the pump laser
with temporal profile bp(t ). By setting ωp = ω0p when
the laser is tuned to the center of the pump resonance, we
can make a sequence of transformations to simplify these
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equations,

Ôn = Ô′
n × exp[−iω0nt], (Ô = â, b̂, û). (12)

This transformation puts the system into a rotating frame with
a frequency matching the corresponding resonance frequency
for each mode. We will now make a second transformation,

ân = â′
nexp[ih(t )], (13)

where

h(t ) =
∫ t

−∞
f (t ′)dt ′. (14)

Plugging these transformations in Eqs. (9)–(11) and assuming
that the unperturbed resonance frequencies are perfectly
matched for SPDC (ω0p = ω0s + ω0i), we get

da′
p

dt
= −γt p

2
a′

p + i
√

γepbp(t )e−ih(t ), (15)

dâ′
s

dt
= −γts

2
â′

s − (iga′
pâ′ †

i − √
γ0sûs − i

√
γesb̂s)e−ih(t ), (16)

dâ′
i

dt
= −γt i

2
â′

i − (iga′
pâ′ †

s − √
γ0iûi − i

√
γeib̂i )e

−ih(t ), (17)

where we have kept the prime notation (′) for the
transformation in Eq. (13) only for simplicity. By making
the transformation defined by Eq. (13), we have shifted the
system into a rotating phase-modulated frame. In such a
frame, a phase-modulated wave would appear to be static.
The transformed set of equations resembles a system with
static resonances driven by a phase-modulated input and the
actual solution for the field in the modulated cavity differs
from the transformed system only by a factor of a harmonic
phase. We can now solve the system of Eqs. (15)–(17).

A. Steady-state solution for pump

Equation (15) can be exactly solved in the frequency
domain by expanding exp[−ih(t )] as a sum of harmonics,

exp[−ih(t )] = exp

[
−i

N∑
k=1

Gk

k�
sin(k�t + φk )

]

=
∞∑

l=−∞
fl e

−il�t , (18)

fl =
∞∑

m2,...,mN =−∞
Jm1

(
G1

�

)
Jm2

(
G2

2�

)
· · · JmN

(
GN

N�

)

× exp

⎡
⎣−i

N∑
q=1

mqφq

⎤
⎦, m1 = l −

N∑
r=2

rmr, (19)

where the integer N determines the number of sinusoidal
signals used in the periodic signal from Eq. (4) and Jm(x) is the
Bessel function of the first kind and order m. The steady-state
solution for the pump can be obtained by taking the Fourier
transform of Eq. (15) and using Eq. (18),

a′
p(ω) = i

√
γep

∑∞
l=−∞ flbp(ω − l�)

γt p/2 − iω
, (20)

where we have defined the Fourier transform as

a(ω) =
∫ ∞

−∞
a(t )eiωt dt . (21)

The solution for the intercavity pump field is a sum of shifted
copies of the pump spectrum scaled by a Lorentzian. This
is not surprising since, in this frame, the input pump field is
phase modulated. The complete solution for the pump as well
as the signal and idler modes after transforming back from the
phase-modulated frame will be

an(ω) =
∞∑

l=−∞
f ∗
l a′

n(ω + l�), (22)

which is simply a Fourier transform of Eq. (13).

B. Perturbative treatment for signal and idler modes

In the weak-pumping regime, we can treat the nonlinear
part of the system as a small perturbation. We will solve the
system perturbatively in the frequency domain [26] to the
first order, where the nonlinear interaction generates, at most,
two photons. To zeroth order, the idler equation (17) can be
expressed as

dâ′ 0
i

dt
= −γt i

2
â′ 0

i + (
√

γ0iûi + i
√

γeib̂i )e
−ih(t ). (23)

Then the signal equation to first order is obtained by plugging
the solution of Eq. (23) into Eq. (16),

dâ′ 1
s

dt
= −γts

2
â′ 1

s − (
iga′

pâ′ 0†

i − √
γ0sûs − i

√
γesb̂s

)
e−ih(t ).

(24)

A similar procedure can be done for the first-order solution
of the idler and is equivalent to swapping the subscript s
with i in the solution. We will solve Eqs. (23) and (24) in
the frequency domain to obtain their steady-state solution. To
simplify things, we will assume γ0p = γ0s = γ0i = γ0, γep

= γes = γei = γe and γ0 + γe = γt . The resulting solutions,
ignoring the 0, 1 notation for simplicity, and transforming
back from the phase-modulation frame using Eq. (22), are
calculated to be

âs,i(ω) =
∞∑

j,k,l=−∞
Aj,k,l (ω)

∫
dω′ ξ̂

†
i,s(−ω′ − l�)a′

p[ω − ω′ − ( j − k)�]

γt/2 − iω′ +
∞∑

j,k=−∞
Bj,k (ω)ξ̂s,i[ω − ( j − k)�],

(25)

where Aj,k,l (ω) =− ig f j f ∗
k f ∗

l

γt/2 − i(ω + k�)
, Bj,k (ω) = f j f ∗

k

γt/2 − i(ω + k�)
and ξ̂s,i(ω) = √

γ0ûs,i(ω) + i
√

γeb̂s,i(ω).
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(a) (b) (c)

(d) (e)

FIG. 2. Normalized spectrum of the signal photons with modulation parameters �/γt and G/� equal to (a) 0.5 and 0, (b) 0.5 and 1.25,
(c) 0.5 and 3.0, (d) 3.0 and 0.75, and (e) 3.0 and 1.25. The emergence of peaks in (c) is due to the sinusoidal form of the modulation as the
time derivative is zero at the extreme end of the oscillation.

In this solution, a′
p(ω) is the pump spectrum in the modulation

frame given by Eq. (20). The operators ξ̂n(ω) (n = s, i) are the
sum of the noise operators of the two reservoirs and satisfy the
commutation relation

[ξ̂m(ω), ξ̂ †
n (ω′)] = 2πγtδmnδ(ω − ω′). (26)

III. RESULTS

We can define the operators for the field transmitted out of
the cavity in Fig. 1(c) using cavity input-output theory as

ĉs,i(ω) = b̂s,i(ω) + i
√

γeâs,i(ω). (27)

We now have all of the necessary relationships to calculate
the spectral profiles and coherence properties of the emitted
photons.

A. Single-channel spectrum

The spectrum of the signal mode is given by

ns(ω) = 〈ĉ†
s (ω)ĉs(ω)〉. (28)

We will evaluate ns(ω) for a pump with a Gaussian spectrum
given by bp(ω) = b0exp[−ω2/σ 2]. Figure 2 plots the signal
spectrum using the results from Eq. (25) in the limit σ �
�, γt for a simple case where N = 1 and f (t ) = G cos (�t ).
We can divide the results into two regimes of operation for the
system: The unresolved-sideband or adiabatic regime where
� < γt and the resolved-sideband regime where � > γt . Fig-
ures 2(b) and 2(c) plot the spectrum in the adiabatic regime
with �/γt = 0.5. We see that as the modulation amplitude
is increased from zero, the spectrum broadens. This happens
due to the back and forth oscillations of the resonances since
the driving frequency is small enough for the cavity to follow.
Therefore, the center frequencies of the generated photons

oscillate in time and the total spectrum shows this as a
broadening. This motion of the spectrum in time can be used
for quantum frequency conversion [27]. It is important to note
that if the modulation frequency is far shorter than the photon
lifetime, the broadening will disappear since the cavity moves
too slow for the pump energy to survive long enough to get
to the extreme end of the oscillation. Therefore, all of the
photons are generated close to the center of the unperturbed
resonance frequencies ω0n (n = s, i). This is equivalent to a
pulsed pump driving the nonlinear interaction inside a static
cavity. Figures 2(d) and 2(e) show the results in the resolved-
sideband regime. Here we see the creation of sidebands at
integer multiples of the modulation frequency �, indicating
a three-wave sum or difference frequency interaction of the
photons with the modulation signal. The strength of these
sidebands can be controlled with the modulation amplitude.

B. Joint spectrum

In the weak-pumping regime, the quantum state of the light
emitted from such a nonlinear interaction can be given as [17]

|ψ〉 = C0|0〉 +
∫∫

dωsdωiS(ωs, ωi )|ωs〉|ωi〉, (29)

where |0〉 is the vacuum state and S(ωs, ωi ) is the complex
joint spectral amplitude. The generated photons are in a
continuous-variable entangled state. If we evaluate the expec-
tation value of the operator ĉs(ωs)ĉi(ωi ) in this state, we get

〈ψ |ĉs(ωs)ĉi(ωi )|ψ〉 = C0S(ωs, ωi ). (30)

This gives the complex joint spectral amplitude correct up to a
normalization constant. Therefore, in the Heisenberg picture,
the expectation should give the same result. We can evaluate
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FIG. 3. Joint spectral intensity |S(ωs, ωi )|2 normalized to
|S(0, 0)|2 for f (t ) = G cos(�t ) with parameters �/γt and G/� equal
to (a) 0.5 and 0.5, and (b) 4.0 and 0.5.

S(ωs, ωi ) using Eqs. (25)–(27) to obtain

S(ωs, ωi )

∝ 2πγe

∞∑
j,k,l=−∞

Aj,k,l (ωi )a
′
p[ωs + ωi − ( j−k−l )�]

γt/2 + i(ωs + l�)

− 2πγtγe

∞∑
j.k.l.m.n−∞

Bj,k (ωs)Al,m,n(ωi )

× a′
p[ωs + ωi − ( j − k + l − m − n)�]

γt/2 + i[ωs − ( j − k − n)�]
. (31)

Just like the spectrum for the signal mode, the joint spectrum
also has Lorentzians shifted by integer multiples of the mod-
ulation frequency �. Figure 3 plots the joint spectral intensity
given by |S(ωs, ωi )|2 for σ/γt = 0.1 for both the unresolved-
and resolved-sideband regimes. There are two distinct phe-
nomena caused by the modulated cavity boundaries that lead
to the joint spectrum of the form in Eq. (31). First, the
pump becomes phase modulated and each of its sidebands
can generate photon pairs. This leads to the narrowly spaced
spectral lines in Fig. 3(a) in the adiabatic regime. This result
is similar to the generation of photon pairs in a static cavity
with a phase-modulated pump. Second, the scattering of the
generated photons into sidebands themselves contributes to
the energy in these shifted spectral lines. Both of these phe-

nomena are at work and can interfere. For instance, a photon
pair located at the first sideband, ωs/� = 1, ωi/� = 0, can
get here by being generated at ωs/� = 0, ωi/� = 0 and then
the signal scatters into this sideband, or both the photons can
be directly generated here from a pump sideband shifted by an
amount � from the pump center frequency. These interference
effects can allow changing the strength of the generated
sidebands and are discussed in Sec. III C. This also sheds
light on the appearance of photons at energies away from
the diagonal line (ωs + ωi = 0) on the signal-idler frequency
plain, a feature not available in photon pair generation in static
environments.

C. Higher dimensionality and random walks

The results shown in Fig. 3(b) motivate us to write the
S(ωs, ωi ) as a coherent sum of the joint spectra of static
cavities shifted in frequency as

|ψ〉 =
∑
x,y

Cx,y

∫∫
dωsdωiS0(ωs + x�,ωi + y�)|ωs〉|ωi〉,

(32)

where we have ignored the vacuum contribution and S0(ωs +
x�,ωi + y�) is the joint spectral amplitude of the sys-
tem when the modulation signal is turned off centered at
(−x�,−y�). This is a discrete higher-dimensional two-party
state in frequency of the form

|ψ〉 =
∑
x,y

Cx,y|x, y〉, (33)

where

|x, y〉 =
∫∫

dωsdωiS0(ωs + x�,ωi + y�)|ωs〉|ωi〉. (34)

The coefficients of the state are given by Cx,y = 〈x, y|ψ〉. Fig-
ure 4 plots the modulus squared of these coefficients numer-
ically calculated for N = 3 in the resolved-sideband regime.
We have set �/γt = 10 to ensure that the basis states of |ψ〉
have no overlap. By setting N = 3, there are six parameters
(G1, G2, G3, φ1, φ2, φ3) that can be adjusted, making the state
tunable. Therefore, frequency domain control of the quantum
state can be turned into a parameter optimization problem. As
an example, we have optimized several states. For instance,
Fig. 4(c) shows a near-equal superposition for 25 basis states
closest to the center. Figure 4(d) shows that at certain values
of these parameters, the system resembles a frequency-shifted
version of an unmodulated biphoton source. Therefore, this
system can be used as a tunable two-mode frequency shifter
useful in spectroscopy with squeezed states [28]. The abil-
ity to tune these coefficients is due to inteferences between
multiple pathways that can lead up to a particular frequency
bin for the two photons. Figure 5(a) shows these pathways
for N = 3. We can imagine each frequency bin as a node on
a two-dimensional lattice formed by the frequencies of the
two photons. The number of modulation signals applied to
the resonator determines the connectivity between the nodes.
For N = 1, the lattice only has nearest-neighbor connec-
tivity, shown as blue arrows in Fig. 5(a), and the higher
harmonics of the modulation signal create connections with
distant neighbors. This creates a large number of paths with
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FIG. 4. Quantum state coefficients |Cx,y|2 with N = 3 for various values of the six parameters G1, G2, G3, φ1, φ2, and φ3 given in Table I.

adjustable amplitudes and phases, giving control over the re-
sulting interference. During their lifetime inside the cavity, the
generated photons can scatter between these nodes. Therefore,
this system closely resembles a quantum random walk of an
entangled state in a photonic lattice [29–32]. These interfer-
ence effects can generate walks with large asymmetric spread
[Fig. 4(h)] that mimic a disordered medium, directional spread
[Fig. 4(g)], or highly localized wave functions [Fig. 4(d)]
even with large amplitudes (see Table I for the corresponding
modulation amplitudes and phases). In order to characterize
the spread of the random walk for each harmonic, we can

TABLE I. Modulation parameters for Fig. 4.

Figure 4 G1/� G2/� G3/� φ1/π φ2/π φ3/π

(a) 0 0 0 0 0 0
(b) 1.1 0 1.3 1.0 0 0
(c) 1.658 0 2.04 0.703 0.921 1.137
(d) 2.0 1.811 1.757 0.287 0.671 1.0
(e) 1.952 0 2.233 0 0 1.0
(f) 0 2.85 0 0 0 0
(g) 1.36 0.85 0.85 0 0 0
(h) 0.632 2.5 3.5 0.267 0.17 1.0

calculate the variance of the output wave function given as

σ 2
n =

∑
x,y d2

n (x, y)|Cx,y|2∑
x,y |Cx,y|2 , (35)

where dn(x, y) =
√

(x/n)2 + (y/n)2 is the distance of each bin
from the center normalized such that adjacent bins connected
by the nth harmonic of the modulation signal are separated by
a distance of 1 in each axis and the state coefficients Cx,y are
calculated by setting all the other harmonics to zero. The re-
sults are plotted in Fig. 5(b) for the first three harmonics. The
plots show quadratic scaling and the variance decrease for a
fixed modulation amplitude as we move to higher harmonics.
This is also evident from the solution of the optical field inside
the cavity in Sec. II A, where we show that the strength of the
sidebands scale as the nth-order Bessel function of Gn/n�,
making the sidebands smaller as n increases. The tunneling
rates of the photons between adjacent bins for each harmonic
are determined by the corresponding modulation amplitude
Gn (see the Appendix for details) and provide control of the
random walk, a feature of frequency domain random walks
that sets them apart from other photonic implementations.

Another feature of this system is that the interference path-
ways are not just scattering events of photons in an otherwise
passive lattice, but rather the photon creation process itself
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FIG. 5. (a) Illustration of interference pathways of the generated
photons for the first three harmonics of the modulation signal. Each
path has an amplitude Gn and phase φn (n = 1, 2, 3). (b) Variance
of the biphoton wave function for each harmonic as the function of
the modulation amplitude, while the other two amplitudes are set to
zero.

is distributed in the lattice due to the sidebands of the pump
which can generate photons away from the central lattice site
(x, y = 0). Therefore, the photonic lattice is an active grid of
parametric photon pair sources, locally generating entangled
photons with SPDC with controllable strengths and phases
and scattering them to other sites with the modulation signal.
Since the modulation to the biphoton spectrum is symmetric,
the state at the output is separable. However, it is important
to note that this separability is only in the discrete frequency
space and a continuous-variable entanglement is still present
within the frequency bins due to the generation process. It is
interesting to think about these correlations within the bins as
another set of dimensions to the lattice. In lattices constructed
by cavity modes, the detuning of the modulation signal from
the center of the optical resonance can be used to create more
dimensions [33]. This system naturally gives a continuum of
dimensions to explore complex lattice structures, a topic for
future communications.

D. Hyperentanglement with chirped photons

Like the resolved-sideband regime, the adiabatic regime
can also generate complex quantum states of light. If we set
� � γt , then the cavity resonances slowly oscillate back and
forth in time. However, since the photon lifetime is much
smaller than the modulation period, the spectrum of the emit-
ted photons is time tagged. We can then use a tunable pulsed
laser source in a standard time-bin entanglement scheme
[34] with the laser locked to the pump center frequency. By

choosing the arrival time and number of pump pulses, we can
create states of the form

|�〉 = |ω1, t1〉s|ω1, t1〉i + |ω2, t2〉s|ω2, t2〉i

+ |ω3, t3〉s|ω3, t3〉i. (36)

Figure 6(a) shows the time and frequency bins associated
with this state. These states are hyperentangled in discrete
time and frequency bins. States like these can be turned
into a higher-dimensional cluster state [23] for measurement-
based quantum computation [24] where the two degrees of
freedoms (time and frequency) are treated as independent
parties to a cluster state. It is important to note that increasing
the dimensionality will require large modulation amplitudes,
which have been achieved in many materials [27,35], and a
frequency-modulated laser locked to the center of the moving
pump resonance. Given a 1 ns average photon lifetime of typ-
ical microcavities, a delay of the order of tens of nanoseconds
between pump pulses would be enough to generate this state
without any overlap between time and frequency bins and loss
of fidelity. We can also envision a continuous-variable analog
of this system with a pump pulse of an arbitrary shape, as
shown in Fig. 6(b). The corresponding entangled state will be
of the form

|�〉 = P(t )
∫∫

dωsdωiS(ωs + αt, ωi + αt )|ωs〉|ωi〉, (37)

where P(t ) is a time-dependent scaling factor determined by
the shape of the pump pulse and α is the slope of the linear
region of the resonance motion in time, as shown in Fig. 6(b).
The generated photons in this case are chirped. The shape of
the optical pulse inside the cavity will match the input pulse
shape as long as the amplitude variations are slow, which we
have already assumed by setting � � γt .

IV. DISCUSSION AND CONCLUSION

Complex quantum states such as entanglement in many di-
mensions or between different degrees of freedom or particles
have been shown to be a potent tool for quantum technolo-
gies [19,36,37]. For instance, higher-dimensional entangled
states have been demonstrated to reduce the complexity of
computation and increase the density of encoding [23,38].
These states, in principle, allow the computation of problems
or simulation of systems that are cumbersome, or otherwise
intractable, with current technologies. However, the realiza-
tion of these schemes is a daunting task due to the inherent
complexity of large quantum states and often necessitates the
use of complex optical circuits or multiplexing many sources
of quantum light.

Our analysis has shown that complex higher-dimensional
and hyperentangled states can be constructed by parametric
interactions inside a dynamically modulated cavity and are
easily implementable on a chip. The properties of these com-
plex states can be controlled within the photon-generation
process. We have further shown that the generated higher-
dimensional state has features of quantum random walks, a
phenomenon useful in quantum simulation and information
processing. We have calculated different instances of the
modulation signal that lead to localization and delocalization
of the walk. This system can also be used as a tunable
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FIG. 6. Proposal for the generation of time-frequency hyper-
entanglement in (a) discrete and (b) continuous-variable regimes.
The gray sinusoidal curves track the motion of the signal or idler
resonances in time, and blue regions on the curves point out the
position of the photon pairs on the time-frequency plain generated
by pump pulses shown in green.

quantum frequency shifter for applications in spectroscopy
with squeezed light [28] when the wave function is localized
and the frequency of the localization can be adjusted by the
modulation signal’s base frequency �. This also makes the
system appealing as a heralded single-photon source with an
adjustable frequency as it does not need quantum frequency
conversion protocols to bridge bandwidth gaps between dif-
ferent optical systems when the frequency differences are
small. In the case of electro-optic modulation, the achievable
frequency difference is limited only by the electronics.

On a fundamental note, we have investigated the emission
of nonclassical light in a dynamic environment and stud-
ied how the emission process is subsequently modified. We
envision that systems similar to the one presented in this
article will prove to be of interest in quantum simulation and
information processing in the time-frequency domain.
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APPENDIX: TUNNELING RATES OF PHOTONS
BETWEEN ADJACENT BINS

In this Appendix, we will show the equivalence of this
system to a traditional system of many coupled modes that
is used for photonic random walks. This will directly give the
coupling rates between adjacent frequency bins.

Starting with a modified form of Eq. (9), ignoring the
external coupling and loss for simplicity, and using f (t ) =
Gm cos(m�t + φm), we get

da

dt
= iGm cos(m�t + φm)a, (A1)

where mode a is in a frame rotating with its center frequency.
Plugging a Floquet solution of the form a = ∑

n ane−in�t ,
Eq. (A1) becomes

∑
n

{
dan

dt
− in�an

}
e−in�t

= iGm cos(m�t + φm)
∑

n

ane−in�t

= i
Gm

2

∑
n

{ane−i[(n−m)�t−φm] + ane−i[(n+m)�t+φm]}. (A2)

Redefining the indices of the sums on the right-hand side of
Eq. (A2), we get

∑
n

{
dan

dt
− in�an

}
e−in�t

= i
Gm

2

∑
n

{eiφm an+m + e−iφm an−m}e−in�t . (A3)

Comparing the terms proportional to the nth harmonic of the
modulation frequency, we get

dan

dt
= in�an + i

Gm

2
{eiφm an+m + e−iφm an−m}. (A4)

Equation (A4) represent a system of coupled modes with a
coupling or tunneling strength Gm/2. Taking an analogy to
the traditional coupled waveguide systems used for random
walks, the nth harmonic of the modulation frequency acts
as an effective propagation constant mismatch, while the
modulation amplitude of the harmonic that connects adjacent
frequency bins represents the strength of the mode overlap
between adjacent waveguides.
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