
PHYSICAL REVIEW A 100, 043809 (2019)

Feedforward-assisted coherent-state comparison amplifier
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Quantum optical coherent-state comparison amplifiers are nondeterministic devices which can amplify rather
noiselessly a weak coherent state with an unknown phase from a finite discrete set. The high fidelity and high
success probability of this amplifier are accomplished by a comparison stage and some photon subtraction stages.
Due to the heralding nature of these amplifiers, they work part of the time. Here, we propose a feedforward
protocol to increase the heralded times by correcting the incorrect guess. Hence, we enhance the fidelity
and success probability more. Finally, the schematic experimental configuration of the feedforward-assisted
coherent-state comparison amplifier is proposed.
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I. INTRODUCTION

Amplifiers have made progress significantly after the in-
vention of the maser in the 1950s and now they are used as one
of the essentials in optical fiber communications. Classical
signals such as the amplitude of electrical voltages can be
increased rather arbitrarily whereas their signal-to-noise ratios
(SNRs) are kept high. However, quantum mechanics laws
prevent amplifying a quantum signal without decreasing its
SNR. These quantum signals may be a coherent state which
leads to the minimum uncertainty (shot noise) in electromag-
netic quadratures [1]. In deterministically amplifying quan-
tum signals, an additional noise is introduced which gives rise
to the SNR reduction [2–4]. There is a connection between
the introduced additional noise by quantum amplifiers and
the no-cloning theorem [5]. In fact, based on quantum me-
chanics principles it is impossible to reduce deterministically
the indistinguishability of two nonorthogonal states during
amplification [6].

Apart from the importance of studying the amplification of
a quantum signal from a quantum mechanics foundation view-
point [2,7], the appearance of quantum computers urges us to
utilize unconditional secure quantum communications which
apply quantum amplifiers in long-distance communications
[8,9]. So there is a high demand for amplification of a quantum
signal such as in coherent states which are routinely employed
in current quantum optical communication protocols [10,11]
without introducing any additional noise. The noteworthy
question is whether it is possible.

Generally, amplifiers can be characterized into two main
groups: deterministic and nondeterministic amplifiers. Al-
though any deterministic amplification leads to introducing
an undesirable additional noise, nondeterministic amplifiers
can circumvent this fundamental noise limit. The nondeter-
ministic amplification can amplify a quantum signal perfectly
by compromising the number of times that the output is
successfully amplified. For example, an ideal deterministic
phase-preserving linear amplifier launches at least an extra
vacuum noise unit [7] whereas a nondeterministic noiseless
linear amplifier (NLA) works partly yet perfectly [6,12]. The

performance of hybridization of probabilistic and determinis-
tic amplifiers has also been investigated [13,14].

The best practical NLAs are those that work without the
need for any quantum resources and they can be implemented
with linear optical devices. The quantum state comparison
amplifiers (SCAMPs) are those which satisfy both aforemen-
tioned conditions [15,16]. Since in quantum optical commu-
nications such as quantum key distribution (QKD) protocols
weak coherent pulses are mainly recruited for encoding in-
formation, SCAMPs are applicable in the implementation of
these protocols. The SCAMP performs based on two main
stages: state comparison and photon subtraction stages. In the
former an unknown weak coherent pulse is compared to a
guess via a beam splitter [17]. The destructive interference
in one of the outputs of the beam splitter is determined by
no photon detection in this stage. In the latter, another beam
splitter will verify the quality of the final amplified output
if any photon detection occurs in the reflected branch of the
second beam splitter. So those outputs which are related to
no-click and click situations of the detectors of the first and
second beam splitters, respectively, are postselected. The cor-
responding probability of this situation is called the success
probability. When the unknown weak signals come from a
finite set, nonzero success probability can be achieved even
for the amplified output with high fidelity [6]. Reference [16]
showed that increasing the number of the photon subtraction
stage enhances the amplified output fidelity as well.

In this paper, we enhance the success probability of the
SCAMP by utilizing a feedforward mechanism. Since today’s
commercial single-photon detectors have a very low dark
count, any photon detection in a comparison stage can be
attributed to a wrong guess. Therefore, one can compare
a next possible guess from the finite signal set with the
output of the previous comparison stage again. This scheme
needs a feedforward protocol which modifies the input of
the next photon subtraction stage according to the next guess
provided the previous detectors would have clicked. Thus
this stage transforms to another comparison stage with a
new guess. We show that this procedure leads to boosting
both success probability and the fidelity of the SCAMP. The
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theoretical analysis and possibility of practical realization of
our proposed feedforward scheme for a binary set and a set
with N elements of unknown signals (a general case) are
vigorously studied. A similar idea based on the feedforward
state correction was proposed in Ref. [18]. However, they did
not utilize photon subtraction in their feedforward scheme and
they only considered a binary set amplification with a different
strategy compared to our study.

This paper is organized as follows: In Sec. II, the idea of the
feedforward mechanism is explained and it is studied for am-
plifying a signal coming from a binary set. The feedforward-
assisted signal amplification from a set with cardinality N is
generalized in Sec. III. Moreover, a practical feasible scheme
for implementation of the feedforward-assisted amplifier is
presented. Finally, the paper is concluded in Sec. IV.

II. FEEDFORWARD-ASSISTED METHOD

The SCAMPs are mainly based on comparing a weak
coherent signal and a guess of the signal through their interfer-
ence on a beam splitter, which is called the state comparison
(SC) stage. One of the outputs of the beam splitter is a
heralding branch which indicates whether the guess can be
correct. No photon detection in this branch leads to a positive
heralding result. The other output can be an amplified signal
provided the heralding response is positive.

What can be concluded if the heralding response is nega-
tive? Considering a detector with no dark count, any photon
detection in the heralded branch gives rise to the conclusion
that the first guess was incorrect. Our feedforward-assisted
SCAMPs are chiefly based on using a second guess for such
cases and comparing it with the output result of the first
comparison stage via another beam splitter.

In any ordinary SCAMPs there is another stage which
increases the quality of the output. It is an important stage
since a no-click on the SC detector is not a necessary con-
sequence of the destructive interference between the correct
guess and the signal. Loss, non-unite detector efficiency, and
vacuum distribution in any coherent state can lead to no
photon detection. This stage is called the photon subtraction
(PS) stage which includes another beam splitter and a detector.
Any detection in this detector can be a signature that the initial
guess is more likely to be correct. Increasing the number
of such stages enhances the fidelity of the amplified output.
In our proposed feedforward-assisted SCAMP scheme, PS
stages can be transformed to another SC stage based on the
results of former detectors.

As a consequence, any feedforward-assisted SCAMP com-
prises a subsequence of beam splitters. One of the outputs of
each beam splitter is terminated to a detector. Inputs of the
first beam splitter are the weak coherent signal and the first
guess. One of the inputs of the other beam splitters is always
the output of the previous beam splitter. Based on the results of
the previous detectors, the second input of each beam splitter
is fed forward by the next new guess or a vacuum state.

For better clarification, in this section we explain the
feedforward-assisted SCAMP where the weak coherent sig-
nals are chosen from a known binary set, i.e., {|α〉, | − α〉},
which is practical in some quantum communication protocols.

FIG. 1. The schematic configuration of the feedforward-assisted
SCAMP for the binary set of signals. BSi is the ith beam splitter.
Di is the ith detector. EOB is an electro-optical box which justifies
proper amplitude and phase of the beam splitter input based on the
D1 result. LO is the preshared local oscillator between the transmitter
and receiver. DL stands for a delay line. The thin red line is an
electrical wire. The thick black lines are optical fibers.

QKD protocols can be implemented by weak coherent
pulses where information is encoded in their relative phases
[10]. For instance, in the B92 QKD protocol [19], a trans-
mitter chooses randomly a quantum state from a binary set
{|α′〉, | − α′〉} where a classical bit 1(0) is encoded in the
coherent state |α′〉(| − α′〉). Then this quantum state is sent
to the receivers. Due to the loss in quantum channels such
as optical fibers, the amplitude of the signal decreases to
α = α′ exp (−a), where a is the measurable loss between the
receiver and transmitter. Therefore, the receiver is aware that
the received signal is randomly chosen from the binary set
{|α〉, | − α〉}. Now, the receiver as a trusted node asks to
amplify this weak coherent signal with unknown phase via
our feedforward-assisted SCAMP scheme.

Figure 1 illustrates our proposed feedforward-assisted
SCAMP. As it is shown in Fig. 1, the amplifier contains two
beam splitters which are indicated by BS1 and BS2. Each beam
splitter is respectively related to the SC and PS stages. A
possible result of corresponding detectors can be (D1, D2) ∈
{(0, 1), (1, 0), (1, 1), (0, 0)}. In an ordinary SCAMP just the
result (0,1) is postselected and others are removed. The feed-
forward mechanism enhances the performance of the ampli-
fier by keeping the detector results {(1, 0), (1, 1)}. Assuming
no dark count on detector D1, if in the SC stage there is a
detection, it is concluded that the first guess (|β̃〉) was incor-
rect. Since the unknown signals (|α̃〉) are selected completely
randomly from the binary set, the transmitter’s strategy for
choosing the first guess is preparing a coherent state with a
proper proportion of the signal intensity, i.e., | t1

r1
α|2, while its

phase is randomly adjusted to one of the binary set states. For
instance, the coherent state | t1

r1
α〉 is chosen as the first guess,

where ti (ri) is the transmission (reflection) coefficient of BSi.
It is assumed that all beam splitters introduce a π phase to
all reflected beams towards detectors. Therefore, the prepared
coherent state | t1

r1
α〉 guarantees a destructive interference in

the position of D1 provided the guess is correct. On the other
hand, when D1 fires, it is concluded that the guess was wrong
so the unknown signal state will be the second choice of the
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binary set. In our choice for the first guess (| t1
r1

α〉), when D1 =
1 the signal will be | − α〉. Since the demand is for the same
output gain for all cases, the next stage for the case D1 = 1
will be changed to the stage in which the amplified output
is adjusted to a desired one. We call this stage the neutral
stage. By inserting another proper input into BS2 which is
indicated by |γ̃ 〉 (see Fig. 1), the desired amplified output can
be produced. The desired amplified output is | t2

r1
α̃〉 which is

a perfect amplified output for the case D1 = 0 and D2 = 1 in
an ordinary SCAMP. So the value of γ̃ depends on the D1

results. Note that all variables which are governed by specific
distributions are indicated by the tilde symbol.

In a nutshell, the overall amplifier has three inputs: the
first guess |β̃〉, the unknown signal |α̃〉, and the state which
is modified based on the D1 results, |γ̃ 〉. Accordingly, the
outputs of the two subsequent stages are respectively |t1β̃ +
r1α̃〉 and |t2(t1β̃ + r1α̃) + r2γ̃ 〉. Whenever the first detector
results in D1 = 0, the variable γ̃ is shown by γ0 and it
must be zero, which means the related input of the BS2 is a
vacuum state. So this stage becomes the PS stage in which
the detector result related to D2 = 1 is only postselected. On
the other hand, if D1 = 1, γ̃ = γ1 is determined such that
the final output becomes | t2

r1
α̃〉. Therefore, this stage becomes

the neutral stage. If the first guess is adjusted by β̃ = t1
r1

α,
whenever D1 = 1, the signal must have been | − α〉. Hence,
by inserting |γ1〉 = | − xα〉 where x = t2(t2

1 + t2
1 )/(r1r2) as

the input of the BS2, the desired amplified output | − t2
r1

α〉 is
achieved. The related probability distributions of inputs |α̃〉,
|β̃〉, and |γ̃ 〉 are written respectively as

P(α̃) = 1

2
{δ2(α̃ − α) + δ2(α̃ + α)},

Q(β̃ ) = 1

2
{δ2(β̃ − β ) + δ2(β̃ + β )}, β = t1

r1
α, (1)

�0(γ̃ ) = δ2(γ̃ ), �1(γ̃ ) = δ2(γ̃ − γ1),

where δ2(x) is a two-dimensional Dirac delta function, P(α̃)
is the probability distribution of signals which are indicated
randomly from the binary set {|α〉, | − α〉} by the transmitter,
and Q(β̃ ) is the probability distribution of guesses which are
chosen randomly from the binary set {|β〉, | − β〉} by the re-
ceiver. The probability distribution �D1 is specified according
to the result of the first detector by the transmitter.

The probability that detectors resulting in (D1, D2) con-
ditioning the inputs are coherent states |α̃〉, |β̃〉, and |γ̃ 〉
is indicated by P (D1, D2|α̃, β̃, γ̃ ). Since in the postselec-
tion the situation where two detectors are off is discarded,
P(0, 0|α̃, β̃, γ̃ ) = 0. If ηi is the efficiency of the ith de-
tector, the probability of any photon detection (no photon
detection) in the detector with coherent input |ci〉 is deter-
mined in line with p(Di = 1|ci ) = 1 − exp (ηi|ci|2) [p(Di =
0|ci ) = exp (ηi|c|2)] [20]. Therefore, P (D1, D2|α̃, β̃, γ̃ ) =
p(D1|c1)p(D2|c2), where ci is a function of α̃, β̃, and γ̃ . As
a result, the total success probability given the case (0,0) is
removed in the postselection can be written in the following
form:

PS (|α|) =
∑

D1,D2

∫∫∫
d2α̃d2β̃d2γ̃

× P(α̃)Q(β̃ )�D1 (γ̃ )P (D1, D2|α̃, β̃, γ̃ ). (2)

The addition of the cases (1,0) and (1,1) is the direct signature
of the success probability enhancement of the feedforward
scheme. The fidelity of the output of the final beam splitter
for any specific variables α̃, β̃, and γ̃ relative to the desired
amplified state | t2

t1
α̃〉 is called the fidelity test. Since the fidelity

test depends on the value of D1, it is indicated by TD1 and
accordingly is defined by

T0 =
∣∣∣∣〈t2(t1β̃ + r1α̃)

∣∣∣∣ t2
r1

α̃

〉∣∣∣∣
2

,

T1 = 1. (3)

T1 = 1 due to the fact that in the binary set space of signals
the second guess reveals the unknown signal. Hence, the
amplifier performs perfectly for this situation. Indeed TD1 is
the probability that the output state collapses to the desired
amplified state, i.e., | t2

r1
α̃〉. It is clear that the fidelity test is a

function of α̃, β̃, and γ̃ . To avoid cluttering, these parameters
are removed. As a result the overall fidelity of the amplifier
corresponding to the output passing the fidelity test provided
the results of the detectors are acceptable in the postselection
is defined by

F (T |S; |α|) = P(S, T ; |α|)
PS (|α|) ,

P(S, T ; |α|) =
∑

D1,D2

∫∫∫
d2α̃d2β̃d2γ̃ (4)

× P(α̃)Q(β̃ )�D1 (γ̃ )P (D1, D2|α̃, β̃, γ̃ )TD1 ,

where P(S, T ; |α|) is the probability that the system passes
the fidelity test in addition to the setup operating successfully.
The successful operation is related to the acceptable heralding
situation of the feedforward-assisted amplifier. Demanding
higher fidelity for the case (0,1), another photon subtraction
stage can be added to the amplifier [16]. On the one hand, any
detection in the second PS stage can be a signature that the
higher input intensity must have gone through the third beam
splitter (blurred beam splitter shown in Fig. 1). Therefore, no
photon detection in the SC stage is more probable to be related
to the destructive interference of the guess and signal. Hence,
the guess is more likely to be the correct one. On the other
hand, adding beam splitters with transmission coefficients less
than 1 leads to a decrease of the output gain. As a result,
there is a trade-off between increasing the gain and fidelity.
It is obvious that when the heralding conditions grow, with
increasing PS stages, the success probability decreases.

When the signal comes from a set with three possible
states, this third beam splitter can lead to the enhancement
of the success probability and the fidelity through correcting
all wrong guesses in the previous stages via the feedforward
mechanism compared to the ordinary SCAMP with two PS
stages. Please note that in this paper we focus on utilizing
a different number of PS stages in favor of increasing the
number of possible unknown signals which can be better am-
plified according to the feedforward mechanism compared to
the ordinary counterpart. More explanation of the generalized
feedforward-assisted SCAMP is presented in Sec. III.
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III. GENERALIZED FEEDFORWARD MECHANISM

As mentioned before, any SCAMP has two kinds of sub-
sequent modular stages: a state comparison (SC) stage and
multiple photon subtraction (PS) stages. Each stage interferes
two coherent-state inputs on a beam splitter and they result in
two outputs. One of the outputs impinges on a detector as a
heralding result and the other is supposed to be an amplified
output of an unknown signal. There is a trade-off between
increasing the fidelity and decreasing the gain of the output by
increasing the number of PS stages. However, these stages can
be utilized to correct the incorrect initial guess state occurring
in the SC stage through a feedforward procedure, which is the
goal of this paper.

Our suggested feedforward strategy alters some of the PS
stages to the SC stage based on the results of the detectors.
As illustrated in Ref. [16], in the SCAMP without the feedfor-
ward mechanism, the SC stage inputs comprise an unknown
signal and a guessed state, whereas in the PS stage, the output
of previous stages and a vacuum state are inputs. Furthermore,
in the SC stage there must exist no click in its related detector
while in the PS stages their related detectors must click;
accordingly the final output is postselected. The proposed
feedforward mechanism starts playing its role whenever there
is a detection in the SC stage. Assuming detectors have no
dark count, the three following modifications must occur in
the subsequent stages of the original SCAMP after firing in
the SC detector:

First, the stage after this stage changes to the other SC
stage. This new SC stage compares the unknown output of the
previous stage, which is a combination of the unknown signal
and all previous guessed states, with a new guess.

Second, since this stage is transformed to the SC stage, one
of its inputs that used to be fed by a vacuum state must be
modified appropriately according to the next possible guessed
state. The proper input for this level is chosen such that, if the
next guessed state is correct, the detector of this stage never
clicks.

Third, whenever any PS stage transforms to the SC stage
due to the feedforward mechanism, the last PS stage must
provide the same amplified output as the other cases. It
happens by replacing its vacuum input with the coherent state
prepared properly based on all the previous guesses. So, the
detection results of the last PS stage become inconclusive. We
call this stage the neutral stage. In the postselection process
both possible results of the final detector (DN ∈ {0, 1}) are
kept.

The quality of the fidelity is examined again by the fol-
lowing PS stages after any new SC stage. In the following
sections, respectively, first the methodology of the general-
ized feedforward-assisted amplifier is investigated and then a
related experimental setup for such a system is proposed.

A. Methods

Similar to hitherto suggested SCAMPs, the feedforward-
assisted SCAMP performs effectively where weak signals
belong to a predetermined finite set [6]. So, in this paper it is
assumed that signals are weak coherent pulses from a finite set
with a known fixed amplitude (|α|) and their relative phases

FIG. 2. Schematic configuration of the generalized feedforward-
assisted SCAMP. Blue boxes indicated by EOB are a combination
of an amplitude and a phase modulator which modulate the local
oscillator based on the logical bits that arise by outputs of previous
detectors. The thin red lines are electrical wires and thick black lines
are optical fibers. DL stands for delay line.

are discretized based on a uniform distribution in the phase
spaces (the limited discrete-phase alphabet) as follows:

|αi〉 = ||α|eiφi〉 φi ∈ 
 =
{

0,
2π

N
, . . . ,

2π (N − 1)

N

}
, (5)

where N determines the number of possible signals. The
schematic configuration of the generalized feedforward-
assisted SCAMP is depicted in Fig. 2.

As shown in Fig. 2, the first stage is always the state
comparison stage with two inputs: a weak coherent unknown
signal |α̃〉 and a properly prepared first guessed state |β̃〉.
Considering signals uniformly selected from the predefined
set of Eq. (5), |α̃〉 and |β̃〉 have the following distributions:

P(α̃) = 1

N

N∑
i=1

δ2(α̃ − αi ),

Q(β̃ ) = 1

N

N∑
i=1

δ2(β̃ − βi ), βi = t1
r1

αi, (6)

where ti and ri are, respectively, the transmission and re-
flection coefficients of the ith beam splitter. Click and no
click on the detectors are indicated by 1 and 0, respectively.
Hence a sequence (D1, D2 . . . , DN ), where Di ∈ {0, 1}, spec-
ifies different scenarios for the feedforward mechanism. For
instance, (0, 1, 1, . . . , 1) (one zero and N − 1 ones) is the only
postselected result in the original SCAMP. As mentioned in
the first part of this section, in any comparison stage, if the
corresponding detector clicks, the next stage will transform
to a new comparison stage in which the next guessed state
compares to the output of the previous stage. Assuming
D1 = 1, therefore, the output of the first beam splitter (BS1)
|t1β̃ + r1α̃〉 must interfere with |γ̃1〉 in the next beam splitter
(BS2) such that if the second guess of the unknown signal
is correct, D2 = 0. Without loss of generality, we illustrate
the ith guessed state by |ᾱi〉. Note that the phase of ᾱi is
randomly chosen from the set 
 [see Eq. (5)]. As a result,
γ̃1 = r2

t2
(r1ᾱ2 + t1β̃ ), where β̃ = t1

r1
ᾱ1 and |ᾱ2〉 is the second

chosen guess. Since ᾱ2 �= ᾱ1, the phase difference (�φ
(1)
i )
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between variables ᾱ2 and ᾱ1 belongs to the set �
(1) with
cardinality N − 1, which is specified by

�φ
(1)
i ∈ �
(1) =

{
2π

N
,

4π

N
, . . . ,

2(N − 1)π

N

}
. (7)

Consequently, the related distribution of γ̃1 is

�
(1)
D1=1(γ̃1) = 1

N − 1

N−1∑
i=1

δ2
(
γ̃1 − γ i

1

)
,

γ i
1 = r2

t2
β̃

(
r2

1

t1
ei�φ

(1)
i + t1

)
. (8)

It is clear that if D1 = 0, �
(1)
D1=0(γ̃1) = δ2(γ̃1), which means

|γ̃1〉 = |0〉. In general, the distribution of γ̃i depends on all
the previous detector results. The next stages after this new
SC stage remain the PS stage whenever D2 = 0. Since it is
required to reach the same gain for all possible and acceptable
detector outcomes, |γ̃N−1〉, the upward input of the neutral
stage, the final beam splitter (see Fig. 2), must be prepared
such that the desired amplified output |(t2t3 · · · tN/r1)α̃〉 is
accomplished. In the case where D1 = 1, D2 = 0, and all the
other detectors except DN must fire [i.e., (1, 0, 1, . . . , 1, 0) or
(1, 0, 1, . . . , 1, 1)], γ̃N−1 is uniquely determined according to
ᾱ1 and ᾱ2 as follows:

�
(N−1)
1,0,1,...,1(γ̃N−1) = δ2(γ̃N−1 − γN−1),

γN−1 = 1

rN

[
tN · · · t2

r1
ᾱ2 − tN · · · t3

× (t2(t1β̃ + r1ᾱ2) + r2γ̃1)

]
,

ᾱ2 = 1

t1

(
t2
r2

γ̃1 − t1β̃

)
. (9)

In the neutral stage both click and no click of DN are counted
in the postselection. Please note that all the detectors after D2

except DN must fire since they are related to the PS stages.
If D1 = 1 and D2 = 1, the second guess has been also

incorrect provided there is no dark count. As a consequence,
the next stage will be another SC stage which contains the
third guess. Now, |γ̃2〉 must be prepared based on the third
guessed state ᾱ3 as well as the two previous guesses ᾱ1 and
ᾱ2 such that ᾱ1 �= ᾱ2 �= ᾱ3 and D3 = 0 if the third guess is
correct. The number of possibilities for ᾱ3 is N − 2. If φ̄1

and φ̄2 are respectively the corresponding phases of ᾱ1 and
ᾱ2, φ̄3 belongs to the set 
 − {φ̄1, φ̄2}. Hence, the probability
distribution of γ̃2 provided (D1 = 1, D2 = 1) is given by

�
(2)
D1=1D2=1(γ̃2) = 1

N − 2

N−2∑
j=1

δ2
(
γ̃2 − γ

j
2

)
, (10)

where

γ
j

2 = r3

t3

[
t2

(
t1β̃ + r1ᾱ

j
3

) + r2γ̃1
]
, (11)

γ̃1 is determined based on the probability distribution of

Eq. (8), ᾱ
j
3 = ᾱ1ei�φ

(2)
j , �φ

(2)
j = φ̄

j
3 − φ̄1, and φ̄

j
3 ∈ 
 −

{φ̄1, φ̄2} for every j. This process will continue in the same
manner. For example, as mentioned in Sec. II where N = 2,

FIG. 3. The (a) success probability and (b) fidelity of the
SCAMP with N = 3 versus intensity gain g2 = |t2t3/r1|2 with (with-
out) the feedforward mechanism indicated by solid (dashed) lines
for three different signal intensities |α|2 = 0.1, 0.5, 1, which are
depicted by red, green, and blue, respectively. In these curves, (0,1,1),
(1,0,1), (1,0,0), (1,1,0), and (1,1,1) are the results of the detectors
which are postselected. The efficiency of all detectors is assumed
ηi = 1/2 and transmission coefficients of the second and third beam
splitters are assumed to be fixed to 90%.

(D1, D2) can be (0,1), (1,0), (1,1), and (0,0). Our feedforward
procedure yields the output for the first three cases and only
(0,0) is discarded in the postselection. Moreover, in the case
(1,0) and (1,1), the output is the same as the desired one which
is | t2

r1
α̃〉. In general, it is straightforward to show that the feed-

forward mechanism applied in a SCAMP with N beam split-
ters saves detector results in the form of (11 · · · 1011 · · · 1x),
where x (the last beam splitter result) can be both 0 and 1.
The sign · · · stands for some replications of 1 before and after
the detector that has not fired. Hence, in addition to the case
(011 · · · 1), the number of 2(N − 1) results will be added to
the postselection of the feedforward-assisted SCAMP which
increases the success probability. However, some of these
cases can hurt the overall fidelity compared to the ordinary
SCAMP without the feedforward mechanism with one SC and
N − 1 PS stages. It is due to the fact that the feedforward-
assisted SCAMP for these cases is transformed to the ordinary
SCAMP with N − (n + 2) PS stages, where n is the number
of detectors that they have clicked before the detector with
no click. Figure 3 illustrates the fidelity reduction of our
feedforward strategy compared to the ordinary SCAMP for
the case N = 3 with two PS stages where we have kept the de-
tector results {(0, 1, 1), (1, 0, 1), (1, 0, 0), (1, 1, 0), (1, 1, 1)}
from all possible results corresponding to three detectors. The
cases (1, 0, 1) and (1, 0, 0) happen when the first guess is
wrong but the second guess has a chance to be correct. Since
for these cases the third stage is responsible for adjusting the
gain value to the desired one, i.e. g = t2t3/r1, this neutral stage
has no effect on the fidelity or success probability. As a result,
the amplifier for these cases behaves as if it is a SCAMP
without a PS stage for the unknown signal set with cardinality
2 which degrades the fidelity compared to the SCAMP with
PS stages.

Since the enhancement of the output fidelity is requested,
we omit cases which can be seen as the detector results of an
ordinary SCAMP with a reduced number of PS stages from
the postselection.

So in any generalized feedforward-assisted SCAMP only
two other detector results (11 · · · 10) (all detectors except the
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FIG. 4. The (a, c) success probability and (b, d) fidelity of the
SCAMP with (without) feedforward mechanism as functions of
intensity gain which are indicated by solid (dashed) lines for three
different signal intensities |α|2 = 0.1, 0.5, 1, which are depicted by
red, green, and blue, respectively: (a, b) binary set with intensity
gain g2 = |t2/r1|2; (c), (d) N = 3 with intensity gain g2 = |t2t3/r1|2
where only the detector results of (0,1,1), (1,1,0), and (1,1,1) are
postselected. The efficiency of all detectors is assumed ηi = 1/2 and
the transmission coefficients of the second and third beam splitters
are fixed to 90%.

last one fire) and (11 · · · 11) (all detectors fire) will be added to
the postselection, which leads to the correct guess and thus a
perfect amplification will occur. Nevertheless, these two cases
are enough to see a rather considerable enhancement in the
output fidelity (see Fig. 4).

All in all, the feedforward-assisted SCAMP has N +
1 inputs which are |β̃〉, |α̃〉, |γ̃1〉, . . . , |γ̃N−1〉. Their related
probability distributions of |γ̃i〉 depend on the outcomes of
the previous detectors. Therefore, one can write the success
probability of this system as

PS (|α|) =
∑

D1,...,DN

∫
· · ·

∫
d2ᾱd2β̄d2γ̄1 · · · d2γ̄N−1

× P(α̃)Q(β̃ )�1
D1

(γ̃1) · · · �N−1
D1···DN−1

(γ̃N−1)

× P(D1 · · · DN |β̃, α̃, γ̃1, . . . , γ̃N−1), (12)

where P(D1 · · · DN |β̃, α̃, γ̃1, . . . , γ̃N−1) is the probability that
the detector outcomes are (D1 · · · DN ) provided the inputs are
(β̃, α̃, γ̃1, . . . , γ̃N−1). It is important to note that the proba-
bilities corresponding to all the cases which have been thrown
away in the postselection must be set to zero in the summation
of Eq. (12). Since the fidelity of the output for specific values
of (β̃, α̃, γ̃1, . . . , γ̃N−1) is a function of detector outcomes
[i.e., TD1,...,DN (β̃, α̃, γ̃1, . . . , γ̃N−1)], the overall fidelity for all
possible cases given that the setup operates successfully is
written

F (T |S; |α|) = P(T, S; |α|)
PS (|α|) , (13)

FIG. 5. The (a, c) success probability and (b, d) fidelity of the
SCAMP with (without) feedforward mechanism as functions of
transmission coefficient t2

1 which are indicated by solid (dashed)
lines for the signal intensity |α|2 = 1: (a, b) binary set with the fixed
intensity gain g2 = |t2/r1|2 = 6; (c, d) N = 3 with the fixed intensity
gain g2 = |t2t3/r1|2 = 6 where only the detector results of (0,1,1),
(1,1,0), and (1,1,1) are postselected. The efficiency of all detectors
is assumed ηi = 1/2 and transmission coefficients of the third beam
splitters are fixed to 90%.

where

P(T, S; |α|) =
∑

D1,...,DN

∫
· · ·

∫
d2ᾱd2β̄d2γ̄1 · · · d2γ̄N−1

× P(α̃)Q(β̃ )�1
D1

(γ̃1) · · · �N−1
D1···DN−1

(γ̃N−1)

× P(D1 · · · DN |β̃, α̃, γ̃1, . . . , γ̃N−1)

× TD1,...,DN (β̃, α̃, γ̃1, . . . , γ̃N−1) (14)

is the probability that both the fidelity test TD1,...,DN is passed
and the setup successfully operates. The fidelity test can be
calculated by T = |〈tN · · · t2/r1α̃|output〉|2 where |output〉 is
the real final output of the SCAMP. For example, T11···11 =
T11···10 = 1 due to the fact that all N − 1 previous guesses
have been wrong so the unknown signal state is revealed and
the known state could be amplified without introducing any
noise. Figures 4(a) and 4(c) and Figs. 4(b) and 4(d) depict,
respectively, the enhanced performance of the feedforward
mechanism for the success probability and fidelity versus
the intensity gain g2 = ( t2···tN

r1
)2 for three different |α|2 =

0.1, 0.5, 1. Figures 4(a) and 4(b) and Figs. 4(c) and 4(d) are re-
spectively related to N = 2 and N = 3. Comparing Figs. 4(a)
and 4(b) with Figs. 4(c) and 4(d), it is important to note that
the feedforward mechanism enhances the performance of the
SCAMP for a fixed N whereas increasing N gives rise to
fidelity and success probability reductions akin to the ordinary
SCAMP. Figure 5 illustrates how increasing the transmission
coefficient of the first beam splitter given the intensity gain
is constant can change the fidelity and success probability for
both schemes N = 2 and N = 3, where g2 = 6 and |α|2 = 1.
As shown in Fig. 5 and as it would be predicted, the success
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FIG. 6. A proposed experimental realization of the feedforward-
assisted SCAMP. The thin red lines are related to electrical wires.
The thick black and green lines are optical fibers. DL, delay line; PM,
phase modulator; AM, amplitude modulator; LO, local oscillator;
RNG, random number generator; EOS, electro-optic switch; T-Att
models all kinds of attenuation between two sites. zi gives proper
electrical information to the AM and PM based on the randomly
chosen set U to prepare the set �̃. di orders the EOS to be on and
off based on the results of (D1, . . . , Di−1).

probability increases while fidelity decreases over t2
1 . If t1 =

1, r1 = 0. Therefore, the gain of intensity cannot remain 6 and
any result related to this situation is meaningless.

B. The proposed experimental setup

In this section we investigate the possibility of the ex-
perimental realization of the feedforward-assisted SCAMP.
Figure 6 depicts a schematic configuration of the experimental
setup where the signals are chosen from the set with cardi-
nality N . Since the information is encoded in the phase of
the coherent state, sharing a reference phase dubbed local
oscillator (LO) between a legitimate transmitter and receiver
is mandatory.

The transmitter generates a coherent state via a laser
source. A beam splitter provides the LO and the signal from
the laser source. By use of a phase modulator (PM) accom-
panied by a random number generator (RNG), the transmitter
prepares the signal with a random phase from the set 
 [see
Eq. (5)]. Since the indistinguishability of possible outputs
of the PM is crucial in the security of any QKD protocols,
the signal is attenuated and then it is sent to the other party
site, the receiver. The weak coherent signal and the strong
LO are transported to the receiver site through two optical
fibers. All kinds of losses including optical fiber loss are
modeled by an attenuator which is indicated by “T-Att.” in
Fig. 6.

As mentioned in the previous section the ordered set �̃ =
{|β̃〉, |γ̃1〉, . . . , |γ̃N−1〉} is determined by random guesses from
the ordered signal set S = {|α1〉, . . . , |αN 〉} and results of de-
tectors D = {D1, . . . , DN }. For the sake of simple implemen-
tation, we assume the receiver predetermines the subsequent
guesses needed for preparing |β̃〉 and |γ̃i〉 (called auxiliary

inputs) before receiving each signal. The predetermined or-
dered guess set is an arbitrary randomly chosen permutation
(P) of the signal set, i.e., U = PS = {u1, . . . , uN } where
ui ∈ S. A field-programmable gate array (FPGA) board can
provide different U through a RNG. It is important to note that
randomly selecting the guess set for each signal guarantees
that the final shared key between transmitter and receiver
contains a rather equal number of 0s and 1s. By considering
all different scenarios for the set D, all possible sets for �̃

are prepared according to the predetermined set U before re-
ceiving the signal. Each γ̃i is constructed by use of amplitude
and phase modulators as well as the shared LO. The distinct
scenarios for the set D are as follows:

(I) D(1) = {0, 1, 1, . . . , 1} where . . . stands for replication
of 1. In this case β̃ = t1/r1u1 and for all i = 1, . . . , N − 1,
γi = 0.

(II) D(2) = {1, 1, . . . , 0} or D(2) = {1, 1, . . . , 1}. This hap-
pens when all detectors except the last one must fire. In
these cases the system could recognize that all previous
N − 1 guesses have been wrong. Therefore, the last guess
uN is the same as the signal. Again β̃ = t1/r1u1 but each
|γ̃i〉 is a function of first i + 1 guesses (u1, . . . , ui+1) such
that a destructive inference would have occurred in the port
into the Di+1 if the guess ui+1 had been correct. For in-
stance, Eq. (8) defines the explicit form of γ̃1, where in-
dex i in this formula indicates a different permutation of
guesses.

From scenarios I and II, it is clear that for each permutation
of guesses there exist two possibilities for value of each
γ̃i. So, implanting an EOS performing based on the results
of the detectors (D1, . . . , Di) in the ith branch (stage) is
necessary.

(III) D(3) = {1, . . . , 1, 0, 1, . . . , 1} where there are x num-
ber of 1s before and y number of 1s after 0. These cases
are related to the situations when the feedforward mechanism
transforms the original SCAMP with N − 1 PS stages to the
one with y PS stages. Depending on the appearance position
of 0, it must be prepared with different γ̃N−1 which includes
N − 1 different values. Since these cases decrease the overall
fidelity of the feedforward-assisted SCAMP in comparison
with the original one, we dismiss these cases from the post-
selection [see Fig. 3(b)].

Both detectors and modulators have finite rates. Therefore,
a delay line must be placed between two stages [ith and
(i + 1)th] to keep the output of BSi as long as the feedforward
procedure decides and prepares a proper state for γ̃i. An
ordinary single photon detector such as ID210 from IDQ
company [21] can have an order of nanosecond response time.
Moreover, greater than gigahertz modulators are easily found
in any market. As a result with a rough estimation, the delay
line length is on the order of a centimeter. A high-speed FPGA
board can accelerate any electrical processing according to the
detector results.

It is noteworthy to mention that the setup with N beam
splitters can be also utilized for amplifying weak signals
randomly chosen from the set with cardinality less than N .
In this case, all the extra beam splitters play the role of the
photon subtraction stages which can be another way of fidelity
enhancement. This modification must be considered when the
FPGA board is being programmed.
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Since the dark count and photon detection due to the
nonvacuum state are independent events, the probability that
the detector in the ith SC stage, Di, fires while it has not
been due to the dark count is the multiplication of p(Di =
1) (probability that the ith detector without dark count, Di,
clicks) and 1 − pDark. As a result, the destructive effect of the
nonzero dark count rate can be included in our calculation
via multiplying each term of Eq. (12) or Eq. (14) which is
related to the photon detection in Di by 1 − pDark. For current
commercial single photon detectors such as IDQ210, the dark
count rate can be a few hertz for a repetition rate of 100 kHz
[21]. Therefore, the dark count probability pDark is on the
order of 10−5. Hence, we neglect this effect in our calculation.

IV. CONCLUSION

We improve the performance of the quantum coherent
state comparison amplifier (SCAMP) through the feedforward
mechanism. First, we have shown how the feedforward pro-
tocol can enhance the success probability and fidelity of the
SCAMP with practically important signals of a binary set. We
have shown our scheme can be easily generalized to any finite
number set of weak coherent signals. The enhancement of the
success probability and fidelity of the feedforward-assisted
SCAMP for two special cases N = 2 and N = 3 versus the
amplifier gain has been numerically illustrated and compared.
Finally, we have investigated a practical feasible scheme for
an implementation of the feedforward-assisted SCAMP.
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