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Non-Hermitian engineering for brighter broadband pseudothermal light
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We show that non-Hermitian engineering can play a positive role in quantum systems. This is in contrast to
the widely accepted notion that optical losses are a drawback that must be eliminated or, at least, minimized. We
take advantage of the interplay between nonlinear interactions and loss to show that spectral-loss engineering
can relax phase-matching conditions, enabling generation of broadband pseudothermal states at new frequencies.
This opens the door for utilizing the full potential of semiconductor materials that exhibit giant nonlinearities but
lack the necessary ingredients for achieving quasi-phase-matching. This in turn may pave the way for building
on-chip quantum light sources.
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I. INTRODUCTION

Recent developments in parity-time (PT) symmetric and
general non-Hermitian optics [1–9] continue to generate in-
triguing results at both the fundamental and engineering
levels. Importantly, these works are changing the widely
accepted notion that optical losses are a drawback that must
be eliminated or, at least, minimized. On the contrary, en-
gineering the interplay between loss and gain (or neutral
elements) was recently shown to lead to unexpected effects
such as loss-induced lasing, laser self-termination [10–13],
and unidirectional invisibility [14–16], to just mention a few
examples. For recent reviews, see [17,18].

Given this intense activity, it is perhaps surprising that
the exploration of non-Hermitian engineering in the quan-
tum regime has been relatively limited in scope, mainly
emphasizing the limitations imposed by quantum noise on
non-Hermitian systems [19–23]. In addition, it is also well
established that losses (and other forms of coupling to the
environment) in quantum systems are a main source of de-
coherence [24]. One can thus wonder if optical losses can be
useful at all in quantum engineering.

In this paper, we address this question in the context of
spontaneous generation of broadband pseudothermal states in
one output mode of a wave-mixing process [25–28]. Sponta-
neous photon generation is an inherently quantum-mechanical
process, and although thermal states are diagonal in the
photon-number and coherent-state bases, they can behave
nonclassically [29–35].

Our proposed scheme relies on the interplay between non-
linear interactions and loss (see Fig. 1). A pump beam is
incident on a nonlinear medium with second- or third-order
nonlinearity. Pump photons can then spontaneously convert
into a pair of signal and idler photons. When the system
is Hermitian, stringent phase-matching conditions must be
satisfied in order for this conversion to be efficient, which
poses serious limitations on building on-chip quantum light
sources based on wave-mixing processes. It is conceivable,

however, that by introducing optical losses to the idler com-
ponent, one can force an efficient irreversible down (up) con-
version, while at the same time relaxing the phase-matching
condition.

The intuition for this effect is as follows. In a phase-
matched material, the nonlinear interaction facilitates pair
creation in modes a and b, generating intense output in these
modes [Fig. 1(a)]. But away from phase-matching, oscillations
in the fields’ relative phases spawn two competing processes:
pair creation and recombination [Fig. 1(b)]. These competing
processes interfere, and thus negligible output is generated in
modes a and b. To first order, this undesirable interference
effect can be prevented by adding loss in, e.g., mode b of the
non-phase-matched material, which suppresses recombina-
tion (because if a photon in mode b is lost, it cannot recombine
with the photon in mode a) without disrupting pair creation,
which leads to enhanced output in mode a [Fig. 1(c)]. More
rigorously, one must consider the full dynamics of the system,
which reveals that increasing the losses beyond a certain
threshold value can indeed impede the generation process.
Thus, as we will show shortly, increasing the idler losses leads
to a competition between the generation and recombination
processes, and the ideal behavior occurs at an optimal loss
value.

While these ideas were recently proposed for building clas-
sical on-chip nonlinear light sources [36,37] and can be traced
back to loss-induced modulation instability in nonlinear fiber
optics [38], it is not a priori clear if similar concepts can
be applied successfully in the quantum regime due to the
effect of quantum noise. Here we demonstrate that even when
quantum fluctuations are relevant, non-Hermiticity can still
play a positive role.

II. FORMALISM

We start by considering the process of twin-beam gen-
eration, into modes a and b, due to spontaneous three- or
four-wave mixing (assuming a cw pump at frequency �).
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FIG. 1. (a) A phase-matched material facilitates pair creation
(internal arrows pointing out), generating intense output in modes a
and b. (b) Away from phase-matching, oscillations in the fields’ rel-
ative phases spawn two competing processes: pair creation (outward
arrows) and recombination (inward arrows), generating negligible
output in modes a and b. (c) Adding loss in mode a of a non-phase-
matched material suppresses recombination without disrupting pair
creation, generating enhanced output in mode b.

The evolution of the beams inside the nonlinear material is
governed by the momentum operator (see Appendix A, which
follows the treatment in Refs. [39–41]):

P = h̄
∫

dω[�ka(ω)a†(ω)a(ω) + �kb(ω)b†(ω)b(ω)]

+ h̄ξg(z)
∫

dω a†(ω)b†(� − ω) + H.c. (1)

The operator P generates translation along the longitudinal
axis z of the nonlinear medium, in analogy to how a Hamil-
tonian generates translation in time. The parameter ξ , which
depends on the peak material nonlinearity and the peak pump
amplitude, determines the strength of the interaction. The
field operators a(ω) and b(ω) annihilate photons at frequency
ω in modes a and b respectively, and satisfy the commu-
tation relations [a(ω), a†(ω′)] = [b(ω), b†(ω′)] = δ(ω − ω′).
The functions �k j (ω) determine the phase matching inside
the material (which amounts to satisfying momentum conser-
vation) and are defined in Appendix A. Finally, the function
g(z) is the normalized nonlinearity profile of the material
(which can be customized using nonlinearity shaping methods
[42–46]). Here, we take g(z) to be a rectangular function
�0,L(z) = 1 for 0 < z < L and �0,L(z) = 0 otherwise.

In the absence of optical loss, the state generated by the
operator P will be a spectrally entangled twin-beam state, i.e.,
a manifold of two-mode squeezed vacua (see Appendix B).
Despite using a cw pump, the spectrum of each individual
beam will be broad, as opposed to cw, with a bandwidth
that gets more narrow as the length of the nonlinear region
increases [47]. The reduced state of each beam will thus be a
broadband pseudothermal state.

We now assume that all the frequencies of mode b experi-
ence the same optical loss at a rate γb. This can be modeled

using the Lindblad master equation:

∂

∂z
ρ = − i

h̄
[ρ, P] + γb

∫
dω

(
b(ω)ρb†(ω)

− 1

2
{b†(ω)b(ω), ρ}

)
. (2)

Rather than solving for ρ directly, we use expressions for the
spectral densities na and nb in modes a and b, as well as the
cross correlation m between the two modes:

〈a†(ω)a(ω′)〉 = na(ω)δ(ω − ω′), (3a)

〈b†(� − ω)b(� − ω′)〉 = nb(ω)δ(ω − ω′), (3b)

〈a(ω)b(� − ω′)〉 = m(ω)δ(ω − ω′), (3c)

to obtain (see Appendix C)

dna(ω)

dz
= iξm(ω) − iξm∗(ω), (4a)

dnb(ω)

dz
= iξm(ω) − iξm∗(ω) − γbnb(ω), (4b)

dm(ω)

dz
= − i�k(ω)m(ω) − γb

2
m(ω)

− iξna(ω) − iξnb(ω) − iξ, (4c)

where �k(ω) = �ka(ω) + �kb(ω). Equations (3) reveal that,
despite having a broadband output, the frequencies within
each of the output modes are completely decorrelated. This
is a consequence of the fact that we assumed a cw, quasi-
monochromatic pump that enforces strict energy conservation
ω + ω′ = �. The dynamics of each frequency mode ω can
thus be treated independently, and are given by Eqs. (4).

A few other remarks about Eqs. (4) are in order. Although
the non-Hermitian parameter γb does not appear in Eq. (4a),
it affects the dynamics of na(ω) through the coupling of the
three different quantities in Eqs. (4). The set of coupled ODEs
retains the quantum features expressed by the Lindblad master
equation (2) through the last term in Eq. (4c) that arises due to
vacuum fluctuations and acts as a drive. Given the initial con-
dition na = nb = m = 0, the term −iξ will force m to acquire
nonzero values, which in turn will drive na and nb to finite val-
ues. This is in contrast to the classical counterpart of this pro-
cesses, in which classical vacuum (i.e., zero fields) are steady
state solutions of the nonlinear problem (see Appendix D).

We can gain intuition about the nature of the light gener-
ated by the above process by examining some properties of the
equations of motion. An important feature of Eqs. (4) is that
the second moments form a closed system, which indicates
that the quantum operators exhibit linear dynamics (this is a
consequence of treating the pump classically, and can be seen
from the Heisenberg equations of motion for the operators a
and b). As a result, a system prepared in a Gaussian state (i.e.,
a state described fully by first- and second-order moments)
remains Gaussian.

It is also interesting to consider the Heisenberg equations
of motion for 〈a(ω′)〉 and 〈b(ω′)〉. In Appendix E, we discuss
how the equations of 〈a(ω′)〉 and 〈b(ω′)〉 connect the current
work to recent activities in non-Hermitian physics. For our
purposes here, we note that the equations of motion for 〈a(ω′)〉
and 〈b(ω′)〉 do not have a noise term. Therefore, if the input
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state is a state with zero mean, the first-order moment remains
zero. Concretely, if the input state is a vacuum state, the gen-
erated light is necessarily described by a two-mode squeezed
vacuum state, and thus the reduced state of each mode is a
pseudothermal state—i.e., a state with an arbitrary spectrum
(not necessarily blackbody), but with thermal photon-number
statistics at each frequency [47].

Equations (4) also contain information about the correla-
tions between the two generated beams. Nonzero m implies
that the two beams are correlated. To quantify to which degree
these correlations are nonclassical, we need a measure of
quantum correlations such as the entanglement of formation
(EoF) [48]. The EoF quantifies the entanglement of a state in
terms of the entropy of entanglement [49] of the least entan-
gled pure state needed to prepare it; it is zero for separable
states, and increases with the amount of entanglement. There
is no known analytical expression for the EoF for the states
considered here (analytical expressions for the EoF exist only
for special cases). We thus compute it numerically using the
approach recently introduced by Tserkis et al. [50].

III. RESULTS

In this section, we present the main results of this
work, which are obtained by solving Eqs. (4) numerically.
Importantly, we identify the regimes of operation where
introducing loss in mode b results in increased intensity of
pseudothermal light generated in mode a. We use the EoF to
quantify the entanglement between the beams, and show that
they remain entangled, even after the addition of loss. We also
compare our quantum results to known results for analogous
classical systems.

First we note that when γb = 0, Eqs. (4) have a simple
analytical solution: na(ω) = sinh2[r(ω)], where r(ω) is a sinc
function (in the low gain regime) whose width is inversely
proportional to the length of the nonlinear medium, and also
depends nontrivially on the medium’s optical dispersion. To
obtain solutions that apply to any material, we introduce a
nominal unit length L0 and parametrize the spectral density as
a function of L0�k, where �k contains the medium’s optical
dispersion dependence. Finally, we note that the spectral
density is symmetric about the phase-matched point �k = 0,
and so we only plot results for positive �k.

Figure 2(a) plots the spectral density in mode a as a
function of �kL0 for different loss rates γb. Within the phase-
matching region (around �kL0 = 0), the addition of loss does
not increase the spectral density na in mode a. In this regime,
minimizing the loss will optimize the device performance.
However, outside the phase-matching domain, introducing
loss in mode b can be beneficial, eventually leading to brighter
light in mode a. For the parameters used here (see figure
captions), the transition between these regimes occurs at
�kL0 ≈ 4. The black line shows the maximum achievable
spectral density, which is obtained by using the optimal loss
rates γopt, plotted in Fig. 2(b). The enhancement factor defined
by the output state value of n

γopt
a /nγ=0

a is shown in Fig. 2(c).
Clearly, several orders of magnitude improvement can be
observed outside the standard phase-matching regime.

Quite often, one is interested in one specific frequency. For
a given material, this will correspond to a specific value of �k.
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FIG. 2. (a) Spectral density na in mode a for various loss rates
γb in mode b. (b) Optimal loss rate γopt. Loss becomes beneficial
away from phase matching (�k = 0). (c) Enhancement due to loss
defined as na for γ = γopt divided by na for γ = 0. Other parameters
are ξL0 = 1.0 and z/L0 = 1. The enhancement factor defined by the
output state value of n

γopt
a /nγ=0

a is shown in (c). Clearly, several orders
of magnitude improvement can be observed outside the standard
phase-matching regime. L0 is a nominal unit length. All plotted
quantities are dimensionless.

We therefore also investigate the dynamical features of the
system for a given �k. Figure 3(a) shows that, for a lossless
system outside the phase-matching regime, the spectral den-
sity in mode a oscillates along the propagation direction z, re-
maining bounded. On the other hand, when loss is introduced
in mode b, the spectral density in mode a starts to grow, with
the maximum amplification rate occurring at γb = γopt. Inter-
estingly, for very large values of γb, beyond its optimal value,
the signal amplification is suppressed (not shown). As we
mentioned before, this occurs due to the competition between
the pair generation and recombination rates. Informally, this
behavior is similar to that of critical coupling in microcavities
where the incident light completely couples to the cavity
for an optimal value of the optical mode loss. Our analysis
shows similar behavior for nb, as shown in Fig. 3(b), but on a
much slower scale due to the direct effect of loss on mode b.
Figure 3(c) shows that the correlation between the two modes
also grows with the addition of loss. However, this does not
reveal whether the two modes are entangled. To determine
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FIG. 3. Properties of the generated light for various values of loss
parameter γb. (a) Spectral density na in mode a. (b) Spectral density
nb in mode b. (c) The correlation parameter m. (d) The entanglement
of formation (EoF) between modes a and b. Other parameters are
ξL0 = 1.0 and �kL0 = 11.5. Vertical axes have different scales,
while horizontal axes are the same. L0 is a nominal unit length. All
plotted quantities are dimensionless.

this, we plot the EoF. Interestingly, we find that it is always
positive, indicating that the two modes are indeed entangled.

Finally, we also compare the quantum system described
in this paper with the analogous classical system. Classically,
one typically solves equations of motion for the field ampli-
tudes. Such equations can be recast into a form similar to
those in Eqs. (4), but with the −iξ term in Eq. (4c) omit-
ted. Up until now, we have only considered seedless initial
conditions [na(0) = nb(0) = 0]. For a classical system, these

conditions predict no output in modes a and b. To make the
comparison, we therefore consider a nonzero seed in mode a.
Figure 4 compares the quantum and classical cases for smaller
[na(0) = 0.2] and larger [na(0) = 20] seeds. Figures 4(a)
and 4(b) show that predictions for the spectral density na

in mode a differ quite drastically between the quantum and
classical models for a small seed, but converge for a larger
seed. Figures 4(c) and 4(d) show that predictions for the
correlation between the modes also differ quite drastically
between the quantum and classical models for a small seed,
but converge for a bigger seed. Figures 4(e) and 4(f), how-
ever, show that, when considering entanglement between the
modes, predictions of the two models differ for both smaller
and bigger seeds: the output predicted by classical models
does not contain entanglement, as should be expected, while
the output predicted by the quantum model does. Interestingly,
the amount of entanglement seems independent of the size of
the seed. This also shows that the introduction of loss does not
completely destroy entanglement between the modes.

IV. CONCLUSION

Most prior studies of non-Hermitian engineering in quan-
tum optical systems emphasized the limitations imposed by
quantum noise on non-Hermitian systems. In this paper, we
asked if there exist situations where optical losses can be
useful in quantum-state engineering.

We addressed this question in the context of spontaneous
generation of broadband pseudothermal states in one output
mode of a wave-mixing process, and showed that even when
quantum fluctuations are present, non-Hermiticity can still
play a positive role. Specifically, we showed that careful engi-
neering of optical loss can be used to increase the brightness of
broadband pseudothermal states, even in the absence of phase
matching. We also showed that entanglement is present in the
generated light, even in the presence of optical loss, distin-
guishing the process from optical-loss-induced amplification
in classical systems.

This work could be extended in a number of ways. One
could consider the effect of optical loss on pseudothermal
states with interesting coherence properties, such as those
generated by pulsed pump lasers [47]. Furthermore, it would
be interesting to consider frequency-dependent loss in the
context of spectral shaping. We leave these for future research.

We expect our results to have applications in quantum-state
generation for quantum technologies. While satisfying phase
matching is in general favorable, it is not always possible.
Our work opens the door for utilizing the full potential of
semiconductor materials (such as silicon and AlGaAs) that
exhibit giant nonlinearities but lack the necessary ingredients
for achieving quasi-phase-matching (see Appendix F for more
discussion on possible implementations). This in turn may
pave the way for using these platforms to build on-chip
quantum light sources.
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FIG. 4. Comparison between output predicted by quantum and classical models, using optimal loss parameter γ L0 = γoptL0 = 22.7,
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APPENDIX A: MOTIVATION FOR THE NONLINEAR
MOMENTUM OPERATOR

In this section, we derive the equation of motion for
photon-number expectation values of the two output modes
a and b.

Our starting point is the effective momentum operator that
generates the z dynamics of the operators a(z, ω) derived in
[51]. The operators a(z, ω) satisfy the commutation relations
[ak (z, ω), a†

k′ (z, ω′)] = δk,k′δ(ω − ω′), and can be thought of
as field operators that annihilate photons at frequency ω.

The expression in [51] includes cross-phase modulation.
We do not take this into account. The effective momentum
operator for our system is

P = h̄
∫

dω[�ka(ω)a†(ω)a(ω) + �kb(ω)b†(ω)b(ω)]

+ h̄
∫∫

dω dω′ f (z, ω, ω′)a†(ω)b†(ω′) + H.c., (A1)

where f (z, ω, ω′) is a function that depends on the nonlinear-
ity of the material, the pump spectral amplitude, and the group
velocities of the fields. The functions �k j (ω) determine the
phase matching inside the material,

�k j (ω) =
(

1

v j
− 1

vp

)
(ω − ω̄ j ) for j = a, b, (A2)

and for the fields a, b and the pump we have written their
dispersion relation as

k − k̄μ = ω − ω̄μ

vμ

for μ = a, b, p (A3)
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where we have neglected group velocity dispersion within
each field a, b, p and we wrote the group velocity of each
field as vμ. Furthermore we assume that the central wave
vectors and frequencies of the three fields participating in the
nonlinear process satisfy

ω̄a + ω̄b − ω̄p = 0, k̄a + k̄b − k̄p = 0 (A4)

for spontaneous parametric down conversion (SPDC) or

ω̄a + ω̄b − 2ω̄p = 0, k̄a + k̄b − 2k̄p = 0 (A5)

for spontaneous four wave mixing (SFWM).
Since we are considering a cw pump, we take f (z, ω, ω′) =

ξg(z)δ(ω + ω′ − �), where ξ (which depends on the nonlin-
earity strength and the amplitude of the pump) determines
the strength of the interaction, and g(z) is the normalized
nonlinearity profile of the material, which here we take to
be a rectangular function �0,L(z) = 1 for 0 < z < L and
�0,L(z) = 0 otherwise. Finally,

� =
{

2ω̄p = ω̄a + ω̄b for SFWM,
ω̄p = ω̄a + ω̄b for SPDC. (A6)

This gives

P = h̄
∫

dω[�ka(ω)a†(ω)a(ω) + �kb(ω)b†(ω)b(ω)]

+ h̄ξg(z)
∫

dωa†(ω)b†(� − ω) + H.c. (A7)

APPENDIX B: BROADBAND PSEUDOTHERMAL STATES

Nonlinear processes such as spontaneous parametric
down conversion (SPDC) or spontaneous four wave mixing
(SFWM) can generate spectrally entangled twin beams. The
reduced state of each beam, obtained by tracing out the other
component, can be thought of as a broadband “pseudother-
mal” state [47] whose spectral coherence can be tuned—from
perfect coherence to complete incoherence—by adjusting the
pump spectral width.

In the limit of a cw laser pumping, the twin beam’s quan-
tum state is

|ψ〉 = ÛSQ |vac〉 , (B1)

ÛSQ = e(
∫

dω r(ω)â†(ω)b̂†(�−ω)−H.c.), (B2)

where r(ω) is the dispersive nonlinear coupling coefficient
and it is a function of optical properties of the material [47]
[in the low-gain regime, r(ω) is the phase-matching function
parameterized in terms of ω]. The reduced state of, say, beam
a is then given by

ρa = 1

Z
e− ∫

dω α(ω)â†(ω)â(ω), (B3)

Z = Tr
(
e− ∫

dω α(ω)â†(ω)â(ω)
)
, (B4)

where α(ω) = ln (1/ tanh2[r(ω)]). Note that, for α(ω) =
h̄ω/kBT , ρa represents a multimode thermal state in the
traditional sense.

The spectral density of the pseudothermal state is

n(ω) = 〈â†(ω)â(ω′)〉ψ = sinh2[r(ω)]. (B5)

In general, this is a peaked function that becomes higher
and narrower as the length L of the nonlinear region in-
creases. For ω ranging under the peak value, the system is
phase matched, and the intensity of the thermal state grows
with L. However, outside this favorable operation bandwidth,
destructive interferences between wave components impedes
this growth by providing scattering channels for the reverse
process.

Traditionally, this problem is often addressed by engineer-
ing r(ω) using quasi-phase-matching. This technique however
does not lend itself to easy implementation in semiconductor
platforms that do not exhibit electric domains. Given the giant
nonlinear coefficients of these material platforms, and the
potential future for silicon photonics and hybrid integration,
it would be of immense interest to device a different route
around this obstacle. In the main text, we show how loss
engineering can come to our aid.

APPENDIX C: DERIVATION OF THE EQUATIONS
OF MOTION

Starting from the form of the master equation

d

dz
〈O〉 = − i

h̄
〈[O, P]〉 −

∑
c∈{a,b}

γc

2

∫
dω′′〈c†(ω′′)[c(ω′′),O]

+ [O, c†(ω′′)]c(ω′′)〉, (C1)

with P defined in Equation (A7), we investigate the dynamics
of the expectation values

〈a†(ω)a(ω′)〉, (C2a)

〈b†(� − ω)b(� − ω′)〉, (C2b)

〈a(ω)b(� − ω′)〉, (C2c)

for which we find

d

dz
〈a†(ω)a(ω′)〉 = − iξg(z) 〈a†(ω)b†(� − ω′)〉 + iξg(z) 〈a(ω′)b(� − ω)〉

+ i{�ka(ω) − �ka(ω′)} 〈a†(ω)a(ω′)〉 − γa 〈a†(ω)a(ω′)〉 , (C3a)

d

dz
〈b†(� − ω)b(� − ω′)〉 = − iξg(z) 〈a†(ω′)b†(� − ω)〉 + iξg(z) 〈a(ω)b(� − ω′)〉

+ i{�kb(� − ω) − �kb(� − ω′)} 〈b†(� − ω)b(� − ω′)〉
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− γb 〈b†(� − ω)b(� − ω′)〉 , (C3b)

d

dz
〈a(ω)b(� − ω′)〉 = − iξg(z) 〈a†(ω′)a(ω)〉 − iξg(z) 〈b†(� − ω)b(� − ω′)〉

− i{�ka(ω) + i�kb(� − ω′)} 〈a(ω)b(� − ω′)〉
− γa + γb

2
〈a(ω)b(� − ω′)〉 − iδ(ω − ω′)ξg(z). (C3c)

Note that the only inhomogeneous term is −iδ(ω − ω′)ξg(z).
Without this term, that drives vacuum fluctuations, the corre-
lation functions in Eq. (C2a) would remain zero for all time
if they are zero at time t = 0. This inhomogeneous term also
tells us that the only “slice” of the correlation functions that
is driven to a nonzero value is the one for which ω = ω′.
Based on the preceding argument, we introduce the following
notation:

〈a†(ω)a(ω′)〉 = δ(ω − ω′) na(ω), (C4a)

〈b†(� − ω)b(� − ω′)〉 = δ(ω − ω′) nb(ω), (C4b)

〈a(ω)b(� − ω′)〉 = δ(ω − ω′) m(ω). (C4c)

Inserting these expressions into Eqs. (C3), we obtain the
equations of motion (4).

APPENDIX D: CLASSICAL LIMIT

For completeness, we briefly discuss the classical limit of
quantum process under investigation. Within the undepleted
pump approximations (which allows us to neglect variations
in the pump component), and small signal limit (which allows
us to neglect the self- and cross-phase modulations for the
signal and idler beams), the classical equations for the signal
and idler beams are

d

dz
u = iNu, N =

( iγa

2 − �ka ζ

−ζ
iγb

2 + �kb

)
, (D1)

where u = (α, β∗)T , and where α and β are the field ampli-
tudes.

If we multiply the first row by α∗ and add the resultant
equation to its complex conjugate, we recover Eq. (4a). Sim-
ilarly we can recover Eq. (4b) by multiplying the second
row by β∗ and adding the resultant equation to its complex
conjugate. On the other hand, multiplying the first and second
rows by β and α, respectively, and adding the results, gives
Eq. (4c) but without the drive term arising from the quantum
noise (as one would expect).

Put differently, the classical limit can be obtained
from the quantum description by using the factoriza-
tions 〈a†(ω)a(ω′)〉 = 〈a†(ω)〉 〈a(ω′)〉, 〈b†(ω)b(ω′)〉 =
〈b†(ω)〉 〈b(ω′)〉, 〈a(ω)b(ω′)〉 = 〈a(ω)〉 〈b(ω′)〉 and by
neglecting the noise term.

APPENDIX E: FIELD EQUATIONS AND RELATION
TO PT SYMMETRY

By using a simple gauge transformation, the matrix N in
Eq. (D1) can be cast in a more useful form:

N′ =
(

η ζ

−ζ −η

)
, (E1)

with η = (i�γ − �k)/2, where �γ = (γa − γb)/2 and
�k = �ka + �kb. When γ = 0, the system in (E1) exhibits
an exceptional point at η = ζ , which marks the transition
between the phase-matching regime (η � ζ ) and the phase-
mismatch domain. In the former, the signal experience am-
plification, while, in the latter, dynamics are oscillatory. This
behavior, which can be emulated by a linear waveguide array
[52] is not accidental. In fact, while N ′ (with �γ = 0) does
not respect parity-time (PT) reversal symmetry (reflecting
its SU(1,1) symmetry as opposed to SU(2) in the case of
PT systems), it satisfies a generalized PT condition [53].
Particularly, when �γ = 0, [PT, SN ′S−1] = 0, where the co-
efficients of the matrix S are given by S11 = S21 = 1 and S12 =
−S22 = −i.

By introducing a finite value for γ , the behavior of the
eigenvalues are different, always exhibiting an imaginary
component that leads to signal amplifications, as studied in
detail in [36,37].

A final interesting remark on Eq. (D1) is that it is exactly
identical to the classical description of undepleted pump four-
wave mixing in the small-signal limit. In other words, in
contrast to Eqs. (4), it does not contain any noise term that sig-
nifies the quantum origin of the problem. Thus, the generated
light will have intensity but the quantum expectation values
of the field operators will always remain zero, a characteristic
feature of thermal states.

APPENDIX F: PRACTICAL CONSIDERATIONS

Our discussion in the main text has focused on an ideal
situation where the pump and signal losses are absent. In any
real system, the optical loss will not be completely absent at
any given frequency. However, a judicious choice of the ma-
terial system along with the geometric parameters can render
the absorption at these two frequencies negligible within the
specific propagation distance. For example, a 5% variation of
the pump power across the propagation direction will not have
a significant impact on the conversion efficiency. Moreover,
the optical loss at the signal frequency must be significantly
smaller than the nonlinear gain. From a practical perspective,
these two conditions can be satisfied easily and indeed they
are met in most experimental work that includes generation of
entangled photon pairs.
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What is more difficult is to satisfy these two conditions
along with the required optical loss of the idler compo-
nent. In this respect, several implementation strategies can
be attempted. First, one may rely completely on the ma-
terial properties. For instance, early experimental works on
classical wave mixing under imperfect phase-matching con-
ditions showed that it is possible to increase the output sig-
nal power by using standard silica fiber due to the higher
idler loss [54]. Another possibility is to synthesize these
absorption features artificially. In previous studies [36,37]
related to the classical analog of the effect considered
here, we proposed an implementation based on two coupled

waveguides that are mode matched only at the idler frequency.
In this case, the idler component will experience a much
stronger coupling from the main waveguide to the auxil-
iary one. By doing so, one can engineer the idler loss by
either depositing metal films or imprinting radiation Bragg
gratings on top of the auxiliary waveguide. Alternatively,
one may even use only one waveguide with radiation Bragg
gratings that exhibit very narrow bandwidth centered at the
idler frequency. Yet a third possibility is to use hybrid
dielectric-plasmonic modes to introduce losses to certain se-
lected modes. We will explore some of these possibilities in
future work.
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