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Control of spatial four-wave-mixing efficiency in Bessel beams using longitudinal intensity shaping
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Diffraction-free Bessel beams have attracted major interest because of their stability even in regimes of
nonlinear propagation and filamentation. However, Kerr nonlinear couplings are known to induce significant
longitudinal intensity modulation, detrimental to the generation of uniform plasma or for applications in the
processing of transparent materials. These nonlinear instabilities arise from the generation of new spatiospectral
components through an initial stage of continuous spectral broadening followed by four-wave mixing. In this
paper, we investigate these processes analytically and numerically and show that nonlinear instabilities can be
controlled through shaping the spatial spectral phase of the input beam. This opens new routes for suppressing
the nonlinear growth of new frequencies and controlling ultrashort pulse propagation in dielectrics.
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I. INTRODUCTION

Diffraction-free Bessel beams are formed from a conical
energy flow and yield a near-uniform intensity distribution
along a line focus [1]. For high-power laser pulses injected
into transparent dielectrics, this beam structure can sustain
quasi-propagation-invariant regimes of filamentation, which
are highly advantageous in reducing nonlinear distortion and
instabilities during propagation. This has been shown to yield
a significant improvement in controlling energy deposition
and has been the subject of intense interest for generating long
and uniform plasma channels [2–4] and creating high-aspect-
ratio structures in micro- and nanomachining applications
[5–9]. The application of Bessel beams in laser processing
and filamentation has also been demonstrated for Bessel
vortices [10].

However, although the level of nonlinear distortion dur-
ing Bessel beam propagation is greatly reduced compared
to Gaussian beams at comparable peak intensities, residual
nonlinear instability effects can still occur and induce sig-
nificant oscillations of the on-axis intensity [3,11,12]. This is
clearly detrimental for the creation of longitudinally uniform
structures in material processing, and thus controlling these
instabilities is of central importance to extend the applicability
of Bessel beams.

Such nonlinear instabilities were first investigated in 1989
in association with the optical breakdown in gases and dis-
cussed in terms of cubic nonlinearity and plasma dynamics
[12]. Gadonas et al. subsequently investigated the relation
between nonlinear instabilities in Bessel beams and the dis-
tortion of their spatial spectrum [11]. Using phase-matching
arguments and considering four-wave-mixing (FWM) interac-
tions, they showed that a Bessel beam with radial wave vector
kr0 can sustain Kerr self-action which deforms its spatial
spectrum to generate two additional spectral components: an
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axial wave component with kr = 0 and a secondary conical
wave with kr = √

2kr0 [11,13]. Their numerical simulations
highlighted the development of an intensity modulation of
Bessel beams along the propagation direction, which was ex-
plained by the interference of the conical beam with the axial
wave component. Experimental signatures of this spectrum
distortion were demonstrated in [11], [13], and [14].

In order to achieve stable propagation of Bessel beams,
it is necessary to overcome these Kerr-induced instabilities
[15]. Porras et al. investigated the stability of Bessel beams
in the presence of nonlinear losses and showed that nonlinear
instabilities can be significantly suppressed if multiphoton
absorption prevails over Kerr nonlinearity [2]. This condition
can be satisfied for relatively high input powers and high cone
angles [2,16], and experimental demonstration was performed
in [2], [14], and [17]. However, since this imposes strong con-
straints on the geometrical and physical properties of the input
Bessel beam, this approach is not suitable in all applications.
In other work, Polesana et al. investigated the effect of the
input injection condition to the nonlinear medium [3] and
showed that the Kerr-induced instabilities can be attenuated
if the Bessel beam is progressively formed inside the Kerr
medium. In contrast, if the Bessel beam is formed prior to
entering the medium, it has been shown to exhibit significant
instabilities and quasiperiodic intensity modulation along the
propagation direction.

Recently, we have shown that these instabilities can be
significantly mitigated by appropriate control of the intensity
evolution of Bessel beams along the propagation distance
[18]. In particular, we qualitatively identified the role of the
spatial spectral phase in reducing the efficiency of four-wave
mixing and the growth of related nonlinear instabilities. In this
paper we present an extended analysis of this problem, and
through both analysis of the FWM process and numerical sim-
ulations, we obtain significant new insights into the physical
origins of these instabilities and identify particular quantita-
tive parameter regimes in which they can be suppressed. Note
that our approach is complementary to the work in Refs. [2],
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[3], [19], and [20], where propagation is analyzed in terms
of a linearized stability analysis and where nonlinear losses
are shown to give rise to an attractor (nonlinear unbalanced
Bessel beam). Here, in contrast, we neglect nonlinear losses
to isolate the effect of input beam shaping on FWM efficiency
and growth of the intensity oscillations in the Bessel beam.

This paper is organized as follows. We develop in Sec. II
an analytical model of four-wave mixing that allows us to
describe the cascade of nonlinear effects that lead to the
generation of new spatial spectral components. In Sec. III,
we examine the dynamics of the growth of new spatial spec-
tral components and show that an initial phase of spectral
broadening is the major driver for instabilities. In Sec. IV,
we develop a reduced model with only the essential terms re-
sponsible for spectral broadening, which allows us to take into
account the spectral width—in the spatial domain—of Bessel
beams. In Sec. V, we use this model to discuss the dependence
of nonlinear instabilities on the precise injection condition of
an incident Bessel beam with respect to a nonlinear medium
(referred to as the “soft” and “abrupt” transition cases) con-
sidering, in particular, the influence of the initial spectral
phase. Finally, in Sec. VI, we consider previous numerical
results studying the nonlinear propagation of Bessel beams
with shaped on-axis intensity profiles [18], with our modeling
allowing us to understand why specific input spectral phases
lead to the reduction of nonlinear instabilities.

II. FOUR-WAVE MIXING IN BESSEL BEAMS

In 1996, Tewari et al. introduced a theoretical model to
describe third harmonic generation (THG) in Bessel beams
[21]. Our theoretical model follows the same approach. How-
ever, instead of THG nonlinear terms, we consider four-wave-
mixing interactions to study nonlinear spectral distortions in
Bessel beams related to Kerr-induced instabilities. Impor-
tantly, our focus is on the growth of spatial frequencies kr

in a monochromatic model such that we do not consider
dynamics related to the growth of new temporal frequencies
ω. However, we stress that the formalism developed here
could be extended to describe the full picture of simultaneous
nonlinear dynamics in both spatial and temporal domains.
We note that the monochromatic approximation has proven
successful in interpreting experimental results obtained with
pulsed beams with typical pulse durations of some hundreds
of femtoseconds, peak powers of the order of TW cm−2, and
cone angles of a few degrees [2,3,10,11,14], as we use here as
numerical examples, for the nonlinear propagation of ultrafast
Bessel beams in fused silica. This approximation is valid as
long as temporal reshaping is not too strong.

We first compute the third-order nonlinear polarization
and select the relevant nonlinear terms which have a direct
impact on the generation of new spectral components. We
then include these terms in the Helmholtz equation, which we
study analytically and numerically.

A. Third-order nonlinear polarization

Nonlinearity in Kerr media appears through the third-order
nonlinear polarization PNL, written as

PNL = ε0χ
(3)EEE, (1)

where ε0 is the dielectric permittivity in vacuum, χ (3) is the
third-order susceptibility, and E is the total electric field.
We consider monochromatic waves, oscillating at (temporal)
frequency ω0. We consider four waves E j , of amplitude
Aj , linearly polarized along the same axis x and possessing
different longitudinal spatial frequencies kz j . The total electric
field is then written

E = 1

2
x

4∑
j=1

Ajexp[i(ω0t − kz jz)] + c.c. (2)

If we substitute Eq. (2) in Eq. (1), we find that the nonlinear
polarization consists of many terms covering all possible non-
linear interactions including terms responsible for THG and
those preserving the same temporal frequency ω0. Neglecting
THG terms because we investigate only the ω0 components,
the nonlinear polarization can be written as

PNL, ω0 = 3
8ε0χ

(3)x[pNL, ω0 eiω0t + c.c.], (3)

where

pNL, ω0 =
4∑

j=1

(|Aj |2Aje
−ikz j z ) +

4∑
j=1, j �=m

2 |Aj |2Ame−ikzmz

+
4∑

j=1, j �=m

A2
jA

∗
me−i(2kz j−kzm )z

+
4∑

j=1, j<l<m

2 (AjAlA
∗
me−i(kz j+kzl −kzm )z

+ AjA
∗
l Ame−i(kz j−kzl +kzm )z

+ A∗
j AlAme−i(−kz j+kzl +kzm )z ). (4)

The first two terms in Eq. (4) describe self-phase modulation
and cross-phase modulation (XPM). The other terms describe
FWM, with the first term A2

jA
∗
me−i(2kz j−kzm )z being the degener-

ate process where the two pump waves are identical while the
other terms are nondegenerate processes.

Our aim is to study the generation of new spectral com-
ponents and their evolution along the propagation direction.
In the following, we consider the waves E1 and E2 as the
high-intensity pump waves, whereas E3 and E4 correspond
to the signal and idler waves, respectively. We describe the
evolution of the spatial spectrum with propagation as a cas-
cading process where E3 is generated first by cross interaction
of the pump waves. Then four-wave mixing will amplify E3

and E4. This approach is consistent with the scaling performed
by Gadonas et al. [11].

We separate the terms of the nonlinear polarization
in Eq. (4) according to the content of the exponents
(which is equivalent to momentum conservation). This
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leads to

p(1)
NL, ω0

eikz1z = (|A1|2 + 2 |A2|2)A1, (5a)

p(2)
NL, ω0

eikz2z = (|A2|2 + 2 |A1|2)A2, (5b)

p(3)
NL, ω0

eikz3z = 2(|A1|2 + |A2|2)A3 + A2
1A∗

2e−i(2kz1−kz2−kz3 )z + A2
2A∗

1e−i(2kz2−kz1−kz3 )z

+ A2
1A∗

4e−i(2kz1−kz3−kz4 )z + A2
2A∗

4e−i(2kz2−kz3−kz4 )z

+ 2 (A1A2A∗
4e−i(kz1+kz2−kz3−kz4 )z + A1A∗

2A4ei(−kz1+kz2+kz3−kz4 )z + A∗
1A2A4ei(kz1−kz2+kz3−kz4 )z ), (5c)

p(4)
NL, ω0

eikz4z = 2(|A1|2 + |A2|2)A4 + A2
1A∗

3e−i(2kz1−kz3−kz4 )z + A2
2A∗

3e−i(2kz2−kz3−kz4 )z

+ 2 (A1A2A∗
3e−i(kz1+kz2−kz3−kz4 )z + A1A∗

2A3e−i(kz1−kz2+kz3−kz4 )z + A∗
1A2A3e−i(−kz1+kz2+kz3−kz4 )z ). (5d)

For p(1)
NL, ω0

and p(2)
NL, ω0

, we have neglected all contributions
of A3,4, as they are much smaller than A1,2. Similarly, for
p(3)

NL, ω0
and p(4)

NL, ω0
, we have neglected all terms scaling with

A2
3,4. We note that the two contributions A2

1A∗
2e−i(2kz1−kz2−kz3 )z

and A2
2A∗

1e−i(2kz2−kz1−kz3 )z [first line in Eq. (5c)] are particularly
important in the rest of this paper. They arise from the cross-
phase-modulation-like interaction with the pump, scale as
the third power of the pump field, and generate non-phase-
matched spectral broadening around the pump. The other
five last terms scale with the second power of the pump and
contribute to amplification via four-wave-mixing processes.
With this expression for the nonlinear polarization, we can
now use the wave equation to derive the evolution of the fields.

In the expression p(3)
NL, ω0

, the first two terms are cross-
phase modulation terms that do not contribute efficiently to
new spectral frequency generation in our case. The third and
fourth, just mentioned above, are at the third power of the
pump, while the rest of the nonlinear polarization terms are
at the second order of the pump. In the following, we see that
the third and fourth terms will generate a crucial non-phase-
matched spectral broadening around the pump, while the other
terms will contribute to amplification via FWM processes. As
the terms corresponding to the spectral broadening are more
efficient, these will be the drivers for the cascade of FWM.
Now, we can use the wave equation to derive the evolution of
the fields.

B. Evolution of the spatial spectrum along the propagation

The starting point is the scalar wave equation describing
the full field

∑4
j=1 E j . We separate the full-field wave equa-

tion into four independent equations by using the separation
approach described above:

�E j − εr

c2

∂2E j

∂t2
= μ0

∂2P( j)
NL

∂t2
. (6)

We now follow the approach in Ref. [21]: for each of the
waves, we consider only ideal Bessel beams defined by the J0

Bessel function. To further simplify the analysis, we consider

that the pump amplitude is undepleted with propagation. This,
of course, implies that our analysis will be valid only for
propagation distances shorter than the typical depletion scale
length (in the examples shown, typically of the order of
1000 μm). The envelopes of the four interacting waves Aj are
then written as

Aj = a j (z) J0(kr jr), (7)

where kr j is the transverse spatial frequency of the envelope
Aj . Since we developed an expression for P( j)

NL with the same
form as E j , we can develop Eq. (6) without the complex
conjugate terms [21]. It becomes

2ikz j
∂a j (z)

∂z
J0(kr j ) = k2

0

ε0
p( j)

NL,ω0
. (8)

We multiply both parts of Eq. (8) by rJ0(kr4r) and integrate
over 0 to r f , which denotes the upper integration limit such
as r f � 1/kr0. In other words, we perform Hankel transfor-
mation and thus study the evolution of the waves in Fourier
space. The upper integration boundary r f is chosen finite
so as to avoid infinite integrals or to avoid the introduction
of apodization functions such as in Ref. [11]. According to
Ref. [22],∫ r f

0
rJ2

0 (kr jr)dr = r2
f /2

(
J2

0 (kr jr f ) + J2
1 (kr jr f )

)
.

Then using the asymptotic expressions of both Bessel
functions [22], i.e.,

Jα (kr jr) =
√

2

πkr jr
cos

(
kr jr − απ

2
− π

4

)
, α = 0, 1.

This integral can be approximated to∫ r f

0
rJ2

0 (kr jr)dr ≈ r f

πkr j
, (9)

which is proportional to 1/kr j , in agreement with Ref. [21].
Using the simplifications described in the previous section,

A1 ≈ A2 ≈ A0 = a0J0(kr0r) and kz1 ≈ kz2 ≈ kz0, where kz0 =
k cos θ , with θ the cone angle of the pump Bessel beam,
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our system of equations becomes

∂a0(z)

∂z
= −3iC0 tan(θ0)I (00)

TPMa0(z), (10a)

∂a3(z)

∂z
= −iC0 tan(θ3)

(
4I (33)

TPMa3(z) + 2I (03)
TPMe−i(�k03+
NL

0 )z + 4I (34)
TPMa∗

4(z)e−i(�k034+2
NL
0 )z + 4I (34)

TPMa4(z)ei�k34z
)
, (10b)

∂a4(z)

∂z
= −iC0 tan(θ4)

(
4I (44)

TPMa4(z) + 4I (34)
TPMa∗

3(z)e−i(�k034+2
NL
0 )z + 4I (34)

TPMa3(z)e−i�k34z
)
, (10c)

where C0 = π
k2

r f

n2

n0
I0. Here we write the solution of Eq. (10a)

as a0(z) = √
I0exp(−i
NL

0 z), where I0 is the peak input inten-
sity. Solving Eq. (10a) we obtain


NL
0 = 3C0 tan(θ0)I (00)

TPM. (11)

The transverse phase-matching (TPM) integrals I ( j)
TPM are

defined as

I (00)
TPM =

∫ r f

0
J4

0 (kr0 r) r dr, (12a)

I (03)
TPM =

∫ r f

0
J3

0 (kr0 r) J0(kr3 r) r dr, (12b)

I (34)
TPM =

∫ r f

0
J2

0 (kr0 r) J0(kr3 r) J0(kr4 r) r dr, (12c)

I (33)
TPM =

∫ r f

0
J2

0 (kr0 r) J2
0 (kr3 r) r dr, (12d)

I (44)
TPM =

∫ r f

0
J2

0 (kr0 r) J2
0 (kr4 r) r dr. (12e)

The indices relate to the waves involved in the last two Bessel
functions in the integrals. Longitudinal wave-vector mismatch
terms are defined as �k03 = kz0 − kz3, �k034 = 2kz0 − kz3 −
kz4, and �k34 = kz3 − kz4. The longitudinal phase-matching
conditions (when the wave-vector mismatch defined above
equals 0) are the same as those reported in Ref. [11]: the
first one corresponds to FWM interaction of the proposed
“first approximation” of the nonlinear Schrödinger equation
(NLSE). For this approximation, the same TPM integral as
I (03)
TPM was also defined. Similarly, the other two longitudinal

phase-matching conditions were defined for the proposed
“second approximation” of the NLSE along with I (34)

TPM.
Hence, the signal and idler waves of our model can be

assimilated to solutions of the first- and second-order approx-
imations of the NLSE in Ref. [11]. Our target here is to build
a fully explicit model where the mechanism actually driving
the generation of new spectral components can be analytically
identified. However, before integrating Eqs. (10b) and (10c),
we first show numerical results so that we can later compare
analytical results with numerical modeling results of the full
NLSE.

III. DYNAMICS OF THE GROWTH OF
NEW SPECTRAL COMPONENTS

A. Numerical model and results

Our numerical simulations are based on the NLSE given in
Refs. [11] and [23] for a monochromatic beam propagating in

a Kerr medium,

∂A

∂z
= i

2k
�⊥A + ik n2

n0
|A|2A, (13)

where A is the linearly polarized complex amplitude of the
laser electric field, �⊥ = 1/r∂/∂r + ∂2/∂r2 is the transverse
Laplacian operator, r and z are the radial and axial coordi-
nates, k is the wave vector in the medium, and n0 and n2 are
the linear and nonlinear refractive indices. Parameters of our
simulations are listed in Table I and correspond to the realistic
propagation of a high-intensity pulse in fused silica. Since
nonlinear instabilities stem mainly from Kerr nonlinearities,
we neglected other nonlinear effects (particularly nonlinear
losses which are known attenuate nonlinear instabilities [2,3])
so as to isolate the effect of intensity shaping on the control of
nonlinear instabilities in Bessel beams.

The input field [a Bessel-Gauss (BG) beam] is mod-
eled by a Gaussian beam with a spatial phase char-
acterizing the axicon conical focusing: ABG(r, z = 0) =
A0exp(−r2/w2

0 − k r sin(θ )), where w0 is the input Gaussian
beam waist [3,24].

The results of the integration of Eq. (13), based on a split-
step algorithm are shown in Fig. 1. In Fig. 1(a), we plot the
evolution of the intensity as a function of the radial distance r
and propagation distance z. We observe that the beam intensity
undergoes longitudinal modulation not only along the central
core but also in the peripheral rings. The on-axis intensity,
i.e., the intensity I (r = 0, z), is shown in Fig. 1(b), where the
intensity oscillations, with a period of ∼180.5 μm, are clearly
apparent.

In Fig. 1(c), the spatial spectrum |Ã(kr, z)|2 is plotted as a
function of the propagation distance. We recall that the spatial
spectrum of a Bessel beam, in the linear regime, is in the
form of a ring centered around the Bessel transverse frequency
kr0 = 0.8 μm−1 [24]. We display the evolution of a cross
section along the propagation distance. After an initial stage of
spectral broadening around the central frequency kr0, we note
the generation of two particular spectral components at kr ≈ 0
and kr ≈ 1.5kr0. These components are, respectively, referred
to as the axial wave and outer ring (kr ∼ √

2kr0) as mentioned
in Sec. I and reported in previous works [11,14,18]. It is the in-

TABLE I. Numerical parameters used in simulations.

λ (μm) 0.8
n 1.45
n2 (m2/W) 2.48 × 10−20

θ (deg) 4
w0 (μm) 300
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FIG. 1. NLSE simulation results: (a) intensity distribution of
a Bessel-Gauss (BG) beam propagating in a pure nonlinear Kerr
medium as a function of the radial and propagation distances r
and z (input peak intensity of the Gaussian beam, 33.7 GW cm−2);
(b) corresponding on-axis intensity; (c) spatial spectrum distribution
|Ã(kr )|2/|Ã(kr0|2| (logarithmic scale dB); and (d) spectral intensity
of the axial wave (solid line) and outer ring in linear scale (dashed
line) along the propagation distance. The intensities of both spectral
components are normalized to the maximal intensity value of the
central frequency.

terference of the input Bessel beam with the two new spectral
components which generates the oscillations observed on the
on-axis intensity distribution. (The interference pattern was
initially interpreted only as interference between the Bessel
beam and the axial wave, but we note that the secondary wave
also generates interference with precisely the same period.)

In more detail, Fig. 1(c) shows two regimes. From a prop-
agation distance range of 0 to z ∼ 2600 μm, the spatial spec-
trum progressively broadens around the central frequency. It
is only for farther propagation distances that the growth of
the axial wave and outer ring is efficient. We specifically
show the evolution of these spectral components in Fig. 1(d).
In Fig. 1(c), we also note paraboliclike structures for spatial
frequencies around kr0. Those have not been discussed in
previous literature and our analytical model will allow us to
explain them.

B. Analysis using the four-wave-mixing model

Here we show that the main characteristics of the first
and second regimes can be qualitatively described using the
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FIG. 2. Evolution of frequency-resolved intensity of the (top)
signal and (bottom) idler waves along propagation. The latter is
computed for θ3 = 0.005θ0.

FWM model developed in the previous section [Eqs. (10b)
and (10c)].

For very short propagation distances, since the amplitude
of a4 is near 0, as discussed in Sec. II A, we first neglect the
terms in a4 in the expression of the evolution of a3 [Eq. (10b).
This becomes

∂a3(z)

∂z
= −iC0 tan(θ3)

[
4I (33)

TPMa3(z)

+ 2
√

I0I (03)
TPMe−i(kz0−kz3+
NL

0 )z
]
. (14)

Using 
NL
3 = 4C0 tan(θ3)I (33)

TPM and �keff
03 = �k03 + 
NL

0 −

NL

3 , a3 is given by

a3(z) = −2iC0
√

I0 tan(θ3)I (03)
TPMe−i(�keff

03 z/2+
NL
3 z)

× z sinc
(
�keff

03 z/2
)
. (15)

This result is very important in the following sections of
the paper. Then we can compute the evolution of the idler
wave with Eq. (10c), using the expression of the signal wave
a3 computed above.

Similarly, using, 
NL
4 = 4C0 tan(θ4)I (44)

TPM and �keff
04 =

kz0 − kz4 + 
NL
0 − 
NL

4 , �keff
034 = �k034 + 2
NL

0 − 
NL
3 −


NL
4 , and �keff

34 = �k34 + 
NL
3 − 
NL

4 . a4 is given by

a4(z) = − 8iC2
0

√
I0I (03)

TPMI (34)
TPM

tan(θ3) tan(θ4)

�keff
03

e−i
NL
4 z

× {
2 exp

( − i�keff
04 z/2

)
z sinc

(
�keff

04 z/2
)

− exp
( − i�keff

034z/2
)
z sinc

(
�keff

034z/2
)

− exp
( − i�keff

34 z/2
)
z sinc

(
�keff

34 z/2
)}

. (16)

1. First regime: Spatiospectral broadening characteristics

Using Eq. (15), we show in Fig. 2(a) the evolution of the
intensity of a3(z) along the propagation direction for different
values of kr3. In the figure, the nonlinear phases 
NL

0 and 
NL
3

were evaluated for an intensity of 18 TW/cm2 as for the peak

043804-5



OUADGHIRI-IDRISSI, DUDLEY, AND COURVOISIER PHYSICAL REVIEW A 100, 043804 (2019)

power in Fig. 1. We also choose the same pump cone angle
θ = 4◦ as in our numerical simulation of the NLSE.

This regime qualitatively reproduces the first growth stage
discussed earlier (propagation from 0 to z = 2600 μm). The
signal wave (a3) oscillates for frequencies that are away from
the central frequency kr0 and exhibits a paraboliclike fringe
structure in the kr-z space, consistent with NLSE simulation
results [Fig. 1(c)]. These parabolic structures oscillate with
a frequency-dependent period, p(kr3) = 2π/�keff

03 , where we
can neglect the nonlinear phase to obtain

p(kr3) 
 2π

|kz0 − kz3| 
 4πk

|k2
r0 − k2

r3|
.

This result is in very good quantitative agreement with the
oscillation period shown in Fig. 1. For instance, for kr3 =
0.5kr0, the expression above gives a period of 302 μm, while
the numerical result is 295 μm.

2. Second regime: Growth of new spectral
components and interference pattern

After this initial spectral broadening, numerical results
show that both the axial wave and the outer ring will be
amplified for z > 2600 μm. Now, we show that in this second
regime, an axial wave (kr 
 0) and an outer ring (kr 
√

(2)kr0) are amplified. This amplification is described by the
expression of a4.

The transverse phase-matching integral I (34)
TPM peaks for

kr3 
 0. Therefore, we plot in Fig. 2(b) the frequency-
resolved evolution of |a4(z)|2 for a signal wave a3 at kr3 close
to 0. We observe the amplification of an axial wave (kr4 
 0)
and of an outer ring kr4 
 √

(2)kr0. The axial wave arises from
the last term in Eq. (16), for which �keff

34 = 0 and the outer
ring arises from the second-to-last term in the same equation,
for which �keff

034 = 0.
We note that our description does not yet take into account

the complete set of signal waves a3 that are continuously
generated in the first spectral broadening stage, as the analysis
would be extremely laborious.

In summary, we have shown that our model can explain
detailed features of the nonlinear propagation of Bessel-Gauss
beams. We have seen that it is the initial broadening stage
(generating the wave a3) that determines the efficiency of
the FWM-induced amplification in the subsequent stage. In
the next section, we expand our theory to take into account
the spectral phase of the pump. To simplify our analysis, we
restrict ourselves to the first broadening regime.

IV. REDUCED MODEL

Here we describe the generation of a3 when taking into
account the fact that the input pump Bessel beam is spectrally
extended. We see in the next sections how the spectral phase
will impact the growth of a3.

We restart our analysis from Eq. (14). In this expression,
the first nonlinear term, −4iC0I (33)

TPM tan(θ3)a3, corresponds to
cross-phase modulation and is much weaker than the second
term. Therefore, to simplify our analysis, we neglect the first
term in our reduced model. We also drop out the nonlin-
ear phase terms. Now, we take into account a pump beam

described by A0 = √
I0

∫
dkrS(kr )J0(krr)eiφ(kr ), where S(kr j )

stand for the amplitude distribution of the spectral compo-
nents of the pump and signal waves. The complex spatial
spectra are given by S̃(kr ) = S j (kr )exp[iφ j (kr )]. This way, it is
possible to take into account the input spectral distribution by
associating with each spectral component the corresponding
amplitude and phase values. Equation (14) becomes

∂a3(z)

∂z
= −2iC0

√
I0 tan(θ3)eikz3z

∫ r f

0
J0(kr j r)

×
{[∫

dkrS(kr )J0(krr)eiφ(kr )−ikzz

]2

×
[∫

dkrS(kr )J0(krr)e−iφ(kr )+ikzz

]}
r dr. (17)

Here, we have a triple integral over the transverse spatial
frequency kr , where kz =

√
k2 − k2

r . To make this expression
easier to analyze analytically, we define for each of these
integrals a different parameter, i.e., kr j , krl , and krm. Our
equation can then be written as

∂a3(z)

∂z
= − 2iC0

√
I0 tan(θ3)

∫ k

0
dkr jS(kr j )

∫ k

0
dkrl S(krl )

×
∫ k

0
dkrmS(krm) I ( jlm)

T PM exp(i�
 jlm − i�k jlmz),

(18)

where I ( jlm)
TPM = ∫ r f

0 J0(kr jr) J0(krl r) J0(krmr) J0(kr3r) rdr,
�
 jlm = φ(kr j ) + φ(krl ) − φ(krm), and �k jlm = kz j + kzl −
kzm − kz3.

Now, this model will allow us to predict how the efficiency
of the first spectral broadening stage is affected by the spectral
phase of the input pump beam. In the next two sections, we
use our model to understand two cases from the literature
regarding the propagation of Bessel beams in Kerr media.

V. SOFT OR ABRUPT INPUT CONDITIONS

Previous work by other groups [14,25,26] showed exper-
imentally and numerically that an abrupt transition between
linear and nonlinear propagation of an intense Bessel beam
yields efficient generation of outer ring and axial wave com-
ponents. In contrast, this is much less efficient when the
Bessel beam is smoothly forming into the nonlinear medium
(see Fig. 1 in Ref. [26]). These two input conditions are,
respectively, referred to as soft and abrupt input conditions.

In Fig. 3, we show numerical results of the NLSE, which
includes only the Kerr effect, as described in Sec. III A.

We use the same parameters as in Table I except for the
input power, which was reduced to Pin = 31.2 MW, corre-
sponding to a beam peak intensity of Imax = 9 TW/cm2. In
the linear regime, this Bessel beam reaches its peak intensity
at z = 2160 μm. For the abrupt input condition, the nonlinear
medium starts at this point, whereas for the soft input condi-
tion, the nonlinear propagation starts at z = 0.

We compare the evolution of the on-axis intensity and spa-
tial spectrum for soft and abrupt input conditions for the same
Bessel beam. We see, in agreement with the literature, that
the abrupt transition generates pronounced on-axis intensity
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FIG. 3. (a) On-axis intensity distribution of a Bessel-Gauss beam propagating in a pure nonlinear Kerr medium for the soft (dashed line)
and abrupt (dotted line) inputs; (b, c) corresponding spatial spectra evolution along the propagation distance (logarithmic scale) for both cases,
respectively. Note that the intensity of newly generated spectral components in the case of an abrupt transition is two orders of magnitude
higher than the one reached in the case of a soft transition. Parameters are presented in Table I and Pin = 31.2 MW.

modulation, in stark contrast with soft input conditions. The
evolution of spatial spectra can be compared in Figs. 3(b) and
3(c). For the abrupt input condition [Fig. 3(c)], the spectral
intensity of the axial wave and outer ring components quickly
grows, with an intensity two orders of magnitude higher than
in the case of the soft input condition [Fig. 3(b)]. We note that
the case of soft input conditions physically corresponds to the
same case as in previous sections. The oscillations of the on-
axis intensity are reduced because of the smaller input power.

We now use our reduced model to understand the different
behaviors. We demonstrate that the spectral phase distribu-
tion largely differs between soft and abrupt input conditions,
which impacts the first stage of spectral broadening.

We compare in Fig. 4(a) the input spectral amplitude (green
curve) and phase (red curve) corresponding to both cases.
The distance z̃ is the relative distance to the transition point
between the linear and the nonlinear medium. While the input
amplitude is naturally the same (in the form of a Gaussian),
we note that the phase distribution is much steeper in the
soft input condition case. In contrast, it is quasiflat within the
spectral range around the peak of the amplitude.

A quasiflat spectral phase implies that spectral components
composing the pump wave are nearly in-phase. Qualitatively,
if each of these spectral components interacts according to the
four-wave-mixing process described above, then each signal
wave generated from these interactions will be in phase with
the others. The resulting signal wave at a given frequency
will then be made of constructive interference between all
these waves, which explains the very rapid growth of spec-
tral components at about all frequencies around the central
one under the abrupt input condition. In contrast, a steep
spectral phase profile, which implies out-of-phase spectral
components, leads to partially destructive interferences and
the axial wave will then be weaker. Now, we use Eq. (18)
to obtain an analytical explanation. The triple integral over
the spectrum is unfortunately too heavy, and for the sake of
simplicity, we restrict the pump beam to only two spectral
components defined at kra and krb, such that kra ≈ krb ≈ kr0,
with φa and φb being their respective input spectral phases
and consider that they have the same amplitude. The spectral

distribution of each of interacting waves can then be written
as S̃(kr ) = δ(kr − kr0) [exp(iφa) + exp(iφb)].

The signal wave intensity I3(z) = |a3(z)|2 is then found to
be proportional to

I3(z) ∝ (
tan(θ3) I (03)

TPM

)2
z2 sinc2[�k03z/2]

× [1 + cos(φa − φb)]3. (19)
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FIG. 4. (a) Comparison between the input phase distributions at
z̃ = z − �z = 0), where �z marks the position of the beam with
sample input; it is 0 for the soft case (dashed red line) and 2160 μm
for the other case of an abrupt input condition (dotted red line).
(b) Results using our FWM model: (spatial) frequency-resolved
intensity (dB) of the signal wave resulting from the interaction
of three pump waves each composed of five frequencies, kr/kr0 =
[0.96–1.04], where their respective spectral phases correspond to
the (top) soft and (bottom) abrupt input conditions, respectively, as
described for (a).
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values. Numerical parameters are listed in Table I. (d) Input spectral phase profiles corresponding to the three Bessel beams.

The growth of the signal wave intensity is proportional to the
term z2sinc2[�k03z/2], which indicates the above-discussed
oscillating behavior. Of particular interest, I3(z, kz3) is propor-
tional to the cube of the phase-dependent term [1 + cos(φa −
φb)], which shows that a nonzero phase difference quickly
reduces the peak value of the oscillations and thus decreases
the magnitude of the axial wave seed.

In Fig. 4(b), we numerically solve our reduced FWM
equation, (19), over a more realistic case of a pump spectrum
composed of five frequencies in the range kr/kr0 ∈ [0.96–
1.04]. We plot the evolution of the signal wave spectral
intensity along propagation and compare results under soft
and abrupt input conditions. For each case, the input spectral
phase distribution is extracted from Fig. 4. Under the soft
input condition, initial spectral broadening is very weak and
the generated frequencies are close to the central one. Note
that it gradually extends to more frequencies for longer prop-
agation distances in cascadedlike fashion, in good qualitative
agreement with numerical simulations in Fig. 3(b) in the
propagation range [0–1500] μm. In contrast, in the case of
abrupt input conditions, the spectrum very rapidly broadens,
again in agreement with Fig. 3(c).

Therefore, we conclude that the spectral phase is an effec-
tive control parameter for the initial broadening regime and
therefore a control parameter for the instabilities occurring in
the second stage.

VI. CONTROL OF NONLINEAR INSTABILITIES USING
SHAPED INTENSITY PROFILES

In this section, we interpret previous numerical results on
the control of nonlinear instabilities depending on the initial
intensity rise in Bessel beams propagating inside nonlinear
Kerr media. In Ref. [18], we compared the nonlinear propa-
gation of three Bessel beams with different on-axis intensity
profiles in the linear propagation regime. Their peak maximal
intensity is chosen to be the same in order to study the
effect of the initial intensity rise on the growth of nonlinear

instabilities. These three target intensity profiles are depicted
in Fig. 5(a) and are described as follows: the first profile,
denoted profile 1, is that of a conventional Bessel-Gauss beam
(dashed green line) identical to that we have used previously.
The second profile (profile 2) consists of a linear leading edge
followed by a flat-top intensity and parabolic decaying trailing
edge (dotted blue line). Profile 3 is identical to profile 2 except
that it exhibits a parabolic intensity rise instead of a linear
ramp (red solid line). Numerical parameters are the same as
in Table I.

We used the same nonlinear propagation equation de-
scribed by Eq. (13). The evolution of the on-axis intensity
of these Bessel beams is presented in Fig. 5(b). Compared
to the case of the BG beam (profile 1), the two other
beams present oscillations of the central core intensity that
has the same period, but their amplitudes strongly differ.
Although profiles 2 and 3 differ only in the initial inten-
sity rise, the oscillation amplitude is significantly lower for
profile 3.

In the spectral domain [Fig. 5(c)], the observed weak
on-axis intensity oscillations in the case of profile 3 corre-
spond to weak intensity growth of the axial wave, below
−40 dB up to z = 4000 μm and its amplification remains
around −30 dB afterwards. In addition, in the initial stage
of spectral broadening, in the range z = [0–2000] μm, we
observe strong oscillations in the spectrum for profiles 1 and
2, while this oscillating behavior is initially absent in the case
of profile 3 and only appears at a propagation distance around
z = 3000 μm. Following the appearance of these oscillations,
both the axial wave and the outer ring increase in intensity,
which indicates that FWM processes become active past this
propagation point. However, their growth remains noticeably
weaker compared to the other two Bessel beams.

In Ref. [18], we reported that it is not because profile 3
has initially a low-intensity zone that nonlinear instabilities
are weaker. It is, as is the case with soft and abrupt input
conditions, the input spectral phase that is the main factor of
influence. Figure 5(d) shows the spectral phase distributions
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kr/kr0 = [0.805–1.195] for input phase distributions of (a) profile 1
and (b) profile 3.

corresponding to profiles 1, 2, and 3. The BG beam (profile 1)
has a spectral phase in the form of a linear ramp in the
range (kr/kr0 ∈ [0.98–1.02]) and is flat outside this range.
The spectral phase distribution of profile 2 is similar to that
of profile 1 except that it exhibits very weak oscillations in
the tails of the spectrum. In the case of profile 3, however,
while the spectral phase also takes the form of a linear ramp in
the range kr/kr0 ∈ [0.98–1.02], it varies significantly outside,
with a quasilinear ramp.

The spectral domain of influence of the phase is the range
kr/kr0 ∈ [0.8–1.2], where a change in the phase implies a
deviation of the on-axis intensity by more than 5% in the
linear propagation regime [18].

As in the previous section, we interpret the reduced non-
linear instabilities for profile 3 by the phase mismatch in
the very broad pump spectrum. Using our reduced FWM
model described by Eq. (18), we consider the contribution
of 27 spectral components in the chosen spectral range. This
number has simply been chosen as the minimum relevant
number of waves necessary to obtain a quantitative agree-
ment with NLSE simulation results. We numerically com-
pute the spectral intensity of the wave using Eq. (18) and
compare its evolution for spatial spectra corresponding to
profiles 1 and 3. The input spectral phases are the same as
in Fig. 5(d) and the relative amplitudes of the components
are also described by the respective spatial spectra of the
profiles.

Our results are shown in Fig. 6. Profile 1 (BG beam) shows
the same parabolic structures as previously. In contrast, this

feature is totally absent in the case of profile 3, where spectral
broadening only occurs starting from a propagation distance
of z ≈ 1700 μm. Particularly, the spectral expansion is in
good qualitative agreement with NLSE simulation results in
Fig. 5(c). We then conclude that the phase of the low-intensity
tails of the spatial spectrum also contribute to the initial
spectral broadening stage.

We stress that these conclusions are theoretically only valid
when the phase distribution is preserved along propagation.
According to our numerical simulation of the NLSE, the
relative input phase remains approximately unchanged up to
a propagation point of z = 1200 μm. As the spectral phase
flattens because of linear propagation [24], FWM interac-
tions become more efficient and inevitably lead to significant
growth of the axial wave and outer ring.

VII. CONCLUSIONS

In conclusion, we have developed a four-wave-mixing
model in order to interpret the different characteristics of the
growth of Kerr-induced instabilities in Bessel beams. We have
shown that nonlinear spectral distortions are established in
two steps. The first step consists of spectral broadening and
the generation of an axial wave seed. In the second step, this
axial wave seed is amplified and an outer ring is generated via
four-wave mixing. These new spatial frequency components
interfere with the main input Bessel beam, yielding oscilla-
tions of the on-axis intensity.

We have then used a reduced model where only the domi-
nant wave mixing terms are present so that we could expand
the model to broad spatial spectra. This reduced nonlinear
model allowed us to understand previous experimental and
numerical results where input conditions of Bessel beams
were yielding very different growth rates of nonlinear in-
stabilities. We have demonstrated that these differences can
be well explained by the weak differences in input spectral
phases, even outside the main peak of the spectral amplitude.
We believe that this approach will open new ways to control
nonlinear instabilities, as well as to extend the applicability of
Bessel beams for new applications. We also note that further
work is needed to expand the model to ultrashort pulses with
a broadband temporal frequency spectrum.
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