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Lopsided diffractions of distinct symmetries in two-dimensional non-Hermitian optical gratings
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Fraunhofer light diffraction across a thin two-dimensional lattice of cold atoms subject to transverse hybrid
modulations of two standing-wave crossed pump fields is seen to yield lopsided patterns of various degrees
of symmetry. We show that one can fully restrain the diffraction of a weak incident probe to two diagonal or
adjacent quadrants or even just to a single quadrant, depending on the phases of two standing-wave pumps and
on the probe detuning. Different diffraction symmetries with respect to the axes or diagonals of the diffraction
plane quadrants are interpreted here in terms of different out-of-phase interplay of absorption and dispersion
periodic distributions, resulting from different combinations of Hermitian, PT -symmetric, and non-Hermitian
modulations.
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I. INTRODUCTION

Non-Hermitian optical systems with parity-time (PT )
symmetry [1–4] and antisymmetry [5–9] have attracted a great
deal of attention because they provide possibilities for con-
trolling photon flows with various interesting characteristics.
Optical PT symmetry typically requires the complex refrac-
tive index to satisfy the condition n(x) = n∗(−x) in a given
direction. As opposed to PT symmetry, PT antisymmetry
is realized in optical media with the complex refractive in-
dex satisfying instead the condition n(x) = −n∗(−x). Recent
work has reported that PT symmetry and antisymmetry can
simultaneously occur in the same optical structure [10–12],
whereas feasible ways to convert from one to the other are
discussed in [8,9]. More importantly, non-Hermitian optical
structures have been explored to extend fascinating studies of
optical Bloch oscillation [13,14], coherent perfect absorption
[15], photon or phonon lasing [16–19], etc., and have become
the basis of a few nonreciprocal optical phenomena such
as unidirectional reflection [20,21], unidirectional invisibility
[22,23], and asymmetric diffraction [24–26]. In particular,
complex crystals described by non-Hermitian Hamiltonians
with complex periodic potentials have been expected to host
spectral singularities whose signatures could be assessed
through a typical Bragg diffraction experiment [27].

Applying standing-wave (SW), instead of traveling-wave
(TW), control fields in atomic media subject to electromag-
netically induced transparency (EIT) [28] is an efficient way
to realize complex periodic potentials that lay at the basis of
well-known phenomena such as dynamically tunable photonic
band gaps (PBGs) [29–31] and stationary light pulses (SLPs)
[32–34]. This method has also been used to realize structures
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of electromagnetically induced gratings (EIGs) [35–38] with
special forms of spatially periodic absorption and dispersion.
One main advantage of such Hermitian EIG structures is
that intensity distributions of the diffracted photons among
different orders can be manipulated “on demand” through
flexible amplitude and/or phase modulations of the trans-
mission function. This may be explored to generalize earlier
works on the lopsided diffraction of atomic (optical) waves off
one-dimensional (1D) non-Hermitian optical (atomic) grat-
ings with fixed potentials [39,40]. In fact, unconventional
optical modulations on EIG structures have recently been
brought to the development of cooperative nonlinear gratings
and non-Hermitian gratings. Cooperative nonlinear gratings
allow one to distinguish light fields of different photon statis-
tics with the dipole blockade effect of Rydberg atoms [41,42],
while non-Hermitian gratings typically result in asymmetric
diffraction patterns that can be tuned through the out-of-phase
interplay of phase and amplitude modulations [43–46]. Unidi-
rectional and controlled higher-order diffraction, through non-
Hermitian modulations on EIG structures built from Rydberg
atoms driven beyond the dipole blockade regime, has also
been reported [47]. Most of the above works hinge, however,
on 1D Hermitian or non-Hermitian EIG structures.

Here we investigate instead a two-dimensional (2D) non-
Hermitian EIG structure consisting of a square optical lattice
filled with ultracold atoms driven into the four-level N config-
uration (see Fig. 1) by two TW pumps and two orthogonal SW
pumps (2D pump cross gratings) [see Fig. 2(a)]. This realizes
a thin 2D non-Hermitian grating that, under specific driving
conditions, enables one to attain an arbitrary combination
of Hermitian, PT -symmetry, and non-Hermitian modulations
on the probe absorption and dispersion along the two orthog-
onal lattice axes. Such modulations, which may be “pure” or
“hybrid”, result in peculiar diffraction patterns bearing double
diagonal, single axial, and single diagonal symmetries in the
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FIG. 1. A four-level N configuration for 87Rb atoms driven by
a probe field of Rabi frequency (detuning) �p (δp) and two pump
fields of Rabi frequencies (detunings) �d and �c (�d and �c).
The four levels are |g〉 ≡ |5S1/2, F = 1〉, |a〉 ≡ |5S1/2, F = 2〉, |e〉 ≡
|5P1/2, F = 1〉, and |b〉 ≡ |5P1/2, F = 2〉 with decay rates �eg =
�bg = �ea = �ba � 2π × 5.9 MHz.

diffraction plane. Consequently, we observe diffracted pho-
tons only in two diagonal quadrants, two adjacent quadrants,
or a single quadrant, while diffraction patterns can be made to
undergo a π/2-rotation sweep by just changing the probe de-
tuning and/or the pump phases. It is finally worth mentioning
that the lopsided diffraction mechanism we propose here may
turn out to be relevant to the development of new concepts
on wave-front shaping that are now attained instead through
metasurfaces with subwavelength resolutions [48–50].

This work is organized through the following Sec. II, where
we summarize the background model, and Sec. III, where
we discuss the far-field Fraunhofer diffraction resulting from
three types of pure or hybrid modulations and interpret the
results as arising from the out-of-phase interplay between real
(dispersion) and imaginary (absorption) parts of the probe sus-
ceptibility. We summarize, at last, our conclusions in Sec. IV.

II. THE MODEL

We start by considering the four-level N configuration of
cold 87Rb atoms driven by three coherent fields of frequencies
(amplitudes) ωp (Ep), ωc (Ec), and ωd (Ed ), as shown in Fig. 1.
The weak probe field ωp interacts with transition |g〉 ↔ |e〉,

while the strong pump fields ωc and ωd act upon transi-
tions |g〉 ↔ |b〉 and |a〉 ↔ |e〉, respectively. The correspond-
ing detunings (Rabi frequencies) are defined as δp = ωp − ωeg

(�p = Ep℘ge/h̄), �c = ωc − ωbg (�c = Ec℘gb/h̄), and �d =
ωd − ωea (�d = Ed℘ae/h̄), with ωi j being transition frequen-
cies and ℘i j dipole moments. The atoms are assumed to be
loaded into a square optical lattice of period a along both the
x and y axes [see Fig. 2(a)]. Around the intensity maxima
formed by two (Gaussian) counterpropagating red-detuned
laser beams, a depth minimum occurs, leading to an approx-
imately harmonic lattice potential trap [51]. Assuming that
(i) all lattice traps are equally populated and (ii) the trapped
atoms are cool enough to occupy the lowest energy levels,
we represent the atomic density distribution at each (trap) site
{xi, yi} as

Ni, j (x, y) = N0e−[(x−xi )2/σ 2
x +(y−y j )2/σ 2

y ], (1)

corresponding to the ground state of a 2D (harmonic) trap
[52]. Here, N0 is the (average) peak density, while σx and
σy are the (average) half widths of a Gaussian distribution
along the transverse trapping directions [53]. The above as-
sumptions enable us to introduce the periodic susceptibility
exhibited by the incident probe,

χp(x, y) = ℘2
ge

2ε0 h̄�p
σge

∑
i, j

Ni, j (x, y) = ασgeN (x, y), (2)

with α = ℘2
ge/2ε0 h̄�p. The polarization σge can be obtained by

solving the density matrix equations

∂tσgg = �bgσbb + �egσee + i�∗
cσbg − i�cσgb

+ i�∗
pσeg − i�pσge,

∂tσaa = �baσbb + �eaσee + i�∗
dσea − i�dσae,

∂tσbb = −�baσbb − �bgσbb + i�cσgb − i�∗
cσbg,

∂tσga = −γ ′
gaσga + i�∗

cσba + i�∗
pσea − i�dσge,

∂tσgb = −γ ′
gbσgb + i�∗

cσeb + i�∗
c (σbb − σgg),

∂tσge = −γ ′
geσge + i�∗

cσbe + i�∗
p(σee − σgg) − i�∗

dσga,

∂tσab = −γ ′
abσab + i�∗

dσeb − i�∗
cσag,

FIG. 2. (a) Non-Hermitian 2D pump grating along the x′ and y′ axes (period a/
√

2) modulating a 2D atomic lattice along the x and y axes
(period a) with �c0, �±

c1, and �±
c2 together taking the role of �c in Fig. 1. (b) Details of the O(x, y) and O′(x′, y′) coordinate systems of relative

orientations given in terms of their origins and axes. (c) A side view of the 2D grating, i.e., its projection in the xz plane with balanced gain
(green) and loss (yellow) in the PT -symmetry regime.
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∂tσae = −γ ′
aeσae − i�∗

pσag + i�∗
d (σee − σaa),

∂tσbe = −γ ′
beσbe + i�cσge − i�∗

pσbg − i�∗
dσba, (3)

which arise as usual from the interaction Hamiltonian, in the
rotating-wave and electric-dipole approximations, associated
with our N -type driving configuration,

HI = h̄[δpσ̂ee + (δp − �d )σ̂aa + �cσ̂bb

+ h̄[�pσ̂eg + �d σ̂ea + �cσ̂bg + H.c.]. (4)

Here, σ̂μν = |μ〉〈ν| define the projection (μ = ν) and tran-
sition (μ 
= ν) operators [54], and their expectation values
σμμ and σμν denote the atomic population at level |μ〉 and
atomic coherence between levels |μ〉 and |ν〉, respectively.
They satisfy the properties

∑
μ σμμ = 1 and σμν = σ ∗

νμ, while
γμν = ∑

k (�μk + �νk )/2 denote the dephasing rates, with

�eg and �ea (�bg and �ba) being the decay rates from level
|e〉 (|b〉) to levels |g〉 and |a〉, respectively. We also intro-
duce the multiphoton detunings �ga = δp − δd , �be = δp −
δc, and �ab = δc + δd − δp, as well as the complex dephas-
ing rates γ ′

ga = γga + i�ga, γ ′
gb = γgb + iδc, γ ′

ge = γge + iδp,
γ ′

ab = γab + i�ab, γ ′
ae = γae + iδd , and γ ′

be = γbe + i�be, for
convenience in Eq. (3).

The real χR
p (x, y) and imaginary χ I

p(x, y) parts in Eq. (2)
describe the probe dispersion and absorption properties, re-
spectively. When �c,d and δc,d are “constant”, changes of
χR

p (x, y) and χ I
p(x, y) along both the x and y axes occur “in

phase”. This would lead to traditional 2D EIG structures
exhibiting symmetric diffraction patterns [56,57]. However,
nontrivial 2D EIG structures may be attained if changes of
χR

p (x, y) and χ I
p(x, y) along the x and/or y axes can be set

to occur “not in phase”, e.g., through the following crossed-
pump modulation:

�c(x, y) = �c0 + �c1(x′) + �c2(y′) = �c0 + 1

2
δ�c cos

x′

a/2
√

2π
+ 1

2
δ�c cos

y′

a/2
√

2π

= �c0 + 1

2
δ�c cos

(x − δx) − (y − δy)

a/2π
+ 1

2
δ�c cos

(x − δx) + (y − δy)

a/2π

= �c0 + δ�c cos
(x − δx)

a/2π
cos

(y − δy)

a/2π
= �c0 + δ�c f (x, y). (5)

Here, (δx, δy) denote the amounts by which the maxima of
Rabi frequency �c(x, y) shift relative to the corresponding
maxima of density distribution N (x, y). We denote by �c0 a
constant TW component, while �c1(x′) and �c2(y′) are two
SW components of period a/

√
2 along the two orthogonal

axes x′ and y′ rotated by an angle θ = −π/4 relative to the
xy plane [see Figs. 2(a) and 2(b)]. For convenience, in the
following discussion, we further rewrite the modulating factor
as

f (x, y) = sin

(
x

a/2π
− βx

)
sin

(
y

a/2π
− βy

)
(6)

by rescaling δx = a/4 + aβx/2π and δy = a/4 + aβy/2π .
The off-center cross modulation in Eqs. (5) and (6) thus
results in a space-dependent probe coherence σge(x, y) which,
together with N (x, y) in Eq. (2), yields nontrivial modulations
on our atomic lattice, whose diffraction features will be dis-
cussed in the next section. A side view of the 2D lattice under
the PT -symmetry modulation has been shown in Fig. 2(c) to
gain a clearer impression.

For a weak probe impinging perpendicular to the thin
atomic lattice [55], shown in Fig. 2(a), the (far-field) 2D
diffraction intensity [56,57] can be written as

Ip(θx, θy) ≈ ∣∣EI
p(θx, θy)

∣∣2

×
[

sin(πMR sin θx )

M sin(πR sin θx )

sin(πMR sin θy)

M sin(πR sin θy)

]2

, (7)

where the geometric factors depend on two ratios R = a/λp

and M = wo/a, with wo being the width of the incident probe
beam. We have also denoted by θx and θy the diffraction
angles with respect to the z direction in the xz and yz planes.

More specifically, probe diffraction will take place in a few
directions determined by the diffraction order {m, n} ac-
cording to angles θx → θx,m = arcsin(m/R) and θy → θy,n =
arcsin(n/R), with the number of diffraction orders depending
on the ratio R. The single square lattice (i.e., 2D unit cell)
diffraction function,

EI
p(θx, θy) =

∫ a
2

− a
2

∫ a
2

− a
2

TL(x, y)e−i2πR(x sin θx+y sin θy )dxdy, (8)

depends instead on the probe dispersion and absorption
directly through the transmission

TL(x, y) = e−2πLχ I
p(x,y)/λpei2πLχR

p (x,y)/λp (9)

across a short distance L in the z direction [58,59]. Note that
phase and amplitude modulations in Eq. (9) are associated,
respectively, with χR

p (x, y) and χ I
p(x, y), whose control makes

it feasible to attain the modulations on χR
p (x, y) and χ I

p(x, y)
that are “not in phase” that we sought for. We will discuss the
corresponding nontrivial modulations on our atomic lattice in
the next section.

III. RESULTS AND DISCUSSION

Now we examine and discuss the far-field Fraunhofer
diffraction that results from driving our 2D atomic lattice
both with (A) a PT -symmetry modulation and (B) a hybrid
non-Hermitian modulation. We just consider the partial PT
symmetry with respect to the x → −x and y → y transfor-
mation or the x → x and y → −y transformation by plotting
the diffraction intensity Ip(θx, θy) for nearly vanishing pump
detunings.
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FIG. 3. (a) Absorption and (b) dispersion distributions of a 2D
PT -symmetry atomic lattice attained for βx = βy = 0, together with
their 1D projections along the (c) x = y and (d) x = −y direc-
tions. Other parameters are �d = 2.0 MHz, �c0 = 4.5 MHz, δ�c =
1.6 MHz, δp = 5.96 MHz, R = 4, M = 10, L = 100 μm, and N0 =
3.5 × 1011 cm−3.

A. PT -symmetry modulation

Our 2D pump cross grating works in the PT -symmetry
regime when f (x, y) is a product of sine functions with βx =
βy = 0. It is clear that χ I

p(x, y) and χR
p (x, y) are spatially out

of phase (i.e., differ by π/2 in phase at each point), with the
former (latter) being an odd (even) function along the four
gray lines in the x and y directions [see Figs. 3(a) and 3(b)].
In addition, χ I

p(x, y) exhibits the double diagonal symmetry
with two positive (negative) peaks in the II and IV (I and
III) quadrants in each period of the atomic lattice, while
χR

p (x, y) exhibits the centrosymmetry with a single negative
peak centered at the origin. This is further seen by extracting
numerical values from the density plots of Figs. 3(a) and
3(b), namely, along the x = y [see Fig. 3(c)] and x = −y [see
Fig. 3(d)] lines, respectively. The balanced gain for x = y
and loss for x = −y (accompanied by the same dispersion)
in the 2D PT -symmetry regime can be thought of as the
extension of the balanced gain regime for x > 0 and loss
for x < −0 (accompanied by the same dispersion) in the 1D
PT -symmetry regime.

Figure 4 reports instead the diffraction intensity distri-
bution for a 2D PT -symmetry pump grating. We observe
(i) diffracted photons only in the II and IV quadrants, corre-
sponding to regions where χ I

p(x, y) > 0 (gain) and χR
p (x, y) <

0 (abnormal dispersion), with (ii) the diffraction pattern
largely dependent on N0, having more photons scattered into
higher diffraction orders as N0 increases. Therefore, 2D PT -
symmetry modulations lead to diffraction patterns of double
diagonal symmetry with respect to the x = y and x = −y lines,
with N0 a crucial parameter to control how probe photons are
distributed among different diffraction orders.

Finally, we address the question as to whether one may dy-
namically control “on demand” such an intriguing diffraction
pattern. Figure 5 shows that the double diagonal symmetric
diffraction, either in the II and IV or in the I and III

FIG. 4. Diffraction intensity Ip(θx, θy ) vs diffraction angles θx

and θy for a 2D PT -symmetry pump grating. Parameters are as
in Fig. 3, except (a) N0 = 6.5 × 1011 cm−3, (b) 8.7 × 1011 cm−3,
(c) 10.8 × 1011 cm−3, and (d) 13.0 × 1011 cm−3.

quadrants, depends on the signs of the probe detuning δp and
the modulating factor f (x, y), with the latter being controlled
through the shifts βx and βy [60]. In particular, if we change
the signs of both δp and f (x, y) from “+′′ to “−′′, the pattern
remains bound to the II and IV quadrants, yet when only one
sign is changed, the whole pattern undergoes a π/2 rotation

FIG. 5. Diffraction patterns of double diagonal symmetry at-
tained for PT -symmetry modulations along both the x and y direc-
tions. Parameters are as in Fig. 3(b), except (a) δp = 5.96 MHz and
βy = 0, (b) δp = −5.96 MHz and βy = π , (c) δp = 5.96 MHz and
βy = π , and (d) δp = −5.96 MHz and βy = 0. The insets show the
corresponding absorption (left) and dispersion (right) distributions in
a single square lattice.
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FIG. 6. Diffraction patterns of single axial symmetry attained
for a PT -symmetry modulation along the x (or y) direction and a
Hermitian modulation along the y (or x) direction. Parameters are as
in Fig. 3(b), except that here (a) βx = 0 and βy = π/2, (b) βx = 0
and βy = −π/2, (c) βy = 0 and βx = π/2, and (d) βy = 0 and βx =
−π/2. The insets show the corresponding absorption (upper or left)
and dispersion (lower or right) distributions in a single square lattice.

into the I and III quadrants. Because (i) the simultaneous
sign change of δp and f (x, y) results in the simultaneous sign
change of χ I

p(x, y) and χR
p (x, y), and (ii) the sign change of

only δp or f (x, y) results in the sign change of only χ I
p(x, y) or

χR
p (x, y), it is clear that the spatial interplay between the am-

plitude ∝ χ I
p(x, y) and phase ∝ χR

p (x, y) modulations of the
transmission TL(x, y) are responsible for this double diagonal
symmetric type of diffraction. We may further conclude from
the insets that probe photons are always diffracted into the
quadrants where (1) χ I

p(x, y) is positive (gain) when χR
p (x, y)

is negative (anomalous dispersion) or where (2) χ I
p(x, y) is

negative (loss) when χR
p (x, y) is positive (normal dispersion).

B. Hybrid non-Hermitian modulation

We now consider two cases when our atomic lattice is
driven by the 2D pump cross grating into a hybrid non-
Hermitian regime, whereby (i) a PT -symmetry (Hermitian)
modulation is applied along the x (y) or y (x) axis, or (ii) dif-
ferent non-Hermitian modulations are applied along the x and
y axes. A Hermitian modulation along the x axis is attained by
setting βx = ±π/2, while a non-Hermitian modulation along
the x axis is attained by setting βx = ±π/4 or ±3π/4 in
the modulating factor f (x, y); similarly when a Hermitian or
non-Hermitian modulation along the y axis is sought for.

Figure 6 shows that in case (i), probe photons are diffracted
into adjacent quadrants, leading to single axial symmetric far-
field diffraction. In particular, we have observed symmetric
(asymmetric) diffraction in quadrants II and III with respect
to the x (y) axis for βx = 0 and βy = π/2 [see Fig. 6(a)],
quadrants I and IV with respect to the x (y) axis for βx = 0 and
βy = −π/2 [see Fig. 6(b)], quadrants III and IV with respect

FIG. 7. Diffraction patterns of single diagonal symmetry attained
for non-Hermitian modulations along both the x and y axes. Param-
eters are as in Fig. 3(b), except that (a) βx = π/4 and βy = π/4,
(b) βx = −π/4 and βy = −3π/4, (c) βx = −π/4 and βy = −π/4,
and (d) βy = π/4 and βy = 3π/4. The insets show the corresponding
absorption (upper or left) and dispersion (lower or right) distributions
in a single square lattice.

to the y (x) axis for βy = 0 and βx = π/2 [see Fig. 6(c)], and
quadrants I and II with respect to the y (x) axis for βy = 0
and βx = −π/2 [see Fig. 6(d)]. We then control the single
axial symmetric type of diffraction to realize π/2 rotations
through an appropriate choice of βx and βy among the values
{0; ±π/2}. Such a control results in light diffraction sym-
metry along the direction displaying Hermitian modulation,
yet asymmetry along the direction exhibiting PT -symmetry
modulation.

Figure 7 shows that in case (ii), probe photons are
diffracted into single quadrants, leading to single diagonal
symmetry with respect to the x = y or x = −y line. Con-
trol of this diffraction pattern takes place through an ap-
propriate choice of the shifts βx and βy among the values
{±π/4,±3π/4}, whereby the modulating factor f (x, y) is
neither odd nor even along both x and y axes. Once again, the
hybrid non-Hermitian regime, realized via the modulations
(i) and (ii) that are responsible, respectively, for the single
axial symmetry in Fig. 6 and the single diagonal symmetry
in Fig. 7 of far-field diffraction, hinges on the spatial inter-
play between the amplitude ∝ χ I

p(x, y) and phase ∝ χR
p (x, y)

modulations of the transmission TL(x, y); the probe photons
are always diffracted into the quadrants where (1) χ I

p(x, y)
is positive (gain) when χR

p (x, y) is negative or (2) χ I
p(x, y)

is negative (loss) when χR
p (x, y) is positive, as shown by the

insets.
The results shown in the last two sections are finally

summed up in Table I, where the relationship between param-
eters and types of the 2D cross SW modulations (A) and (B),
and patterns and symmetries of the corresponding far-field
Fraunhofer diffraction are sketched. For completeness, we
also give the results corresponding to the normal grating with
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TABLE I. Diffraction patterns and symmetries for four pure or hybrid cross modulations.

SW pump phases Modulation types Diffraction patterns Diffraction symmetries

βx = π/2 and βy = π/2 Hermitian and Hermitian 4 quadrants Centrosymmetry
βx = 0 and βy = 0 PT symmetry and PT symmetry 2 diagonal quadrants Double diagonal symmetry
βx = 0 and βy = π/2 PT symmetry and Hermitian 2 adjacent quadrants Single axial symmetry
βx = π/4 and βy = π/4 Non-Hermitian and non-Hermitian 1 quadrant Single diagonal symmetry

a Hermitian modulation along both the x and y axes (βx =
βy = π/2). In this case, photons can be scattered into all four
quadrants with diffraction patterns of the centrosymmetry. It
is not difficult to imagine that diffraction patterns exhibiting
more involved symmetries or asymmetries could be observed
upon choosing values for βx and βy different from those we
have used. On more general grounds, our results are relevant
to all-optical switching as well as optical imaging even for
very weak probe fields. To this extent, as is often the case
with driven atomic level configurations, it is worth noting
that the 2D non-Hermitian cross gratings investigated here
exhibit a certain versatility. In principle, they could be adapted
to atom photonic crystal fiber interfaces, dealing even with
few-photon light signals [61,62], or to solid interfaces with
rare-earth-ion-doped crystals [63,64] or NV color centers
in diamond [65], where similar four-level N configurations
exist.

IV. CONCLUSIONS

The 2D optical lattices of driven cold atoms can provide an
interesting venue to realize non-Hermitian EIG structures with
various diffraction symmetry features. We have examined the
far-field Fraunhofer diffraction off a thin 2D atomic lattice
subject to transversely periodic cross modulations, including

pure PT -symmetry ones as well as hybrid ones as a combina-
tion of Hermitian, PT -symmetry, and non-Hermitian modu-
lations along two orthogonal axes. These spatial modulations,
now realizable through standard laboratory routines [66], can
be all-optically controlled to generate nontrivial far-field pat-
terns that span from double diagonal symmetric diffraction in
two diagonal quadrants to single axial symmetric diffraction
in two adjacent quadrants and single diagonal symmetric
diffraction in a single quadrant. These patterns appear to be
fairy robust against standard sources of noises (fluctuations),
e.g., in the atomic density or in the intensity of trapping or
pumping lasers [67]. The origin of the peculiar diffraction
patterns we anticipate is discussed in terms of the out-of-phase
interplay of the amplitude ∝ χ I

p(x, y) and phase ∝ χR
p (x, y) of

the transmission T (x, y) through the atomic lattice.
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