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Suppressing nonadiabatic transitions during adiabatic generation
of highly entangled states in bosonic Josephson junctions
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We study suppression of nonadiabatic transitions during adiabatic generation of a catlike state (a superposition
of different-sized cat states) and a spin squeezed state in a bosonic Josephson junction. In order to minimize
the adiabatic error, we use the quantum adiabatic brachistochrone, which enables us to track a geometrically
efficient path in parameter space under given conditions without requiring additional terms. For the creation of
a catlike state, divergence of the quantum geometric tensor associated with gap closing at the critical point is
avoided because of the parity conservation. The resulting schedules of parameters are smooth and monotonically
decreasing curves. Use of these schedules offers a reduction in the time to generate both a catlike state and a spin
squeezed state.
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I. INTRODUCTION

Development of quantum science and technologies has
elucidated the usefulness of entanglement. In many fields, use
of entangled states enables us to outperform classical devices
[1]. For example, in quantum metrology, we can produce sen-
sors that estimate unknown parameters with higher resolution
than the classical limitation called the standard quantum limit
[2–4]. Moreover, macroscopic entanglement provides us with
significant resolution approaching the quantum limitation
known as the Heisenberg limit [2–4]. Unknown parameters
that we can estimate differ depending on the physical sys-
tems, and thus generation of highly entangled states has been
investigated in various systems. In atomic systems, a lot of
successful experiments generating spin squeezed states have
been reported [5–13]. The number of particles composing
these spin squeezed states is suitable to be called macroscopic
(see, e.g., Ref. [4]). Moreover, cat states have also been
produced in trapped ions [14–16]. However, in contrast to spin
squeezed states, the number of particles composing cat states
is still limited to a dozen.

Typically, these highly entangled states can be dynamically
generated by using a one-axis twisting interaction [17]. In-
deed, the one-axis twisting interaction transforms a coherent
spin state into a spin squeezed state at first [17] and into a
cat state later [18]. However, the generation time of a cat
state is not very short, and thus it is difficult to create a large
cat state within the coherence time. Faster generation can be
realized by just adding Rabi coupling to the one-axis twisting
interaction [19], while fidelity to a cat state decreases when the
system size becomes large. Since these generation schemes
were proposed, some tricks to improve dynamical generation
have been discussed [20,21]. Not only do the generation time
and size of entanglement present difficulties, but also the
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termination of creation at the final time. Because these gen-
eration schemes are based on dynamical interference driven
by nonlinear interactions, we have to turn off all interactions
at the final time. Otherwise, highly entangled states collapse
into useless states.

These highly entangled states can be also generated by
adiabatic driving. Indeed, with certain parameter values, the
ground state of a system consisting of a one-axis twisting
interaction and Rabi coupling is a spin squeezed state for
repulsive interaction [22] and that is a cat state for attractive
interaction [23]. Note that it is difficult to directly approach
these ground states by cooling down alone because of small
energy gaps. In adiabatic generation, we first prepare the
trivial ground state in the large Rabi coupling limit, and we
then adiabatically sweep parameters into the large one-axis
twisting interaction limit [23–27]. Notably the generation time
of a cat state is comparable to the typical coherence time
[27]. However, the size of generated cat states can still reach
only up to N = 20 [16]. This limitation mainly arises from
particle losses [28,29]. Particle losses induce various noises
during generation and destroy entanglement. Because particle
losses are inevitable in ultracold-atom experiments, speedup
of generation is rather of interest to reduce this bad influence.

In both dynamical and adiabatic generation of spin
squeezed states, application of optimal control theory and
shortcuts to adiabaticity have been discussed and speedup of
generation was found [30–34]. However, optimal control the-
ory usually requires fast and irregular oscillating schedules of
parameters [30,33], which induce nonadiabatic transitions and
interference to finally achieve high fidelity to a target state,
and thus experimental implementation is not very straightfor-
ward. Shortcuts to adiabaticity also require oscillating sched-
ules of parameters, whereas oscillation of these schedules is
relatively slow [31,32,34]. For creation of cat states, applica-
tion of optimal control theory and shortcuts to adiabaticity was
also considered [35,36]. In the former case, fast and irregular
oscillating schedules and turning-off of all interactions at
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last are required to accelerate dynamical generation [35]. In
the latter case, a two-axis countertwisting interaction [17] is
additionally required to speed up adiabatic generation [36].
However, in spite of the fact that the usefulness of the two-axis
countertwisting interaction for fast generation of macroscopic
entanglement was pointed out about a quarter-century ago
[17] and many methods for realization have been proposed
[37–41], there has been no experimental realization of it in
atomic systems yet. Therefore, other realistic routes to fast
generation should be investigated. It is also noteworthy that in
the context of shortcuts to adiabaticity generation of this type
of cat state was first discussed in the transverse Ising model,
where not only two-axis countertwistinglike interaction but
also much higher-order interactions are required [42].

The quantum adiabatic brachistochrone is a systematic
method to find a time-optimal schedule of parameters in a
system [43,44]. A cost function of the adiabatic condition
is viewed as the action and minimized according to the
variational principle. The resulting Euler-Lagrange equation
gives the geodesic equation for adiabaticity and provides a
schedule of parameters. Compared with counterdiabatic driv-
ing [45,46], which is one method of shortcuts to adiabaticity
[47], the quantum adiabatic brachistochrone does not require
additional terms, and thus it is rather implementable.

In this paper, we use the quantum adiabatic brachis-
tochrone to suppress nonadiabatic transitions during adiabatic
generation of a catlike state and a spin squeezed state at
a bosonic Josephson junction without requiring additional
terms. We show that optimized schedules for adiabatic genera-
tion of both a catlike state and a spin squeezed state are smooth
and monotonically decreasing curves. Here, for creation of
a catlike state, we use the parity conservation of a bosonic
Josephson junction to avoid divergence of the quantum ge-
ometric tensor. According to these schedules, we observe an
increase in quantum Fisher information for a generated catlike
state and a decrease in the spin squeezing parameter for a gen-
erated spin squeezed state, which represent an improvement of
adiabaticity and an increase in metrological usefulness.

This paper is constructed as follows. In Sec. II, we review
the properties of bosonic Josephson junctions and formal-
ism of the quantum adiabatic brachistochrone. Generation
schemes are explained in Sec. III A in detail. We first discuss
the generation of catlike states in Sec. III B and then discuss
the generation of spin squeezed states in Sec. III C. We
summarize the present article in Sec. IV.

II. METHODS

A. Bosonic Josephson junctions

Bosonic Josephson junctions consist of two species of
bosons, a1 and a2, which are realized in various systems
including the low-energy limit of Bose-Einstein condensates
[48]. The Hamiltonian of a bosonic Josephson junction is
given by

HBJJ = h̄χJ2
z + h̄�Jx, (1)

where χ is the Kerr nonlinearity, � is the Rabi coupling,
and Jα , α = x, y, z is the angular momentum representation

of bosonic operators:⎧⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎩

Jx = 1

2
(a†

1a2 + a†
2a1),

Jy = 1

2i
(a†

1a2 − a†
2a1),

Jz = 1

2
(a†

1a1 − a†
2a2).

(2)

The first term is also known as the one-axis twisting interac-
tion [17]. This system is characterized by the parameter

� = χN

�
, (3)

where N is the number of atoms. Here we assume � � 0.
For positive nonlinearity χ > 0, the ground state of Hamil-

tonian (1) becomes a spin squeezed state, where fluctuation
along the z axis, �Jz, is suppressed and fluctuation along the
y axis, �Jy, is enhanced, when the parameter �−1 is small,
|�−1| < 1 [22]. This type of spin squeezed states has been
realized in experiments by adiabatically splitting condensates
[5]. The level of squeezing depends on the competition be-
tween adiabaticity and losses, i.e., how slowly parameters
change to suppress nonadiabatic transitions and how quickly a
spin squeezed state is generated to suppress the bad influence
of particle losses [8]. Therefore, speedup of generation is of
interest.

In contrast, for negative nonlinearity χ < 0, a cat state, a
superposition of a mode 1 condensate and a mode 2 conden-
sate, can be realized as the ground state of Hamiltonian (1) for
0 � �−1 < 1 [23]. However, creation of this cat state would
fail if one just cooled the system in this parameter region
due to the occurrence of spontaneous symmetry breaking.
This happens because of the exponentially small energy gap
between the ground state and the first excited state. Adiabatic
generation is one of the strategies for creating this cat state
[23,26,27]. The key point of adiabatic generation is parity
conservation [27], ensured by the commutation relation

[HBJJ,�] = 0, (4)

where � is the parity operator

� = exp[iπ (J − Jx )]. (5)

In adiabatic generation, we start with the trivial ground state of
Hamiltonian (1) in the disordered phase �−1 > 1, which has
the parity � = +1. Because the first excited state has parity
� = −1 and the parity is conserved in time evolution, we can
ignore the exponentially small energy gap [27]. The parity
conservation also ensures that the generated state is rather a
superposition of different-sized cat states [49],

|	〉 =
∑

m

gm|	m〉,

|	m〉 = 1√
2

(|N − m, m〉 + |m, N − m〉),

(6)

where
∑

m |gm|2 = 1. Therefore, the generated state is close
to a cat state (the NOON state) if {|gm|2} is distributed around
m ≈ 0. It was shown that parity measurement and Fourier
analysis enable us to detect this superposition including the
information on the size distribution of these cat states {|gm|2}
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and also to maximally extract the potential of this superposi-
tion in interferometry [49]. However, these properties are lost
in an exponential way under particle losses, although its decay
rate is lower than that of dynamical generation [49], and thus
we are interested in acceleration of generation.

B. Quantum adiabatic brachistochrone

The quantum adiabatic brachistochrone provides us with
systematic temporal optimization of Hamiltonians to achieve
adiabatic time evolution [43,44]. Here we briefly review this
method.

For a given Hamiltonian H(λ; s), the dynamical trans-
formation is a unitary operator V (s) that defines the time
evolution of a given state

|	(s)〉 = V (s)|	(0)〉 (7)

by the Schrödinger dynamics

ih̄
∂

∂s
V (s) = TH(λ; s)V (s), (8)

where s = t/T is the normalized time and T is the operation
time. Here we assume that the Hamiltonian depends on time
through time-dependent parameters λ(s) = (λ1, λ2, . . . , s).
For the same Hamiltonian, the adiabatic transformation is
a unitary operator Vad(s) that isometrically transforms the
projection operators as

Vad(s)Pn(λ; 0)V †
ad(s) = Pn(λ; s) (9)

for all n, where

H(λ; s)Pn(λ; s) = En(λ; s)Pn(λ; s), (10)

with the eigenenergy En(λ; s). The adiabatic transformation
generates adiabatic time evolution

|	ad(s)〉 = Vad(s)|	(0)〉. (11)

There exists a Hamiltonian Had(s) that generates adiabatic
time evolution, (11), as the Schrödinger dynamics

ih̄
∂

∂s
Vad(s) = THad(s)Vad(s). (12)

This adiabatic Hamiltonian Had(s) is given by

Had(s) = H(λ; s) + ih̄

T
[∂sPn(λ; s), Pn(λ; s)] (13)

for a given state in the nth eigensector of the Hamilto-
nian H(λ; s) [50]. Note that, in the context of shortcuts
to adiabaticity [47], the additional term is nothing but the
single-spectrum counterdiabatic term [51]. If we consider
the adiabatic transformation of the full eigensectors of the
Hamiltonian, we should introduce the usual counterdiabatic
terms [45,46] instead of Eq. (13).

Deviation of the dynamical transformation from the adi-
abatic transformation can be estimated by using the wave
operator

�(s) = V †
ad(s)V (s), (14)

satisfying the Volterra equation

�(s) = 1 −
∫ s

0
KT (s′)�(s′)ds′, (15)

with the kernel

KT (s) = V †
ad(s)[∂sP(λ; s), P(λ; s)]Vad(s), (16)

where �(s) is close to 1 when the dynamical transformation
is close to adiabatic transformation. Our goal is to minimize
1 − �(s) and it is achieved by minimizing the action

ε[λ(s)] =
∫ s

0
‖[∂s′Pn(λ; s′), Pn(λ; s′)]‖ds′, (17)

where the norm ‖ · ‖ is the operator norm. We can rewrite this
action as

ε[λ(s)] =
∫ s

0

√
2gi j λ̇iλ̇ jds′, (18)

with the metric

gi j = Re

⎡
⎣∑

m �=n

〈	n|∂iH|	m〉〈	m|∂ jH|	n〉
(Em − En)2

⎤
⎦, (19)

which is known as the quantum geometric tensor. The Euler-
Lagrange equation leads to the geodesic equation

λ̈i + i
jk λ̇

j λ̇k = 0, (20)

with

i
jk = 1

2 gil (∂kgli + ∂ jglk − ∂l g jk ). (21)

This geodesic equation gives an optimal schedule of parame-
ters under a given initial condition (for the detailed derivation,
see Ref. [44]).

III. RESULTS

A. Setups

We rewrite the bosonic Josephson junction Hamiltonian,
(1), as

HBJJ = sgn(χ )

(
1

N
J2

z + �−1Jx

)
(22)

and set the rescaled time τ = |χ |Nt with fixed χ . Then the
time dependence of the Hamiltonian comes only from �−1.
Note that this rescaled time differs from the normalized time
in the previous section. We simulate the rescaled Schrödinger
equation

i
∂

∂τ
|	(τ )〉 = HBJJ|	(τ )〉. (23)

As the initial state, we prepare the coherent spin state along
the x axis,

|	(0)〉 = 2−N/2
N∑

n=0

√(
N

n

)
|J, J − n〉. (24)

The parity of this state is � = +1 and it is close to the ground
state of the Hamiltonian with |�−1| > 1.

We determine the time dependence of the parameter �−1

according to the geodesic equation, (20), for adiabaticity. For
a single parameter, λ = �−1, the geodesic equation, (20),
reduces to [44]

2gλ̈ + (∂λg)λ̇2 = 0. (25)
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FIG. 1. An example of schedules of �−1 with respect to the
rescaled time |χ |Nt . The solid purple curve represents the schedule
based on the quantum adiabatic brachistochrone for C = −0.5 and
the dotted green line represents the linear schedule with the same
generation time. Here N = 100.

We can numerically solve this equation by giving the initial
parameter λ(0) and the time derivative of the initial parameter
λ̇(0). The equality

d

dτ
(
√

gλ̇) = 1

2
√

g
[2gλ̈ + (∂λg)λ̇2] = 0 (26)

holds, and thus we can also rewrite the geodesic equation,
(25), as

√
gλ̇ = C, (27)

with a constant C. In this case, we can numerically solve this
equation by giving the initial parameter λ(0) and giving a
certain constant C instead of λ̇(0). Note that the metric g is
simply given by

g =
∑
m �=n

|〈	m|(∂λHBJJ)|	n〉|2
(Em − En)2

. (28)

Because the parameter derivative of the Hamiltonian (∂λHBJJ)
and the parity operator � are commutative, i.e.,

[(∂λHBJJ),�] = 0, (29)

we can reduce summation in the metric, (28), so that the
eigenstate |	m〉 has a parity identical to that of |	n〉. This re-
duction is quite important for the present generation schemes
because we can avoid numerical divergence associated with
gap closing and with the degeneracies of the eigenstates.

B. Generation of cat states

First, we consider negative nonlinearity χ < 0 to create
a catlike state. We change the parameter �−1 from 2 to 0.
An example of schedules optimized by the quantum adiabatic
brachistochrone is shown in Fig. 1 with the corresponding lin-
ear schedule, λ(τ ) = (τ/τ f )λ(τ f ) + (1 − τ/τ f )λ(0), where
τ f = |χ |Nt f is the generation time. Here we set λ(0) = 2,
λ(τ f ) = 0, and C = −0.5. The quantum adiabatic brachis-
tochrone suggests a rapid decrease before approaching the
critical point, �−1 � �−1

c = 1 (in the disordered phase), and
a decrease after passing this (above the critical point and in

FIG. 2. The constant C dependence of the rescaled generation
time |χ |Nt f . Here N = 100.

the ordered phase). We can observe similar schedules with
different generation times t f when we set other values of the
constant C. The relationship between the generation time t f

and the constant C is shown in Fig. 2. It clearly indicates
t f ∝ C−1. Indeed, from Eq. (27), we can obtain

τ = C−1
∫ λ(τ )

λ(0)

√
gdλ. (30)

Because g is a function of λ, the generation time t f is inversely
proportional to the constant C.

Now we study the generation of a catlike state according
to the schedules obtained by the quantum adiabatic brachis-
tochrone (Fig. 1). Here we calculate the quantum Fisher
information FQ, which is a measure of the macroscopicity
of entanglement and related to the uncertainty of estimation
as �θ = 1/

√
FQ for an unknown parameter θ , with various

values of the constant C. We set the interferometric axis to Jz,
i.e., the quantum Fisher information is given by

FQ[|	(τ f )〉, Jz] = 4(�Jz )2, (31)

where (�Jz )2 is the variance of Jz with the state |	(τ f )〉.
Here, from Eq. (31), the maximum value of the quantum
Fisher information with Jz is N2. It is known that with a
local operator, such as Jz, a given state is at least entan-
gled if the quantum Fisher information is larger than N and
a given state is macroscopically entangled if the quantum
Fisher information scales as N2 (see, e.g., Ref. [4]). In the
present generation scheme, the large amount of quantum
Fisher information ensures a low excess energy, i.e., the
generated state is close to a cat state, and potential usefulness
in interferometry using the parity measurement [49]. Here
we plot the rescaled quantum Fisher information FQ/N2 with
respect to the rescaled generation time |χ |Nt f in Fig. 3,
where filled symbols represent the results by the quantum
adiabatic brachistochrone and the open symbols represent the
results by the linear schedule. Clearly the quantum adiabatic
brachistochrone improves the adiabaticity. Note that quantum
Fisher information monotonically increases during generation
with the quantum adiabatic brachstochrone as shown in Fig. 4,
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FIG. 3. The rescaled quantum Fisher information FQ/N2 with
respect to the rescaled generation time |χ |Nt f . Filled symbols rep-
resent the quantum adiabatic brachistochrone and open symbols
represent the linear schedule. Here N = 50 (purple circles), 100
(green squares), and 150 (cyan triangles).

where the rescaled quantum Fisher information FQ/N2 is
plotted with respect to the rescaled time |χ |Nt .

It is of interest whether or not the present results can scale
with the system size. In Fig. 3, we find that the rescaled
quantum Fisher information FQ/N2 versus the rescaled gen-
eration time |χ |Nt f does not make a big difference except
for small finite-size corrections when we change the system
size N from 50 to 150. Here we further study how much
the quantum adiabatic brachistochrone improves the quantum
Fisher information compared with that of the linear sched-
ule. We plot the improving rate R = F QAB

Q /F Linear
Q in Fig. 5,

where F QAB
Q (F Linear

Q ) is the quantum Fisher information of the
generated state by the quantum adiabatic brachistochrone (the
linear schedule). The improving rate R also shows a similar
behavior when we change the system size N . The important

FIG. 4. Growth of quantum Fisher information with respect to
the rescaled time |χ |Nt . The purple curve represents the quantum
adiabatic brachistochrone and the green curve represents the linear
schedule. Here C = −0.5 and N = 100.

FIG. 5. The rate of improvement in quantum Fisher information
R = F QAB

Q /F Linear
Q with respect to the rescaled generation time τ f =

|χ |Nt f . Here N = 50 (purple circles), 100 (green squares), and 150
(cyan triangles). We also plot the supplemental black line, R =
F QAB

Q /F Linear
Q = 1.

point is that the quantum adiabatic brachistochrone improves
the quantum Fisher information by more than double in the
fast-generation-time regime 4 � |χ |Nt f � 14, where a large
amount of quantum Fisher information can be obtained by the
quantum adiabatic brachistochrone. It is also important that
the rate of improvement becomes large when we increase the
system size N .

We now discuss why the schedules obtained by the quan-
tum adiabatic brachistochrone take the form of Fig. 1 and
why they can improve the adiabaticity. We plot a part of the
energy spectrum in Fig. 6. Clearly it shows small energy gaps
around the critical point �−1

c = 1 (although there are some
finite-size corrections), and thus we have to slowly change the
parameter around there. We can see an increase in the energy
differences when the parameter becomes small, but the quan-
tum adiabatic brachistochrone still suggests changing the
parameter slowly. We can confirm this reason by calculating

FIG. 6. The energy spectrum {En − E0} with respect to the pa-
rameter �−1. Here N = 100.
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FIG. 7. A part of the transition matrices from the ground state to
excited states as functions of �−1. Here N = 100.

the transition matrices

p0→n = |〈	n(τ )|(∂λHBJJ)|	0(τ )〉|2. (32)

Here we plot some of the main contributions in Fig. 7. We find
that the transition matrix from the ground state to the second
excited state p0→2 becomes large when the parameter �−1

decreases, in contrast to a decrease in other elements. This is
why the quantum adiabatic brachistochrone suggests a slow
decrease even though the energy differences become large.
Note that the transition matrices from the ground state to odd-
numbered excited states vanish due to the parity conservation.

C. Generation of spin squeezed states

Next, we consider positive nonlinearity χ > 0 to create a
spin squeezed state. An example of schedules optimized by
the quantum adiabatic brachistochrone is shown in Fig. 8. In
contrast to the case of negative nonlinearity χ < 0, the quan-
tum adiabatic brachistochrone just suggests a fast decrease
at first and an extremely slow decrease around |�−1| ≈ 0.
However, this final slow process does not contribute very
much to spin squeezing. In order to show it, we consider
two cases, |�−1| : 2 → 0 and |�−1| : 2 → 0.005, with C =
−0.07. The operation time of the case |�−1| : 2 → 0 is about
χNt f = 29.0, while that of the case |�−1| : 2 → 0.005 is
about χNt f = 12.5. To decrease the parameter |�−1| from
0.005 to 0, we need an additional generation time χNt =
16.5, which is longer than the time to decrease |�−1| from
2 to 0.005. Nevertheless, the spin squeezing parameter

ξ 2
S = N (�Jz )2

〈Jx〉2
, (33)

which is related to the uncertainty of estimation as �θ =
ξS/

√
N for an unknown parameter θ and thus a given state is

metrologically useful if ξS < 1, does not change very much
during the process |�−1| : 0.005 → 0 as shown in Fig. 9.
Therefore, hereafter we only consider the process |�−1| :
2 → 0.005. Note that in contrast to the case of the quantum
Fisher information for negative nonlinearity χ < 0, the spin
squeezing parameter does not monotonically decrease during
generation by the quantum adiabatic brachistochrone. This is

FIG. 8. An example of schedules of |�−1| with respect to the
rescaled time χNt . The solid purple curve represents the schedule
based on the quantum adiabatic brachistochrone during |�−1| : 2 →
0.005 and the dotted purple curve, which extends from the solid
curve, is that during |�−1| : 0.005 → 0, for C = −0.07. The dotted
green line is the corresponding linear schedule to the solid purple
curve. Here N = 100.

because both (�Jz ) and 〈Jx〉 decrease and the spin squeezing
parameter depends on the rate of these quantities.

We calculate the spin squeezed parameter with various
values of the constant C and depict it in Fig. 10. As we
can see, the quantum adiabatic brachistochrone decreases
the spin squeezed parameter, i.e., increases the metrological
usefulness, except for an ultrafast regime, χNt f � 3. In this
ultrafast regime, the spin squeezed parameter is not so small,
and thus we are not as interested in this regime. Therefore, we
can generally say that the quantum adiabatic brachistochrone
improves the generation of a spin squeezed state. In contrast

FIG. 9. Decrease in the spin squeezing parameter with respect
to the rescaled time χNt . The solid purple curve represents the
quantum adiabatic brachistochrone with |�−1| : 2 → 0.005 and the
dotted purple curve extending from the solid curve is that with
|�−1| : 0.005 → 0. The solid green curve represents the correspond-
ing linear schedule with |�−1| : 2 → 0.005. Here C = −0.07 and
N = 100.
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FIG. 10. The square of the spin squeezing parameter ξ 2
S with

respect to the rescaled generation time χNt f . Filled symbols rep-
resent the quantum adiabatic brachistochrone and open symbols
represent the linear schedule. Here N = 50 (purple circles), 100
(green squares), and 150 (cyan triangles).

to the case of negative nonlinearity χ < 0, the system size de-
pendence is quite small. For a small number of particles, N =
50, we calculate the square of the spin squeezing parameter
over the long-time regime and plot it in Fig. 11. Notably, the
spin squeezing parameter of a spin squeezed state generated
via quantum adiabatic brachistochrone with χNt f ∼ 20 is
approximately equal to that generated by the linear schedule
with χNt f ∼ 900. This result shows the significance of using
the quantum adiabatic brachistochrone for generation of a spin
squeezed state.

We also calculate the improving rate of the spin squeezing
parameter R′ = (ξQAB

S /ξLinear
S )2 and plot it in Fig. 12. For a

wide generation time region, a spin squeezed state generated
via quantum adiabatic brachistochrone has more than double
metrological usefulness compared with that generated by the
linear schedule.

FIG. 11. Longer-time version of Fig. 10 for N = 50. Filled
symbols represent the quantum adiabatic brachistochrone and open
symbols represent the linear schedule.

FIG. 12. The rate of improvement in the spin squeezing param-
eter R′ = (ξQAB

S /ξLinear
S )2 with respect to the generation time χNt f .

Here N = 50 (purple circles), 100 (green squares), and 150 (cyan
triangles).

Finally, we also calculate the quantum Fisher information
of the generated spin squeezed states for comparison with the
generated catlike states. It should be noted that the quantum
Fisher information of a given state is larger than N , i.e., it
is metrologically useful, if the spin squeezing parameter of
the state is less than 1 because the inequality FQ � N/ξ 2

S
holds [4]. Here we plot the quantum Fisher information
scaled by N , FQ/N , in Fig. 13. It clearly shows that the
generated spin squeezed states are metrologically useful and
the quantum adiabatic brachistochrone also improves the
quantum Fisher information of spin squeezed states. How-
ever, it should be noted that the amount of quantum Fisher
information of spin squeezed states is not as large com-
pared with that of catlike states. Indeed, for a fixed scaled

FIG. 13. The quantum Fisher information scaled by N , FQ/N ,
with respect to the rescaled generation time χNt f . Filled symbols
represent the quantum adiabatic brachistochrone and open symbols
represent the linear schedule. Here N = 50 (purple circles), 100
(green squares), and 150 (cyan triangles). Generated states are at least
entangled and metrologically useful if FQ/N surpasses the solid black
line, FQ/N = 1.
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generation time |χ |Nt f , the quantum Fisher information of
the generated spin squeezed states scales as FQ ∝ N with
FQ > N , whereas that of the generated catlike states scales
as FQ ∝ N2. Moreover, the maximum amount of the quantum
Fisher information of a spin squeezed state as the ground
state of the bosonic Josephson junction Hamiltonian is FQ =
N2/2 + N [4], while that of a cat state is FQ = N2.

IV. SUMMARY

In this paper, we have considered the quantum adiabatic
brachistochrone at a bosonic Josephson junction to find time-
optimal schedules to create a catlike state and a spin squeezed
state. In contrast to counterdiabatic driving at a bosonic
Josephson junction, which requires a two-axis countertwist-
ing interaction [36], the quantum adiabatic brachistochrone
does not require any additional term. Moreover, we found
that the optimized schedules are smooth and monotonically
decreasing curves, which is rather realistic to implement in ex-
periments compared with schedules designed by conventional
optimal control theory [30,33,35]. Note that, for the creation
of a catlike state, parity conservation plays an important role
to avoid divergence of the quantum geometric tensor. It is also
advantageous that generated states are automatically trapped
by classical fixed points after generation. In the generation of
both a catlike state and a spin squeezed state, we observed
improvement of adiabaticity and an increase in metrological
usefulness compared with the corresponding linear schedules.

Finally we discuss the possibility of realizing the present
schemes in experiments. Our numerical simulation was stud-
ied by using the scaled time |χ |Nt , and thus we first con-
sider the accessible generation time from the viewpoint of
nonlinearity. In Refs. [6] and [52], a Bose-Einstein conden-
sate of 87Rb shows χ = 2π × 0.063 Hz for N = 200–450

atoms. Therefore, the prefactor of the rescaled time can
achieve χN ≈ 178 s−1. Similarly, in Ref. [10], it shows χN ≈
188 s−1. For a time generating an intermediate-scale catlike
state (about 80%–90% the size of the largest cat state) or a
well-squeezed state (ξ 2

S � 0.2), |χ |Nt f ≈ 10; these values re-
quire a generation time t f ≈ 50 ms. Moreover, Ref. [7] shows
χ = 0.49 s−1 with N ≈ 1250 using the atom-chip-based tech-
nique and it achieves χN ≈ 613 s−1. For this parameter, the
generation time is t f ≈ 16 ms. Note that a larger number of
atoms leads to faster decay of entanglement. Therefore, one
might be rather interested in generation with several hundred
atoms. According to Ref. [10], the nonlinearity χ behaves
as χ ∝ 1/

√
N , and thus it could be possible to achieve

χN ≈ 368 s−1 for N = 450 using the atom-chip-based tech-
nique. It offers the generation time t f ≈ 27 ms. Entanglement
generation experiments are typically performed over about
10–50 ms [5–13] and generated states are detectable even
if about 10% of atoms are lost [49], and thus we expect
that the generation time of the present scheme is realistic.
Note that we have to simultaneously induce both nonlinearity
and Rabi coupling as demonstrated in Ref. [52], and thus
not all the above parameters are available. It should also be
noted that negative nonlinearity is not directly realized in
the above experimental setups. However, we can realize the
present scheme with negative nonlinearity by considering the
highest-energy eigenstate with positive nonlinearity as exper-
imentally studied in Ref. [52] and as theoretically studied in
Ref. [27] because the ground state with negative nonlinearity
and the highest-energy eigenstate with positive nonlinearity
are mathematically equivalent. This can be done by preparing
the coherent spin state along the (−x) axis instead of the
x axis as the initial state. In summary, we believe that an
intermediate-scale catlike state and a well-squeezed state will
be generated using our scheme in the near-future.
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