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Dynamics of relaxation and dressing of a quenched Bose polaron
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We study the nonequilibrium dynamics of relaxation and dressing of a mobile impurity with velocity v,
suddenly immersed, or quenched, into a zero-temperature homogeneous Bose-Einstein condensate. A many-
body generalization of Weisskopf-Wigner theory is implemented to obtain the impurity fidelity, reduced density
matrix and entanglement entropy. The dynamics depends crucially on the Mach number β = v/c, with c the
speed of sound of superfluid phonons, and features many different timescales. Quantum Zeno behavior at early
time is followed by nonequilibrium dynamics determined by Cerenkov emission of long-wavelength phonons
for β > 1 with a relaxation rate �p ∝ (β − 1)3. The polaron dressing dynamics slows down as β → 1 and
is characterized by power laws t−α with exponents α = 3/2, 1/2, 2 for β > 1, = 1, < 1, respectively. The
asymptotic entanglement entropy features a sharp discontinuity, and the residue features a cusp at β = 1.
These nonequilibrium features suggest universal dynamical critical phenomena near β � 1 and are a direct
consequence of the linear dispersion relation of long-wavelength superfluid phonons. We conjecture on the
emergence of an asymptotic dynamical attractor with β � 1.
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I. INTRODUCTION

The original concept of the polaron by Landau [1] and
Pekar [2] describing the “dressing” of a charged particle by
the polarization cloud in a polar material and moving together
as a quasiparticle in the medium [3] has become a paradigm
of quantum many-body physics [4–8].

Ultracold atoms provide an arena to study experimentally
the main concepts of impurity dressing by the environmental
degrees of freedom with unprecedented control over the var-
ious parameters and couplings [9]. The emergence of quasi-
particles from the dressing of an atomic impurity in a Fermi
sea, namely, a Fermi polaron, was experimentally observed by
immersing a single atom in imbalanced Fermi gases [10–14].
Impurities immersed in a Bose-Einstein condensate (BEC)
become Bose polarons [15–17]. The observation of Bose
polarons has been reported by radio frequency spectroscopy
of ultracold bosonic 39K atoms [18] and for 40K impurities
in an ultracold atomic gas of 87Rb [19]. The quasiparticle
properties of the Bose polaron, such as the effective mass
and wave-function renormalization (residue), are studied in
Ref. [20] in a systematic perturbation theory in the impurity-
BEC scattering length. Bose polarons of a (fermionic) 40K
impurity immersed in a 29Na BEC near quantum criticality
have been studied in Ref. [21] probing spectral properties of
the dressed quasiparticle via locally resolved radiofrequency
spectroscopy. The experimental possibilities of studying Bose
polarons as paradigmatic of the dynamics of impurities in

*boyan@pitt.edu
†jasnow@pitt.edu
‡xlwu@pitt.edu
§coalson@pitt.edu

ultracold quantum gases have fueled recent theoretical inves-
tigations of its quasiparticle properties [22–33]. In Ref. [34] it
is proposed that many-body interferometry may offer a direct
pathway to access the dynamics of the polaron cloud.

More recently a novel instance of a polaron has been
shown to emerge in the case of molecules with rotational
degrees of freedom immersed in a superfluid, giving rise to
an “angulon” quasiparticle [35] with properties very similar
to polaron states resulting from the many-body dressing of
electrons in polar materials.

Understanding the nonequilibrium dynamics of a mobile
impurity in a background of a cold degenerate gas remains a
challenging problem. In Ref. [36] the real-time dynamics of
an impurity in a trapped ideal Bose gas was studied within a
T-matrix expansion in the impurity-Bose gas interaction. The
quantum dynamics of Bose polarons has been studied with
a time-dependent variational ansatz in Refs. [33,37], near a
Feschbach resonance in Ref. [38], and implementing dynami-
cal renormalization group concepts in Ref. [39]. The quantum
kinetics of thermalization and cooling of Bose polarons was
studied within the framework of a Boltzmann equation in
Ref. [40]. More recently the nonequilibrium dynamics of Bose
polaron formation and decoherence has been studied via a
quantum master equation [41] in the Born approximation to
second order in the impurity-BEC coupling. One of the main
results in this reference is that the polaron formation time
depends strongly on the velocity of the impurity, exhibiting
a critical slowdown for velocity close to the speed of sound of
excitations in the BEC [41].

A. Motivation and main results

The nonequilibrium dynamics of an impurity suddenly
immersed in a BEC and the formation and evolution of
a Bose polaron continues to be an important theme in
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quantum many-body physics with timely experimental real-
izations with ultracold quantum gases. Our study is motivated
by the fundamental and overarching question of nonequilib-
rium dynamics of quasiparticle formation, the possibility of
experimentally probing this dynamics [18,37,42,43], and the
wealth of dynamical phenomena revealed by previous studies
in Refs. [37–39,41]. We implement a many-body general-
ization of the Weisskopf-Wigner method [44] ubiquitous in
quantum optics [45] to study the time evolution of an initial
state that describes an impurity suddenly immersed in a BEC.
This is an example of a “quench” because the interaction
between the impurity and the BEC is turned on suddenly.
These methods provide a nonperturbative resummation in real
time, are conceptually and technically different from previous
approaches, and have not hitherto been applied to the polaron
problem to the best of our knowledge. They provide com-
plementary information on the dynamical timescales, from
the early transient to the long-time dynamics of relaxation
and dressing. A bonus of this method is that it allows us to
obtain the Loschmidt echo or “fidelity” of the impurity and
to study the build-up of correlations between the impurity
and superfluid phonons and yields the full quantum state in
real time revealing the dynamics of formation of the polaron
cloud. Tracing over the phonon excitations yields the impurity
reduced density matrix from which we can obtain the von
Neumann entanglement entropy as a measure of correlations
between the impurity and the BEC.

The nonequilibrium dynamics depends crucially on the
Mach number of the impurity β = v/c with v the impurity
velocity and c the speed of sound of superfluid phonons. We
focus on the case β � 1 because this case reveals universal
long-time dynamics. Early transient dynamics features quan-
tum Zeno behavior with a crossover to a stretched exponen-
tial. The long-time dynamics is very different depending on
whether β ≶ 1. For β > 1 there are two different processes:
(1) relaxation via Cerenkov emission of phonons with a
rate �p ∝ (β − 1)3 and (2) dressing by virtual phonons with
asymptotic dynamics that features a power law ∝ t−3/2 on
a timescale ∝ (β − 1)−2/3 modulated by oscillations with
frequency ∝ (β − 1)2 as a consequence of a threshold in the
spectral density. For β � 1 only dressing by virtual phonons
is available with an asymptotic long-time dynamics featur-
ing a power law t−1/2 for β = 1 and t−2 on a timescale
∝ (β − 1)−3/2 for β < 1 confirming a slow-down of dressing
dynamics as β → 1.

We show that unitarity relates fidelity decay to the emer-
gence of impurity-BEC correlations and the growth of en-
tanglement entropy, whose asymptotic long-time behavior
features a sharp transition across β = 1.

Several of these results are in agreement with those found
in Ref. [41] for the dynamics of a coherence. We explain
the agreement by showing a direct relationship between the
coherence defined in Ref. [41] and the amplitudes of the
time-evolved quantum state. Taken together these results hint
at a dynamical critical behavior with β playing a similar
role to Tc/T in a theory of critical phenomena. This critical
behavior is universal for β � 1 in the sense that the power
laws and exponents are independent of couplings and masses
and are solely a consequence of the linear dispersion relation
of long-wavelength superfluid phonons.

We conjecture that if the impurity is quenched into the
BEC with β � 1, relaxational dynamics leads the polaron
to a dynamical attractor manifold where the effective Mach
number is β � 1, and the quantum state is described by the
impurity entangled with multiphonon states.

The article is organized as follows: Sec. II introduces the
model. Section III develops the many-body generalization of
Weisskopf-Wigner theory, and Sec. IV applies this framework
to study the time evolution of a quenched impurity. Section V
discusses in detail the dynamics of dressing. Section VI
discusses unitarity and the entanglement entropy. Section VII
discusses the long-time dynamics within the context of dy-
namical critical phenomena, Sec. VIII establishes a direct
relation with the framework of Ref. [41] discussing similar-
ities and differences in the results, and Sec. IX discusses the
regime of validity of the main approximation, various related
aspects of our study, and the conjecture of an asymptotic
dynamical attractor. Section X summarizes our conclusions.
Several appendices are devoted to technical aspects.

II. THE MODEL

We consider the dynamics of an impurity of mass M
immersed in a three-dimensional homogeneous Bose con-
densed gas (BEC) at zero temperature, described by the total
Hamiltonian

H = HB + Hi + HI ≡ H0 + HI , (1)

with

HB =
∑

�k
Ek b†

�k b�k, Ek = ck

√
1 + k2

k∗2
, (2)

Hi =
∑

�k
εk C†

�k C�k, εk = k2

2M
, (3)

HI =
∑

�k

Vk√
�

C†

�p−�k C�p (b†
�k + b−�k ), (4)

where � is the quantization volume. HB describes the Bo-
goliubov excitations of the Bose condensed gas with phonon
speed of sound c and k∗ = 2mc with m the mass of the
particles in the Bose gas. Hi is the impurity Hamiltonian, and
HI , the interaction Hamiltonian, describes a Fröhlich model
[4]. The matrix element of the interaction is given by

Vk = U0

√
n0 k2

2mEk
, (5)

where U0 is a local interaction vertex and n0 is the BEC
condensate density. This interaction may be understood sim-
ply from an impurity-BEC density-density local interaction,
namely,

HI = U0

∫
d3x�†(�x)�(�x)ψ†(�x)ψ (�x), (6)

where �,ψ are the second quantized fields associated with
the impurity and the BEC, respectively. In the Bogoliubov
approximation with ψ (�x) = √

n0 + δψ (�x), diagonalizing the
quadratic form of the BEC Hamiltonian in terms of Bo-
goliubov coefficients and keeping only the cubic interaction
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term between the impurity and the Bogoliubov excitations,
one arrives at HI . We have neglected a mean field constant
correction δε ∝ U0n0 to the impurity energy in (3) because it
is not relevant for the discussion. The validity of a Fröhlich
interaction Hamiltonian relies on a macroscopically large
number of atoms in the BEC ground state and on weak
coupling. Such interaction has been implemented in various
references [17,37,41]. A more consistent treatment in terms
of the T-matrix is provided in Ref. [41] and yields a similar
result. The main physical phenomena discussed in this article
are described by long-wavelength, low-energy phonon excita-
tions, justifying a posteriori the local approximation for the
interaction between the impurity and the BEC.

We consider that the impurity is immersed in the zero-
temperature ground state of the BEC at time t = 0 and follow
the time evolution of this initial state. This corresponds to a
quench because it is equivalent to switching the interaction on
at t = 0.

We now introduce the effective coupling

λ2 = U 2
0 n0

(2π )2 2mc
, (7)

whose dimensions are 1/(mass)2. As will be discussed in
detail below, the effective dimensionless coupling relevant
for the low-energy, long-time dynamics is the dimensionless
combination λ2M2.

We restrict our study strictly to weak coupling, namely,
λ2M2 
 1, postponing to future work the extension to strong
coupling.

III. MANY-BODY GENERALIZATION OF
WIGNER-WEISSKOPF THEORY

Our main goal in this article is to study the time evolu-
tion of an initial state corresponding to immersing a single
impurity into the ground state of a homogeneous BEC. We
implement a many-body generalization of the Weisskopf-
Wigner method, widely used in quantum optics to study
the interaction of few level atoms with the electromagnetic
radiation field [45]. This method provides a resummation of
the perturbative series in real time and offers an alternative
framework to study nonequilibrium dynamics of many-body
systems.

We start with a review of this framework which, to the
best of our knowledge, has not been applied to the study of
nonequilibrium dynamics of polaron formation.

Consider a system whose total Hamiltonian is given by
H = H0 + HI , where H0 describes free particles and HI is the
interaction between the different degrees of freedom. The time
evolution of states in the interaction picture of H0 is given by

i
d

dt
|�(t )〉I = HI (t ) |�(t )〉I , (8)

where the interaction Hamiltonian in the interaction picture is

HI (t ) = eiH0 t HI e
−iH0 t . (9)

Equation (8) has the formal solution

|�(t )〉I = U (t, t0)|�(t0)〉I , (10)

|A
|κ |κ

|A

κ|HI |A A|HI |κ

FIG. 1. Transitions |A〉 ↔ |κ〉 in first order in HI .

where

U (t, t0) = eiH0t e−iH (t−t0 ) e−iH0t0 (11)

is the time evolution operator in the interaction picture and
obeys

i
d

dt
U (t, t0) = HI (t )U (t, t0), U (t0, t0) = 1. (12)

We will assume that 〈n|HI |n〉 = 0 by redefining the noninter-
acting Hamiltonian H0 to include any possible diagonal matrix
elements of the interaction. This amounts to diagonalizing the
perturbation to first order in the interaction and subtracting
from HI the diagonal matrix elements in the basis |n〉.

We expand the time-evolved state in the basis of eigenstates
of H0, namely,

|�(t )〉I =
∑

n

An(t )|n〉, (13)

where |n〉 obeying H0|n〉 = En|n〉 form a complete set of
orthonormal states and An(t ) are the corresponding time-
dependent amplitudes. In the many-body case these are many-
particle Fock eigenstates of H0. From Eq. (8) one finds the
exact equation of motion for the coefficients An(t ), namely,

Ȧn(t ) = −i
∑

m

Am(t )〈n|HI (t )|m〉. (14)

Although this equation is exact, it generates an infinite hi-
erarchy of simultaneous equations when the Hilbert space
of states spanned by {|n〉} is infinite dimensional. However,
this hierarchy can be truncated by considering the transition
between states connected by the interaction Hamiltonian at
a given order in HI . Thus consider the situation depicted in
Fig. 1, where one state, |A〉, couples to a set of states {|κ〉},
which couple back to |A〉 via HI .

Keeping only these transitions, we obtain

ȦA(t ) = −i
∑

κ

〈A|HI (t )|κ〉Aκ (t ), (15)

Ȧκ (t ) = −iAA(t )〈κ|HI (t )|A〉, (16)

where the sum over κ is over all the intermediate states
coupled to |A〉 via HI .

More explicitly, for this study the state |A〉 ≡ |1i
�p; 0B〉 is the

state with one impurity of momentum �p and the vacuum of the
(BEC), and the states |κ〉 = |1i

�p−�k ; 1B
�k 〉 are the states with the

impurity with momentum �p − �k and a phonon of momentum
�k (see below). These states are connected via the interaction
Hamiltonian HI (4). The approximation of considering the
states connected to the initial state in lowest order in pertur-
bation theory effectively provides a resummation of second
order self-energy diagrams as shown explicitly below.
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Consider the initial value problem in which at time t = 0
the state of the system |�(t = 0)〉 = |A〉,

AA(0) = 1, Aκ (0) = 0. (17)

Solving Eq. (16) with the initial condition (17), and inserting
its solution back into Eq. (15) we find

Aκ (t ) = −i
∫ t

0
〈κ|HI (t ′)|A〉AA(t ′) dt ′, (18)

ȦA(t ) = −
∫ t

0
(t, t ′)AA(t ′) dt ′, (19)

where the self-energy (t, t ′) is given by

(t, t ′) =
∑

κ

〈A|HI (t )|κ〉〈κ|HI (t ′)|A〉. (20)

This integro-differential equation with memory yields a non-
perturbative solution for the time evolution of the amplitudes
and probabilities. Inserting the solution for AA(t ) into Eq. (18)
one obtains the time evolution of amplitudes Aκ (t ) from
which we can compute the time-dependent probability to pop-
ulate the state |κ〉, namely, |Aκ (t )|2. This is the essence of the
Weisskopf-Wigner [44] nonperturbative method ubiquitous in
quantum optics [45].

The hermiticity of the interaction Hamiltonian HI , together
with the initial conditions in Eqs. (17), yields the unitarity
condition (see Appendix A for a proof)∑

n

|An(t )|2 = 1, (21)

where the sum is over all states. This condition will be relevant
in the discussion of the dressing dynamics of the asymptotic
state and the entanglement entropy.

A. Exact solution of Eq. (19)

Using Eq. (9) and the expansion in the basis of eigenstates
of H0 in the matrix elements of Eqs. (15) and (16), we find

Aκ (t ) = −i〈κ|HI |A〉
∫ t

0
ei(Eκ−EA )t ′ AA(t ′) (22)

and

(t − t ′) =
∑

κ

|〈A|HI |κ〉|2 ei(EA−Eκ )(t−t ′ )

≡
∫ ∞

−∞
dω′ ρ(ω′) ei(EA−ω′ )(t−t ′ ), (23)

where we introduced the spectral density ρ(ω′), given by

ρ(ω′) =
∑

κ

|〈A|HI |κ〉|2δ(Eκ − ω′). (24)

Now the integro-differential equation (19) can be solved via
Laplace transform. Introducing the Laplace variable s, the
Laplace transform of the self-energy (t − t ′) is given by

̃(s) =
∫ ∞

−∞
dω′ ρ(ω′)

s + i(ω′ − EA)
. (25)

Defining the Laplace transform of AA(t ) as CA(s), with the
initial condition AA(t = 0) = 1, we find

CA(s) = 1

s + ̃(s)
. (26)

This expression makes explicit that the Wigner-Weisskopf
approximation is akin to a Dyson (geometric) resummation
of self-energy diagrams similar to the Dyson series for a
single-particle Green’s function.

The solution for the amplitude is given by the anti-Laplace
transform, namely,

AA(t ) =
∫ i∞+ε

−i∞+ε

ds

2π i
CA(s) est , (27)

where ε → 0+ determines the Bromwich contour in the com-
plex s-plane parallel to the imaginary axis to the right of all
the singularities, for which stability requires their real part to
be negative. Writing s = i(ω − iε) we find

AA(t ) =
∫ ∞

−∞

dω

2π i

eiωt[
ω − iε − ∫∞

−∞ dω′ ρ(ω′ )
ω+ω′−EA−iε

]
.

(28)

In the free case where ρ = 0, the pole is located at ω = iε →
0, leading to a constant AA(t ) = 1. In perturbation theory,
for weak coupling, there is a complex pole very near ω = 0
which can be obtained directly by expanding the integral in
the denominator near ω = 0. We find∫ ∞

−∞
dω′ ρ(ω′)

ω + ω′ − EA − iε
� −�EA − zA ω + i

�A

2
, (29)

where

�EA = P
∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)
≡
∑

κ

′ |〈A|HI |κ〉|2
EA − Eκ

, (30)

�A = 2π ρ(EA), (31)

zA = P
∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)2
≡
∑

κ

′ |〈A|HI |κ〉|2
(EA − Eκ )2

, (32)

where P stands for the principal part, and the
∑

κ
′ only

sums states with Eκ �= EA. The term �EA is recognized as
the energy renormalization (Lamb shift), while �A is seen to
be the decay rate as obtained from Fermi’s golden rule. The
long-time limit of AA(t ) is determined by this complex pole
near the origin leading to the asymptotic behavior

AA(t ) � ZA e−i�Er
A t e− �r

A
2 t , (33)

where

ZA = 1

1 + zA
� 1 − zA = ∂

∂EA
[EA + �EA] (34)

is the wave-function renormalization constant (residue), and

�Er
A = ZA �EA, (35)

�r
A = ZA �A. (36)

B. Markovian approximation

The time evolution of AA(t ) determined by Eq. (19) is
slow in the sense that the timescale is determined by a weak
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coupling kernel  ∝ H2
I . This allows us to use a Markovian

approximation in terms of a consistent expansion in deriva-
tives of AA. Define

W0(t, t ′) =
∫ t ′

0
(t, t ′′) dt ′′ (37)

so that

(t, t ′) = d

dt ′ W0(t, t ′), W0(t, 0) = 0. (38)

Integrating by parts in Eq. (19) we obtain∫ t

0
(t, t ′)AA(t ′) dt ′

= W0(t, t )AA(t ) −
∫ t

0
W0(t, t ′)

d

dt ′AA(t ′) dt ′. (39)

The second term on the right-hand side is formally of fourth
order in HI because W0 � H2

I and ȦA �  � H2
I . This pro-

cedure can be iterated, setting

W1(t, t ′) =
∫ t ′

0
W0(t, t ′′) dt ′′, W1(t, 0) = 0, (40)

with

W0(t, t ′) = d

dt ′ W1(t, t ′). (41)

Integrating by parts again yields∫ t

0
W0(t, t ′)

d

dt ′AA(t ′) dt ′ = W1(t, t ) ȦA(t ) + · · · (42)

leading to∫ t

0
(t, t ′)AA(t ′) dt ′

= W0(t, t )AA(t ) − W1(t, t ) ȦA(t ) + · · · . (43)

The integro-differential equation (19) now becomes

ȦA(t )[1 − W1(t, t )] + W0(t, t )AA(t ) = 0 (44)

with the result

AA(t ) = AA(0) e−i
∫ t

0 E (t ′ ) dt ′
, (45)

where

E (t ) = −i W0(t, t )

1 − W1(t, t )
� −i W0(t, t )[1 + W1(t, t ) + · · · ], (46)

with W0 � H2
I ; W0W1 � H4

I , etc. The leading-order solution
of the Markovian approximation is obtained by keeping
E (t ) = −i W0(t, t ); this is the order that we will consider in
this study.

Note that in general E (t ) is complex in which the real
part of E yields a time-dependent phase while its imaginary
part determines a time-dependent decay function. As discussed
below in more detail, the contributions to this decay function
that do not grow in time at asymptotically long time yield
the overall asymptotic normalization of the state, namely, the
wave-function renormalization constant.

In the Markovian approximation the amplitudes Aκ (t )
become

Aκ (t ) = −iAA(0) 〈κ|HI |A〉
∫ t

0
e−i(EA−Eκ )t ′

e−i
∫ t ′

0 E (t ′′ ) dt ′′
dt ′.

(47)
Therefore, once we find E (t ) we can obtain the amplitudes of
the excited states in the total wave function.

With (t, t ′) given by Eq. (23) to leading order in HI , we
find

E (t ) = −i
∫ t

0
(t, t ′) dt ′ = −iW0(t, t )

=
∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)
[1 − e−i(ω′−EA )t ], (48)

yielding

−i
∫ t

0
E (t ′) dt ′

= −i t
∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)

[
1 − sin(ω′ − EA)t

(ω′ − EA)t

]
−
∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)2
[1 − cos[(ω′ − EA)t]]. (49)

Asymptotically as t → ∞, these integrals approach∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)

[
1 − sin(ω′ − EA) t

(ω′ − EA) t

]
−−−−→
t → ∞ P

∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)
(50)

and ∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)2
[1 − cos[(ω′ − EA)t]]

−−−−→
t → ∞ π t ρ(EA) + P

∫ ∞

−∞
dω′ ρ(ω′)

(EA − ω′)2
. (51)

Using these results we find in the asymptotic late-time limit,

−i
∫ t

0
E (t ′) dt ′ → −i�EA t − �A

2
t − zA, (52)

where �EA, �A, zA are given by Eqs. (30)–(32) to leading
order in the interaction strength. From this we read off

AA(t ) = ZA e−i�EA t e− �A
2 t , ZA = e−zA . (53)

Hence, the Weisskopf-Wigner framework within the Markov
approximation yields results in complete agreement with the
asymptotic result from the exact solution Eq. (33), to leading
order in HI [O(H2

I )].
However, extracting the time evolution during the early

and intermediate regimes, not just the asymptotics, from the
Laplace transform method is more difficult because, in gen-
eral, the integrals in Eq. (28) must be done numerically.

The main advantage of the Weisskopf-Wigner method is
that it provides a systematic framework to study the full time
evolution. Once the spectral density ρ(ω) is obtained the final
expression (45) along with the result (49) are amenable to
analytic study.
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IV. POLARON DYNAMICS

We now implement this method to study the time evolution
of the quantum state corresponding to an impurity immersed,
or “quenched,” at time t = 0 into the zero-temperature con-
densate in its ground state. We identify the state |A〉 in the
previous section with the state |1i

�p; 0B〉, namely, one impu-
rity of momentum �p and energy εp = p2/2M (neglecting
the constant mean field energy) and the BEC vacuum, and
the states |κ〉 with the excited states having one phonon,
namely, |1i

�p−�k; 1B
�k 〉. These states are connected to |1i

�p; 0B〉 by

the interaction Hamiltonian HI given by (4).
In the interaction picture this corresponds to

|�(0)〉 = ∣∣1i
�p; 0B

〉 ⇒ Ai
�p(0) = 1, (54)

where Ai
�p(t ) is the amplitude of the single-impurity state, and

all other amplitudes vanish at the initial time. The interaction
Hamiltonian HI connects the state |1i

�p; 0B〉 with excited states
of the form |1i

�p−�k; 1B
�k 〉 corresponding to an impurity with

momentum �p − �k and a phonon of momentum �k, with matrix
element 〈

1i
�p; 0B

∣∣HI (t )
∣∣1i

�p−�k; 1B
�k
〉 = Vk√

�
ei(εp−ε �p−�k−Ek )t

, (55)〈
1i

�p−�k; 1B
�k
∣∣HI (t )

∣∣1i
�p; 0B

〉 = Vk√
�

e−i(εp−ε �p−�k−Ek )t
, (56)

where Vk is given by Eq. (5). The matrix elements (55) and
(56) describe the absorption and emission, respectively, of a
phonon of momentum �k by the impurity.

Introducing AiB
�p,�k (t ) as the time-dependent amplitudes of

the excited states |1i
�p−�k ; 1B

�k 〉 in the total wave function |�(t )〉I

in the interaction picture, the Weisskopf-Wigner equations
(15) and (16) become

Ȧi
�p(t ) = −i

∑
�k

〈
1i

�p; 0B
∣∣HI (t )

∣∣1i
�p−�k; 1B

�k
〉
AiB

�p,�k (t ), Ai
�p(0) = 1,

(57)

ȦiB
�p,�k (t ) = −i

〈
1i

�p−�k ; 1B
�k
∣∣HI (t )

∣∣1i
�p; 0B

〉
Ai

�p(t ), AiB
�p,�k (0) = 0.

(58)

The solution of Eq. (58) is given by

AiB
�p,�k (t ) = −i

∫ t

0

〈
1i

�p−�k; 1B
�k
∣∣HI (t ′)

∣∣1i
�p; 0B

〉
Ai

�p(t ′) dt ′

= −i
〈
1i

�p−�k; 1B
�k
∣∣HI (0)

∣∣1i
�p; 0B

〉
×
∫ t

0
e−i(εp−ε �p−�k−Ek )t ′ Ai

�p(t ′) dt ′, (59)

which upon inserting into (57) yields

Ȧi
�p(t ) = −

∫ t

0
(t − t ′)Ai

�p(t ′) dt ′, Ai
�p(0) = 1, (60)

where the self-energy is given by

(t − t ′) =
∑

�k

∣∣〈1i
�p−�k; 1B

�k
∣∣HI (0)

∣∣1i
�p; 0B

〉∣∣2 ei(εp−ε �p−�k−Ek )(t−t ′ )

≡
∫

d p0 ρ(p0; p) ei(εp−p0 )(t−t ′ ), (61)

p

p − k

k

p

FIG. 2. One-loop self-energy ; the solid lines correspond to the
impurity, the wavy line to phonons.

where we introduced the spectral density

ρ(p0; �p) =
∑

�k

∣∣〈1i
�p−�k ; 1B

�k
∣∣HI (0)

∣∣1i
�p; 0B

〉∣∣2 δ(p0 − ε �p−�k − Ek ).

(62)
We recognize  as the one-loop self energy depicted in Fig. 2.
To this (second) order, the Weisskopf-Wigner method pro-
vides a real-time resummation of these self-energy diagrams.

In terms of the coupling λ given by Eq. (7) it follows that∣∣〈1i
�p−�k; 1B

�k
∣∣HI (0)

∣∣1i
�p; 0B

〉∣∣2 = (2π )2λ2

�

k√
1 + k2

k∗ 2

, (63)

and the spectral density is given by

ρ(p0; p) = λ2
∫ ∞

0

k3√
1 + k2

k∗2

∫ 1

−1
d[cos(θ )]

δ

[
p̃0 − k2

2M
+ v k cos(θ ) − Ek

]
dk, v = p

M
,

(64)

where v is the velocity of the impurity, and we have made
explicit that the spectral density depends on the variable

p̃0 = p0 − εp. (65)

The explicit calculation of the spectral density is relegated to
Appendix B and given by Eq. (B3). For β � 1 and for p̃0 

Mc2/2 it is given by Eq. (B14) (see also the next section).

Following the steps described in the previous section, we
find, in the Markov approximation,

Ai
�p(t ) = e−i�εp(t ) t e−γp(t ), (66)

where �εp(t ) is the (time-dependent) energy renormalization
(Lamb shift), given by [see Eq. (49)]

�εp(t ) = −
∫ ∞

−∞
d p̃0

ρ( p̃0, p)

p̃0

[
1 − sin( p̃0 t )

p̃0 t

]
(67)

and

γp(t ) =
∫ ∞

−∞
d p̃0

ρ( p̃0, p)

p̃2
0

[1 − cos( p̃0 t )], (68)

which describes the relaxation and dressing dynamics of the
polaron. We note that γp(t ) is manifestly positive. Since our
focus is to study the dynamics of relaxation and dressing, we
will neglect the energy renormalization �εp, and focus solely
on γp(t ).

Keeping only the one-phonon processes to leading order in
the interaction, as described above, the time-evolved state in
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the interaction picture is given by (we suppress the interaction
picture label I , to simplify notation)

|�(t )〉 = Ai
�p(t )

∣∣1i
�p; 0B

〉+∑
�k

AiB
�p,�k (t )

∣∣1i
�p−�k; 1B

�k
〉
. (69)

This is an entangled state of the impurity and excited phonons
in the BEC revealing correlations between the impurity and
the bath of excitations of the BEC.

Once we obtain the amplitude Ai
�p(t ) given by Eq. (66) in

the Markov approximation, we insert this result into Eq. (59)
to obtain the amplitudes AiB

�p,�k (t ), thereby obtaining the full

quantum state to this order. We obtain

AiB
�p,�k (t ) = 〈

1i
�p−�k; 1B

�k
∣∣HI (0)

∣∣1i
�p; 0B

〉
×
∫ t

0
e−i[εp+�εp(t ′ )−ε �p−�k−Ek ]t ′

e−γp(t ′ ) dt ′, (70)

where the matrix element is given by (56).
The interaction picture state (69) is remarkably similar

to the variational state for the Bose polaron proposed in
Ref. [33], which is a generalization of a variational ansatz
for the Fermi polaron introduced in Ref. [46]. However, there
are two main differences with the variational approach of
Ref. [33]:

(1) The coefficients Ai
�p(t );AiB

�p,�k (t ) depend on time and are

completely determined by the time evolution of the initial
state via the Weisskopf-Wigner equations, not from a varia-
tional approach.

(2) Unitary time evolution entails that these coefficients
satisfy the unitarity condition |Ai

�p(t )|2 +∑
�k |AiB

�p,�k (t )|2 = 1.

In particular, as discussed below, for the case β > 1 the
coefficient of the single-impurity term vanishes in the long-
time limit.

A. Interpretation of amplitudes

The Weisskopf-Wigner amplitudes Ai
�p(t );AiB

�p,�k (t ) have im-

portant physical interpretations. The single-impurity ampli-
tude in the interaction picture is given by [see Eqs. (10) and
(11)]

Ai
�p(t ) = 〈�(0)|�(t )〉 = 〈�(0)|eiH0t e−iHt |�(0)〉. (71)

The survival probability

P (t ) = |〈�(0)|�(t )〉|2 = ∣∣Ai
�p(t )

∣∣2 = e−2γp(t ) (72)

is recognized as the Loschmidt echo [47] for an initial state
that evolves under a perturbation HI and is also identified with
the fidelity [48] of the state, which is a benchmark for quantum
information [49].

The probability associated with the excited phonon states
in the time-evolved state (69), |AiB

�p,�k (t )|2, also has an illumi-

nating interpretation: it is the phonon distribution function in
the time-evolved state, namely,

f�k (t ) = 〈�(t )|b†
�kb�k|�(t )〉 = ∣∣AiB

�p,�k (t )
∣∣2. (73)

Therefore the total number of phonons excited by the nonequi-
librium dynamics of the impurity is given by

N ph(t ) =
∑

�k

∣∣AiB
�p,�k (t )

∣∣2 → �

∫
d3k

(2π )3
f�k (t ), (74)

where in the last step we took the large volume limit. This
observation will become relevant when we discuss unitarity
of the time evolution and the entanglement entropy in the
following sections.

B. Early-time dynamics

If there is a maximum momentum or frequency in the
phonon spectrum, namely, a cutoff �̃0 in the spectral density
so that ρ( p̃0) = 0 for p̃0 � �̃0, then for short times so that

t�̃0 
 1 we can replace 1 − cos( p̃0 t ) � p̃2
0

2 t2 in Eq. (68). In
this case we find

γp(t ) = 1

2

(
t

tZ

)2

, (75)

which is a manifestation of the quantum Zeno effect [50–53].
The probability of remaining in the initial state, namely, the
fidelity, at short time is given by∣∣Ai

�p(t )
∣∣2 = e−(t/tZ )2

, (76)

with the Zeno timescale tZ given by

1

t2
Z

=
∫

ρ( p̃0; p) d p̃0 = 〈
1i

�p; 0B
∣∣H2

I

∣∣1i
�p; 0B

〉
. (77)

We used the definition of the spectral density given by Eq. (62)
along with the completeness of the states |1i

�p−�k; 1B
�k 〉. Using the

result (B4) in Appendix B for the large p̃0 limit of the spectral
density we find

tZ � [
2
3λ2k∗(2μ)3/2 �̃

3/2
0

]−1/2
, (78)

where μ = mM/(m + M ) is the reduced mass.
The quantum Zeno effect has been observed in transitions

of hyperfine states of 9Be ions in a Penning trap [54], as well
as in trapped cold Na atoms [55]. In Ref. [56] the authors
propose that off-resonant Raman scattering off a BEC can
produce a polaron state, and that optical monitoring of its
decay into BEC excitations can display the quantum Zeno
effect. However, the analysis of Ref. [41] suggests that such
an effect would occur on an experimentally unobservable
timescale.

For t�̃0 � 1 but still for short timescales with 1/�̃0 

t 
 1/mc2, 1/Mc2, we can take the frequency cutoff to infin-
ity and change variables to x = p̃0 t in (68) to obtain

γp(t ) = t
∫ ∞

−∞
ρ
(x

t
; p
) [1 − cos(x)]

x2
dx. (79)

In this time interval we need the behavior of ρ( p̃0 = x/t ; p)
for large p̃0, which is given by (B4) in Appendix B; using this
result and carrying out the remaining integral over x, we find

γp(t ) = 1

2

√
t

tS
; tS = [16

√
πλ2cμ3/2m]−2, (80)
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leading to a stretched exponential law for the fidelity:∣∣Ai
�p(t )

∣∣2 = e
−
√

t
tS . (81)

This result is similar to the early-time dynamics for the coher-
ence obtained in Ref. [41] (see the discussion in Sec. VIII).

C. Long-time dynamics

The asymptotic long-time limit given by Eq. (51) (with
EA ≡ εp) suggests that we write

ρ( p̃0; p) = ρ(0; p) + ρ( p̃0; p), (82)

yielding

γp(t ) = �p

2
t + zp(t ), (83)

where

�p = 2πρ(0; p),

zp(t ) =
∫ ∞

−∞
d p̃0

ρ( p̃0, p)

p̃2
0

[1 − cos( p̃0 t )], (84)

using ∫ ∞

−∞
d p̃0

[
1 − cos( p̃0 t )

p̃2
0

]
= π t . (85)

The result for �p is simply Fermi’s golden rule. In the
asymptotic long-time limit the oscillatory term vanishes by
the Riemann-Lebesgue theorem since ρ(0; p) = 0; hence it
follows from Eq. (51) that

zp(t ) −−−→
t→∞ zp(∞) = P

∫ ∞

−∞
d p̃0

ρ( p̃0, p)

p̃2
0

, (86)

since the principal part excises p̃0 = 0. Therefore, the contri-
bution from zp(t ) saturates at long time becoming a constant.
This contribution describes the “dressing” of the impurity by
the virtual cloud of phonon excitations, whereas that from
ρ(0; p) yields a linear secular term indicating the decay or
relaxation of the initial state via energy-conserving processes.
This observation leads us to separate the relaxation from the
dressing dynamics in the long-time limit by writing

e−γp(t ) = Z (t )︸︷︷︸
dressing

e− �p
2 t︸ ︷︷ ︸

relaxation

, Z (t ) = e−zp(t ). (87)

This separation entails a criterion to distinguish between
relaxation of the quasiparticle, namely, the decay of the initial
amplitude via processes that conserve energy and momentum
described by the decay rate �p, from the virtual transitions that
renormalize or “dress” the impurity by a phonon cloud and
determine Z . We refer to the energy-conserving transitions,
namely, the emission of Cerenkov phonons, as “on-shell,” and
the virtual transitions as “off-shell,” with p̃0 describing the
virtuality of the process.

Therefore, the survival probability, or Loschmidt echo (72)
is given by

P (t ) = Z2(t ) e−�p t , (88)

and in particular the residue, or quasiparticle weight, is iden-
tified with Z (∞) = e−zp(∞).

In Appendix C we obtain the asymptotic value zp(∞) [see
Eq. (C4)]. It is given explicitly for the equal mass case by
Eq. (98) below.

A rescaling p̃0t → x in the integral defining zp(t ), Eq. (84)
reveals that the long-time dynamics is determined by the small
p̃0 region of the subtracted spectral density. Furthermore, we
focus on the case when the impurity velocity v = p/M � c.
We argue below that the long-time dynamics in this region
is described by the low-energy Bogoliubov excitations corre-
sponding to the linear part of the dispersion relation, namely,
superfluid acoustic phonons with dispersion relation Ek = ck.
The study of the long-time dynamics in this region will yield
results that are reminiscent of critical phenomena featuring
a slowing down of relaxational and dressing dynamics (see
Sec. VII below). Thus our main approximation to study the
long-time dynamics in this region is to restrict the dispersion
relation of Bogoliubov excitations to the linear part, namely,
acoustic phonons with Ek = ck. The regime of validity of this
approximation is discussed in detail in Sec. IX.

D. v � c, small p̃0

For small p̃0 (long time) and v � c the region of support of
the δ function in the spectral density (64) corresponds to Ek �
ck. The spectral density is obtained explicitly in Appendix B
in terms of the variables

β = v

c
, εc = 1

2
Mc2, kc = Mc. (89)

The ratio β is identified with the Mach number of the impurity
moving in the superfluid background of the BEC. For v � c
and small p̃0 the spectral density ρ( p̃0) is given by [see
Eq. (B14) in Appendix B]

ρ( p̃0; p) = 2λ2 M2 εc

3β

{[
kmax( p̃0)

kc

]3

−
[

kmin( p̃0)

kc

]3
}

,

(90)
where kmax( p̃0), kmin( p̃0) are given by the following expres-
sions for the different cases (see Appendix B).

For β ≷ 1, p̃0 > 0,

kmax( p̃0)

kc
= (β − 1) +

√
(β − 1)2 + p̃0

εc
, (91)

kmin( p̃0)

kc
= −(β + 1) +

√
(β + 1)2 + p̃0

εc
, (92)

and for β > 1 and p̃0 < 0 we find

kmax( p̃0)

kc
= (β − 1) +

√
(β − 1)2 + p̃0

εc
, (93)

kmin( p̃0)

kc
= (β − 1) −

√
(β − 1)2 + p̃0

εc
. (94)

For p̃0 < 0 the argument of the square roots are positive
only in the region −PT � p̃0 < 0, indicating a minimum
threshold value of p̃0 below which the spectral density van-
ishes. The threshold is given by

PT = εc (β − 1)2. (95)
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For β < 1 the spectral density has support only for p̃0 � 0,
whereas for β > 1 the spectral density also has support for
−PT � p̃0 < 0. Further analysis of the emergence of this
threshold is provided in Appendix B.

As a corollary we find the relaxation rate (84) in the low-
energy limit1

�p = 2π ρ(0; p) = 32π

3β
(λM )2 εc (β − 1)3 �(β − 1), (96)

where � is the Heavyside step function.
For β � 1 the process of relaxation of an impurity moving

in a homogeneous condensate occurs via the Cerenkov emis-
sion of long-wavelength “on-shell” phonons with momentum
k obeying the Cerenkov condition

β cos(θ ) − 1 = k

2kc
, (97)

where cos(θ ) = �p · �k/pk. For β � 1 this condition results in
long-wavelength phonons emitted within a narrow momentum
region 0 � k � 2 kc(β − 1), within a Cerenkov “cone” of

angular aperture θc �
√

2
β

(β − 1).

The power-law dependence �p ∝ (β − 1)3 in (96) is a hall-
mark of the Cerenkov emission of “on-shell” long-wavelength
phonons with Ek = ck. The smallness of the relaxation rate as
β → 1+ is a consequence of the narrowing of the phase space
available for Cerenkov phonon emission.

V. DRESSING DYNAMICS

The dynamical process of polaron formation is contained
in zp(t ) [Eq. (84)], and we now focus on obtaining its asymp-
totic long-time limit.

A. zp(∞)

The explicit expression for zp(∞) defined by Eq. (86) is
given by Eq. (C4) in Appendix C. In the case M = m it is
given by

zp(∞) =
[2λM

β

]2
[

1 + β2 − 1

2β
ln

∣∣∣∣1 + β

1 − β

∣∣∣∣]. (98)

Although this result has been obtained for the particular case
M = m and coincides with that obtained in Ref. [41], the cusp
singularity in the derivative of zp(∞) as β → 1 is a general
result of the linear dispersion relation of long-wavelength
phonons, as shown by the following argument. Following the
steps in Appendix C, after carrying out the angular integration
and considering solely the contribution from long-wavelength
phonons with k 
 k∗, namely, with Ek = ck, the integral in
Eq. (C1) for zp(∞) becomes

zp(∞) = λ2

βc2
Re

{∫ k∗

0

k
k

2kc
+ 1 − β + i0+ dk − (β → − β )

}
� (2λM )2[(1 − β ) ln |1 − β| + C(β )], (99)

1It is straightforward to see that λM is a dimensionless parameter,
which is effectively the dimensionless coupling in the low-energy
limit.

where C(β ) is analytic in β and approaches a constant as
β → 1. This analysis reveals that the singularity in the β

derivative of zp(∞) as β → 1 is solely a consequence of
the linear dispersion relation of long-wavelength superfluid
phonons.

For the asymptotic time evolution three different cases
arise: (1) β < 1, (2) β = 1, and (3) β > 1, since the spectral
density is different in each case.

B. β < 1

For v < c the spectral density ρ( p̃0; p) has support only for
p̃0 > 0. As discussed above the long-time limit is determined
by the small p̃0 region of ρ( p̃0; p), namely, by Eq. (90), with
kmax, kmin given by Eqs. (91) and (92), respectively. For p̃0 

εc(β − 1)2 we find

ρ( p̃0; p) = λ2

3βc4

p̃3
0

(1 − β )3

[
1 −

(
1 − β

1 + β

)3]
. (100)

Because the spectral density vanishes faster than p̃2
0 as

p̃0 → 0, the two terms in zp(t ) in Eq. (84) namely, 1, cos( p̃0t )
can be studied separately. Hence,

zp(t ) = zp(∞) −
∫ ∞

0

ρ( p̃0; p)

p̃2
0

cos( p̃0 t ) d p̃0. (101)

The asymptotic long-time limit of the second term in (101)
can be obtained in a systematic asymptotic expansion in
inverse powers of t . This is implemented by writing

cos( p̃0 t ) = 1

t

d

d p̃0
sin( p̃0 t ), (102)

and integrating by parts, the “surface term” vanishes because
ρ � √

p̃0 as p̃0 → ∞ and as p̃3
0 as p̃0 → 0, hence the second

term in (101) becomes

−
∫ ∞

0

ρ( p̃0; p)

p̃2
0

cos( p̃0 t ) d p̃0

= 1

t

∫ ∞

0

d

d p̃0

[
ρ( p̃0; p)

p̃2
0

]
sin( p̃0 t ) d p̃0. (103)

Iterating this procedure with

sin( p̃0 t ) = −1

t

d

d p̃0
cos( p̃0 t ), (104)

again integrating by parts and keeping to leading order the
“surface terms,” we find

zp(t ) = zp(∞) +
(

t2
<

t2

)
+ · · · , (105)

where

t2
< = λ2 M2

12 ε2
c (1 − β )3

[
1 −

(
1 − β

1 + β

)3
]
. (106)

The dots in (105) stand for higher inverse powers of t . The
reason that the asymptotic long-time limit can be obtained as
an expansion in inverse powers of t is that in this case the
spectral density is an analytic function of p̃0 for vanishing p̃0.
By inspecting the region in p̃0 that contributes to leading order
result (105), one finds that the physical process of dressing in
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this case is dominated by nearly “on-shell” phonons with “vir-
tuality” p̃0 = p0 − εp 
 εc (1 − β )2. The dynamical dressing
timescale t< increases dramatically as β → 1−; this has been
recognized in Ref. [41] as a critical slowdown of the formation
dynamics of the polaron.

We emphasize that the asymptotic behavior (105) emerges
for t � t< ∝ (1 − β )−3/2, namely, at larger time as β → 1−.

C. β = 1

For β = 1 only p̃0 > 0 contributes to the spectral density.
The values of kmax, kmin are given by the β → 1 limit of
Eqs. (91) and (92), respectively, and for small p̃0 the spectral
density is given by

ρ( p̃0; p) = λ2k3
c

3β c

(
p̃0

εc

)3/2
[

1 −
(

p̃0

16 εc

)3/2

+ · · ·
]

; (107)

note that the spectral density now is nonanalytic at p̃0 = 0.
Again, both terms in zp(t ) are integrable separately near the
origin, and upon changing variables p̃0 = x/t , the second,
time-dependent term becomes

−
∫ ∞

0
d p̃0

ρ( p̃0, p)

p̃2
0

cos( p̃0 t )

= −t
∫ ∞

0
dx

ρ(x/t ; p)

x2
cos(x), (108)

which for large t is dominated by the small p̃0 region of
ρ( p̃0; p). Keeping the first term in (107) and carrying out the
remaining integral in x, we find for β = 1

zp(t ) = zp(∞) −
(

t∗

t

)1/2

+ O(1/t2), t∗ = 2π
(λM )4

εc
.

(109)

The crossover between the result for β < 1 with asymptotic
behavior �1/t2 to the case with β = 1 for which the asymp-
totic behavior is �1/

√
t occurs because the limits β → 1

and p̃0 → 0 (or t → ∞) of kmax and of ρ( p̃0; p) are not
uniform and do not commute. This can be seen by com-
paring the small p̃0 limits (100) for β < 1 with (107) for
β = 1. The singularity for β → 1 of (100) is a consequence
of taking p̃0 
 εc (1 − β )2, namely, taking p̃0 → 0 keeping
(1 − β ) fixed, whereas in (107) we have kept p̃0 fixed and
taken β → 1−, and in this case ρ( p̃0) is nonanalytic for
p̃0 � 0. Whereas ρ( p̃0) is analytic in the neighborhood of
p̃0 � 0 for β < 1, for β = 1 it becomes nonanalytic in this
region.

D. β > 1

In this case the spectral density has support both for p̃0 >

0 and −PT � p̃0 � 0, where the threshold −PT = −εc(β −
1)2. Because ρ(0; p) �= 0 the singularity at p̃0 = 0 prevents
treating both terms in γp(t ) separately. Instead, we calculate
the time derivative γ̇p(t ) and integrate back with the boundary
condition that γp(t ) → �p

2 t + zp(∞) as t → ∞. Most of the
technical details are relegated to Appendix D; the final result
valid for PT t � 1 obtained in this Appendix is given by [see

Eq. (D18) in Appendix D]

γp(t ) = �p

2
t + zp(∞) −

[
t>
t

]3/2

sin[PT t − π/4]

+ O(1/t2) + · · · ,

t> = 1

εc

[√
4π λ2M2

β (β − 1)

]2/3

. (110)

The 3/2 power of time and the power of (β − 1) in t> are
distinct hallmarks of the square-root singularity of the spectral
density near the threshold describing the emission and absorp-
tion of virtual phonons with virtuality p̃0 � −εc (β − 1)2. The
oscillatory part is also a consequence of the threshold [57,58],
and the oscillation frequency is completely determined by
PT = εc (β − 1)2. The region p̃0 � 0 of the spectral density
contributes the subleading power 1/t2.

VI. UNITARITY AND ENTANGLEMENT ENTROPY

A. Unitarity

As discussed in Sec. III and in Appendix A, the Weisskopf-
Wigner method is manifestly unitary since the coefficients of
the time-evolved wave function satisfy the condition (21). In
the case of the polaron, the coefficient Ai

�p(0) = 1,AiB
�p,�k (0) =

0; however, upon time evolution, the amplitude of the excited
states are nonvanishing, and correlations between the impurity
and phonon excitations build up as displayed by the time-
evolved state (69). Therefore, unitary time evolution entails a
flow of probability from the initial state with one impurity and
the BEC in the ground state to excited states. In this section
we study how unitarity is fulfilled. Although unitarity is an
exact statement, we have only determined the behavior of the
amplitude (66), and consequently of (70), for early transient
and long time. Hence a full study of the time evolution of the
amplitudes would necessarily entail an exhaustive numerical
study for a large parameter and dynamical range. Instead, we
will focus on understanding the fulfillment of unitarity at long
time by invoking the following approximations valid for weak
coupling:

(1) We neglect the time evolution of �εp in (70); fur-
thermore, we absorb this correction into a renormalization
of the impurity energy: εp + �εp → εr

p, the renormalized
impurity energy (renormalized polaron mass). To simplify
notation we write εp everywhere, understanding that this is
the renormalized energy of the impurity.

(2) We neglect the early-time evolution. This is warranted
because during the initial transient the amplitudes do not
vary much and the AiB

�p;�k are ∝ λ and therefore small in weak

coupling.
(3) Neglecting the early transient dynamics, we write

e−γp(t ) ≡ e− �p
2 t e−zp(∞) e− fp(t ) where fp(t ) ∝ λ2M2t−α de-

scribes the subleading power laws derived above for the
various cases. We will neglect this contribution because it is
subleading at long time and always perturbatively small in
weak coupling, keeping only the leading behavior, namely,

Ai
�p(t ) = e−γp(t ) � e−zp(∞) e− �p

2 t . (111)
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Implementing these approximations we find

|AiB
�p,�k (t )|2 = e−2zp(∞)

∣∣〈1i
�p−�k; 1B

�k
∣∣HI (0)

∣∣1i
�p; 0B

〉∣∣2[
(εp − ε �p−�k − Ek )2 + (�p

2

)2]
× ∣∣1 − e−i(εp−ε �p−�k−Ek−i

�p
2 )t
∣∣2, (112)

with the result (63) for the numerator.
Since we have neglected the early-time transient and the

asymptotic long-time tails, both of O(λ2M2), we can only
consistently confirm unitarity up to O(λ2M2).

Notice that when the Cerenkov condition is fulfilled,
namely, εp = ε �p−�k + Ek , the denominator in (112) becomes
resonant, and the width of the resonance is �p.

The unitarity condition (21) yields∣∣Ai
�p(t )

∣∣2 +
∑

�k

∣∣AiB
�p,�k (t )

∣∣2 = 1. (113)

Writing the first term as in Eq. (111) and the second term in
terms of the spectral density ρ( p̃0; p) (62) we find that the
condition (113) becomes

e−2zp(∞) e−�pt + e−2zp(∞)

×
∫

d p̃0
ρ( p̃0; p)[

p̃2
0 + (�p

2

)2] ∣∣1 − eip̃0t e− �p
2 t
∣∣2 = 1. (114)

1. β > 1

In this case �p = 2πρ(0; p) �= 0; hence we write
ρ( p̃0; p) = ρ(0; p) + ρ( p̃0; p) in the integral in the second
term in Eq. (114). The contribution to the p̃0 integral from
the term with ρ(0; p) yields

ρ(0; p)
∫

d p̃0

∣∣1 − eip̃0t e− �p
2 t
∣∣2[

p̃2
0 + (�p

2

)2]
= 2π

ρ(0; p)

�p
[1 − e−�pt ] = [1 − e−�pt ]. (115)

The contribution from ρ( p̃0; p) is perturbatively small: for
small p̃0 we find that ρ( p̃0; p) � λ2M2 p̃0 + · · · , therefore the
complex poles at p̃0 = ±i�p/2 yield a perturbatively small
contribution of O(λ2M2) or higher, as compared to the con-
tribution from ρ(0; p) above. Furthermore, since e−2zp(∞) �
1 + O(λ2M2) and nonsecular in time we find that the left-hand
side of (114) becomes

e−2zp(∞) e−�pt + e−2zp(∞) [1 − e−�pt ] + · · · = 1 + · · · ,

(116)
where the dots stand for high order in the coupling λ2M2,
thereby confirming unitarity to leading order in the coupling.
As t → ∞ the contribution from the initial state |1i

�p; 0B〉 van-
ishes, and unitarity is fulfilled by the initial probability flow-
ing to excited states of the impurity entangled with phonons.
Namely, for t � 1/�p, to leading order in the interaction the
quantum state is given by |�(∞)〉 = ∑

�k AiB
�p,�k (∞)|1i

�p−�k ; 1B
�k 〉

where for β � 1 the phonons in the excited states are within
the resonant band fulfilling the Cerenkov condition, namely,
with 0 � k � 2kc(β − 1).

An alternative manner to understand the saturation of uni-
tarity from the excited states in the asymptotic long time is the
following. Taking the long-time limit t � 1/�p in (114) and

neglecting the term e−2zp(∞) = 1 + O(λ2M2) + · · · , write the
integral in the second term in (114) as∫

d p̃0
ρ( p̃0; p)[

p̃2
0 + (�p

2

)2] = 2

�p

∫
d p̃0 ρ( p̃0; p)

(�p

2

)[
p̃2

0 + (�p

2

)2]
→ 2π

�p
ρ(0; p) = 1, (117)

where for small coupling we have taken the “narrow width
limit” (�p → 0) using ε/(x2 + ε2) → π δ(x) as ε → 0. This
simple argument clearly indicates that for β > 1 unitarity
is (nearly) saturated by the excited states with “on-shell”
phonons that obey the Cerenkov condition (97), or energy
conservation, corresponding to p̃0 = 0.

2. β � 1

In this case �p = 0 and e−2zp(∞) � 1 − 2zp(∞) + · · · and
zp(∞) � O(λ2M2), therefore to leading order in the coupling
the left-hand side of the unitarity condition (114) becomes

1 − 2 zp(∞) + · · · + 2
∫

d p̃0
ρ( p̃0; p)

p̃2
0

[1 − cos( p̃0t )] = 1.

(118)
The dots stand for terms of O(λ4M4) and higher. In the asymp-
totic long-time limit the oscillatory cosine term vanishes by
the Riemann-Lebesgue theorem. With the definition of zp(∞)
given by Eq. (86) it is straightforward to see that unitarity is
fulfilled up to O(λ4M4). In this case at asymptotically long
time, the initial state contributes with probability e−2zp(∞),
whereas the excited states of an impurity entangled with
phonons contribute 1 − e−2zp(∞) � 2 zp(∞) + · · · .

Thus we have confirmed the fulfillment of unitarity up to
leading order [O(λ2M2)] in the interaction.

B. von Neumann entanglement entropy

The confirmation of the fulfillment of unitary time evo-
lution clearly shows that the decay of the fidelity (survival
probability of the initial impurity state), either by relaxation
for β > 1 or by dressing for β � 1, results in the build up of
impurity-phonon correlations resulting in the entangled state
(69). This flow of probability also entails a loss of information,
which can be made manifest by obtaining the reduced density
matrix and the entanglement entropy for the impurity.

From the time-evolved state (69), the (pure state) density
matrix is |�(t )〉〈�(t )|. We obtain the impurity reduced den-
sity matrix by tracing over the phonon degrees of freedom,
namely,

ρr
i (t ) = TrBEC|�(t )〉〈�(t )| = ∣∣Ai

�p(t )
∣∣2 ∣∣1i

�p
〉〈

1i
�p
∣∣

+
∑

�k

∣∣AiB
�p,�k (t )

∣∣2 ∣∣1i
�p−�k
〉〈

1i
�p−�k
∣∣. (119)

This reduced density matrix is diagonal in the impurity basis
and describes a mixed state; the von Neumann entanglement
entropy is given by

S(t ) = −∣∣Ai
�p(t )

∣∣2 ln
∣∣Ai

�p(t )
∣∣2 −

∑
�k

∣∣AiB
�p,�k (t )

∣∣2 ln
∣∣AiB

�p,�k (t )
∣∣2,

(120)
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and it is a measure of the correlations between the im-
purity and the excited BEC, and of the information loss
during the time evolution as the impurity relaxes and is
dressed by its coupling to the phonon degrees of freedom.
It is clear that S(0) = 0 because of the initial conditions
Ai

�p(0) = 1, AiB
�p,�k (0) = 0, and as a consequence of unitary

time evolution and the flow of probability to the excited
states, |Ai

�p(t )|2 < 1, |AiB
�p,�k (t )|2 < 1 for t > 0, implying that

S(t ) > 0 for t > 0. Therefore, the dynamics of relaxation
and dressing leads to a growth of entanglement entropy as
a consequence of the creation of excitations and the flow of
probability from the initial to the excited states. By unitary
time evolution the flow of probability to the excited states is
determined by the decay of the Loschmidt echo or fidelity
(72). A similar relation between the decay of the Loschmidt
echo and information flow into the environmental bath has
been shown to hold in the case of a qubit coupled to envi-
ronmental degrees of freedom [59].

S(t ) is determined by the time evolution of the amplitudes
(66), (70). As in the study of unitarity above, we will focus
on the long-time behavior under the same approximations
implemented above, with the amplitudes Ai

�p(t ) ; |AiB
�p,�k (t )|2,

given by Eqs. (111) and (112), respectively.

1. β > 1

In this case Ai
�p(∞) = 0 because �p �= 0, therefore

S(∞) = −
∑

�k

∣∣AiB
�p,�k (∞)

∣∣2 ln
∣∣AiB

�p,�k (∞)
∣∣2. (121)

In this case unitarity is saturated by the excited states that obey
the Cerenkov condition (97), and |AiB

�p,�k (∞)|2 is largest for

this (resonant) region of phonon momentum [see Eq. (112)],
with the maximum momentum 2kc(β − 1). Therefore we can
extract the leading behavior of S(∞) by the following steps:
(1) in the ln |AiB

�p,�k (∞)|2 keep only the momenta that obey

the Cerenkov condition, resulting in the denominator in (112)
being replaced by (�p/2)2. (2) In the ln |AiB

�p,�k (∞)|2 replace

the momentum by the maximum value in the Cerenkov band,
namely, k → 2kc(β − 1). With these approximations for the
logarithm, it follows that

ln
∣∣AiB

�p,�k (∞)
∣∣2 → ln

[
λ2 kc (β − 1)

��2
p

]
+ · · · , (122)

where the dots stand for subleading terms in λ and (β − 1).
The unitarity condition in this case gives

∑
�k |AiB

�p,�k (∞)|2 =
1 + · · · , which yields the following leading order result:

S(∞) = ln

[
�(�p/c)3

(λM )4 (β − 1)4

]
+ · · · . (123)

The argument of the logarithm is �1 for the following
reason: consider that the volume is a cube of side L with
� = L3. For the impurity moving with v � c to decay inside
the volume it must be that L � c/�p with c/�p being the
decay length. Therefore �(�p/c)3 � 1, and the smallness of
the denominator in (123) guarantees that S(∞) is positive
and large. Furthermore, the dominant dynamical timescale
in this case is 1/�p with subleading power laws; therefore,

we conclude that for β > 1 the entanglement entropy grows
to its asymptotic value S(∞) on the timescale 1/�p, mod-
ulated with a power law multiplying an oscillatory function
whose oscillation frequency is determined by the threshold at
εc(β − 1)2.

The logarithm of the volume is noteworthy. It stems from
the fact that the total number of phonons produced is O(1):
first, note that the matrix element squared (63) is of order
1/�; this is a result of the normalization of single-particle
states. Second, Eq. (73) identifies the asymptotic phonon dis-
tribution function with |AiB

�p,�k (∞)|2 ∝ 1/�. The total asymp-

totic entropy is then of the form
∑

�k f�k (∞) ln[ f�k (∞)] →
�
∫

d3k
(2π )3 f�k (∞) ln[ f�k (∞)]. The factor � cancels the 1/� in

f�k (∞), but the volume factor in the logarithm remains; this

is because �
∫

d3k
(2π )3 f�k (∞) � 1 by unitarity, namely, only a

number of phonons �O(1) is created.

2. β � 1

In this case �p = 0, the Cerenkov condition (97) cannot
be fulfilled, and the denominator in (112) is not resonant. We
extract the leading order contribution to S(∞) by the follow-
ing procedure: (1) in the ln |AiB

�p,�k (∞)|2 rescale the momen-

tum by kc. This term becomes of the form ln[λ2M2/�k3
c ] +

F[k/kc, β, r] with r = m/M. The k-integral of |AiB
�p,�k (∞)|2 F

is finite, with a finite limit as β → 1 (although it may feature
a cusp in its β derivative) and of order λ2M2. Using the result
(118) from the unitarity condition, and |Ai

�p(∞)| = e−2zp(∞) �
1 − 2zp(∞) + · · · , we find in this case the leading order
result:

S(∞) = 2zp(∞)
[

ln
[
�k3

c /λ
2M2

]+ 1
]+ · · · , (124)

where the dots stand for subleading contributions that include
the integral with F .

For the impurity to be inside the volume � = L3 it must be
that its de Broglie wavelength ∝ 1/kc � L, therefore �k3

c �
1. Hence, for weak coupling the logarithm in (124) is � 1
justifying keeping only this contribution as the leading term
in the entanglement entropy. The origin of the volume factor
in the argument of the logarithm is exactly the same as that
discussed above for the case β > 1.

The time evolution of S(t ) approaching its asymptotic
limit S(∞) is determined by the power laws obtained in the
previous sections for β � 1.

It is noteworthy that in the nondecaying case, β � 1, the
wave-function renormalization describing the dressing of the
polaron determines the entanglement entropy. While this fea-
ture is expected since the entanglement entropy is a measure
of the flow of information from the initial to the excited
states, the logarithmic enhancement in terms of the volume
and coupling is perhaps unexpected.

The behavior of S(∞) is strikingly different between the
β > 1 and β � 1 cases. The latter, given by Eq. (124), is
suppressed by λ2M2 as compared to the former since zp(∞) ∝
λ2M2. Thus in the weak coupling limit, there is a sharp
change in S(∞) as β → 1 from above. This is expected on
physical grounds, since for β > 1 impurity relaxation leads to
the creation of real phonons, whereas for β � 1 the dressing
of the impurity corresponds to a virtual cloud of phonons.
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However, while one expects a change in the behavior of the
entanglement entropy, the sharp discontinuity in the weak
coupling limit is perhaps not anticipated.

The identification given by (71) relating the Loschmidt
echo and fidelity to the survival probability, combined with the
unitarity arguments presented above, implies that Loschmidt
echo or fidelity decay is directly related to the build up of
impurity-phonon correlations and the entanglement entropy.
Here the decay of the Loschmidt echo is directly related to
decoherence and growth of entanglement entropy; this was
previously discussed within the context of the semiclassical
regime of quantum open systems [60].

VII. LONG-TIME DYNAMICS: A DYNAMICAL CRITICAL
PHENOMENON?

Taken together the results obtained in the previous sec-
tions hint at dynamical critical phenomena for an impurity
immersed in a homogeneous BEC with Mach number β � 1.
The critical slow-down of the dressing dynamics of polaron
formation was originally anticipated in Ref. [41]. Our study
not only confirms the suggestion in this reference, but com-
plements it in various ways that strengthen the interpretation
of the long-time dynamics as a manifestation of behavior akin
to critical dynamics dominated by the low-energy spectrum of
superfluid phonon excitations:

(1) For β > 1, the decay rate (96) vanishes as �p ∝ (β −
1)3 as β → 1+. This power law is a direct consequence of
the behavior of the spectral density for low-energy, namely,
long-wavelength phonons, and it is a manifestation of the
narrowing of the phase space for Cerenkov emission. The
dynamics of dressing features a power-law (t>/t )3/2 with
t> ∝ (β − 1)−2/3 modulated by an the oscillatory function
with frequency ∝ (β − 1)2. This slow dressing dynamics is a
consequence of the threshold in the density of states vanishing
as (β − 1)2 and, again, is determined by the long-wavelength
phonon spectrum.

(2) The cusp in the β-derivative of the wave-function
renormalization, which is, indeed, a direct and universal
consequence of the linear dispersion of long-wavelength su-
perfluid phonons as discussed in Sec. V [see the discussion
leading to Eq. (99)].

(3) A sharp transition in the dressing dynamics between
β > 1 and β � 1 cases: for β < 1 the dressing of the impurity,
or polaron formation occurs asymptotically on a dynamical
timescale t< ∝ (1 − β )−3/2 with a power law �(t</t )2 slow-
ing down as β → 1−. For β = 1, the power law changes
to

√
t∗/t with t∗ given by (109), whereas for β > 1 the

dressing dynamics features a power law (t>/t )3/2 with t> ∝
(β − 1)−2/3 and is modulated by periodic oscillations with a
typical frequency ∝ (β − 1)2.

(4) A sharp transition at β = 1 is also manifest in the
asymptotic entanglement entropy. For β > 1, the asymptotic
value S(∞) is given by Eq. (123), whereas for β � 1 it is
given by (124) where for equal mass zp(∞) is given by (98).
For β � 1 the logarithms in S(∞) are multiplied by λ2M2 

1, therefore substantially suppressed as compared to the β >

1 case. Furthermore, for β > 1 the leading contribution to
S(∞) arises from real (“on-shell”) long-wavelength phonons
within the resonance band satisfying the Cerenkov condition

resulting in a strong dependence of S(∞) on β − 1, whereas
for β < 1, S(∞) features a finite limit as β → 1−.

Therefore relaxational and dressing dynamics feature a
behavior very similar to critical phenomena where the Mach
number β plays a role akin to Tc/T , with T a temperature
variable and Tc its critical value, in the sense that the asymp-
totic long-time dynamics is sharply different for β ≶ 1. The
long-time dynamics of polaron formation is characterized by
power laws t−α with exponents α that are different for β ≶
1 and prefactors that reveal the slow-down of formation as
β → 1. The decay rate �p ∝ (β − 1)3 �(β − 1) is suggestive
of a quantity akin to an order parameter in that it vanishes for
β � 1 and rises with a power law for β > 1.

The main underlying reason for the “critical” dynamics
is the linear dispersion relation of long-wavelength super-
fluid phonons. This feature of the spectrum of excitations
completely determines the low-energy behavior of the spec-
tral density of the impurity, hence the long-time dynamics.
Whereas the prefactors of the various quantities depend on the
parameters such as λ, M, c, etc., the power laws for dressing
dynamics t−α , the dependence �p � (β − 1)3 �(β − 1), the
powers |β − 1|−ξ associated with the formation timescales
t>, t<, the cusp in the β derivative of zp, and the sharp discon-
tinuity of the asymptotic entanglement entropy at β = 1 are
all universal consequences of the linear dispersion relation of
long-wavelength phonons.

While all these features are strong hints of phenomena
akin to critical behavior for β � 1, a deeper characterization
of these nonequilibrium aspects as a novel manifestation of
dynamical critical phenomena merits further study.

VIII. RELATION TO COHERENCE [41]

Many of the results obtained above are strikingly similar to
those obtained in Ref. [41] for the coherence. In this reference
the authors consider an initial state

|�θ (0)〉 = [cos(θ ) + sin(θ )C†
�p]|0i; 0B〉, (125)

where |0i; 0B〉 corresponds to the vacuum state both for the
BEC and the impurity. The coherence is defined in Ref. [41]
as

G �p(t ) = 〈�θ (0)|C�p(t )|�θ (0)〉, (126)

where C�p(t ) is the impurity annihilation operator in the
Heisenberg picture. The authors of Ref. [41] show that
G �p(t ) is related to the impurity Green’s function by G �p(t ) =
cos(θ ) sin(θ )〈0i; 0B|C�p(t )C†

�p(0)|0i; 0B〉.
It is definitely not obvious that there should be any sim-

ilarity between many of the results found above and those
obtained in Ref. [41] for the coherence (126), since the latter
vanishes exactly for θ = π/2 corresponding to the single-
impurity state that we study.

We note that the original total Hamiltonian (1) is invariant
under an Abelian U (1) global symmetry C�p → eiϕ C�p with
ϕ a space-time constant. As a consequence, the impurity
number Ni = ∑

�p C†
�p C�p is conserved by the dynamics. We

note, however, that the state |�θ (0)〉 [Eq. (125)] is not an
eigenstate of Ni since it is a linear superposition of the vacuum
and a one-impurity state. Therefore, it is possible for the
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annihilation operator C�p to acquire an expectation value in this
state.

In Ref. [41] the time evolution of the reduced density
matrix for the impurity ρr

i (t ) is obtained from a quantum
master equation in the Born approximation, wherein the
“bath” (the BEC in the ground state) is traced out, assuming
a factorization between the density matrix of the bath and
the reduced density matrix for the impurity at all times. An
equation of motion for the coherence is obtained from the
equivalence G �p(t ) = Tr C�p(0) ρr

i (t ).
To compare with the Weisskopf-Wigner approach of the

previous sections, we write the initial state (125) as

|�θ (0)〉 = A0
θ (0)|0i; 0B〉 + Ai

�p,θ (0)
∣∣1i

�p; 0B
〉
,

A0
θ (0) = cos(θ ), Ai

�p,θ (0) = sin(θ ). (127)

Hence the initial state considered in the previous sections,
(54), is precisely (125) with θ = π/2. Despite this simple
relation between the initial states, there is a fundamental dif-
ference between the two: only for θ = 0, π/2, modulo 2π is
the initial state (125) an eigenstate of the impurity number op-
erator N = ∑

�p C†
�pC�p, namely, having a definite impurity par-

ticle number. For any other value the initial state (125) breaks
the underlying U (1) global gauge invariance2 because it is a
mixture of states with different impurity particle number.

We can now apply the Weisskopf-Wigner method to obtain
the time-evolved state from the initial state (125) following
the steps [Eqs. (15) and (16)] leading to the equations for the
amplitudes. An important aspect in this program is that the
interaction Hamiltonian HI (4) is such that

HI (t )|0i; 0B〉 = 0. (128)

As a consequence, any matrix element of the interaction
Hamiltonian of the form 〈α|HI (t )|0i; 0B〉; 〈0i; 0B|HI (t )|α〉
vanishes for arbitary |α〉, and the amplitude of the vacuum
state contribution to the initial state (125) is independent of
time, namely, A0

θ (t ) = A0
θ (0). The reason for this is physically

clear: the interaction Hamiltonian conserves the number of
impurity particles, and the state |0i; 0B〉 has zero impurities,
therefore upon time evolution it must remain the impurity
vacuum, and no phonon excitation can be created because
such a process entails the annihilation of an impurity of
which there are none in the impurity vacuum. The amplitude
equations for the impurity and impurity-phonon states are
exactly the same as found above, namely, (60) and (59), but
now with the initial condition that Ai

�p,θ (0) = sin(θ ) in (60).
We find that the initial state (127) evolves in time into the state

|�θ (t )〉 = cos(θ )|0i; 0B〉 + sin(θ )

{
Ai

�p(t )
∣∣1i

�p; 0B
〉

+
∑

�k
AiB

�p,�k (t )
∣∣1i

�p−�k; 1B
�k
〉}

, (129)

where the amplitudes Ai
�p(t ),AiB

�p,�k (t ) are precisely given by

(60) and (59), with Ai
�p(0) = 1,AiB

�p,�k (0) = 0. In the interaction

2It does not transform covariantly under the U (1) global phase
transformation.

picture C�p(t ) = e−iεpt C�p(0), therefore the coherence as
defined in Ref. [41] becomes

〈�θ (t )|C�p(t )|�θ (t )〉 = sin(θ ) cos(θ ) e−iεpt Ai
�p(t ). (130)

Up to a phase, and the overall multiplicative factor, the
coherence defined in Ref. [41] is simply proportional
to the amplitude Ai

�p(t ). This is the explanation of
the equivalence between the results obtained via the
Weisskopf-Wigner framework above and those in Ref. [41]
obtained from the quantum master equation. Furthermore,
from the relation between the coherence and the impurity
Green’s function established in Ref. [41], it follows that
e−iεpt Ai

�p(t ) = 〈0i; 0B|C�p(t )C†
�p(0)|0i; 0B〉.

A. Similarities and differences with Ref. [41]

Above and beyond confirming several results of Ref. [41],
our study offers complementary results listed below that
bolster the case for phenomena akin to critical dynamics for
impurities with Mach number β � 1:

(1) The explicit dependence of the relaxation rate on the
Mach number, given by (96),

(2) The detailed understanding of the asymptotic of dress-
ing dynamics for β > 1 confirming the modulated power law
(t>/t )3/2 sin(PT t − π/4) with t> ∝ (β − 1)−2/3 explaining
both the power and the oscillatory function with frequency
PT ∝ (β − 1)2 as a consequence of a low-energy threshold
in the spectral density of the impurity for β > 1. The power
t−3/2, the timescale t> ∝ (β − 1)−2/3, and the frequency are a
direct consequence of the vanishing of the spectral density at
threshold with a square-root singularity. This feature, in turn,
is a consequence of the absorption and emission of virtual
long-wavelength low-energy phonons with linear dispersion
relation.

(3) The cusp in the β-derivative, dzp(∞)/dβ � ln |β −
1|, is universal in the sense that it is also a hallmark of the
coupling to long-wavelength phonons with a linear dispersion
relation.

(4) We find that at β = 1 the asymptotic long-time dress-
ing dynamics is characterized by a power law (t∗/t )1/2 [see
Eq. (109)]. In this case there seems to be a discrepancy with
the results displayed in Fig. 3 in Ref. [41]. This figure seems
to show that the dynamics does not reach the steady state
determined by zp(∞) in the critical case β = 1. Our study
shows that such a steady state is asymptotically reached, albeit
with a very slow approach ∝ t−1/2. Furthermore, we show that
the t−1/2 behavior originates in a nonanalytic behavior of the
spectral density at low energy at β = 1 [see Eq. (107)]. We
also find that for β > 1 the asymptotic dressing dynamics fea-
tures a timescale t> ∝ (β − 1)−2/3, and for β < 1 a different
timescale t< ∝ (1 − β )−3/2. However, the long-time limit and
the limit β → 1 do not commute; again this is a consequence
of the nonanalyticity of the spectral density at β = 1 [see
Eqs. (91) and (93)].

(5) The Weisskopf-Wigner method allows us to obtain
the full quantum state within a nonperturbative resummation
of second-order processes. From this state we identify the
impurity Loschmidt echo and fidelity; these are benchmarks
of quantum information. The quantum state reveals many-
body correlations between the impurity and excitations of the
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BEC. Upon tracing over the phonon excitations we obtain
the reduced density matrix for the impurity and the von Neu-
mann entanglement entropy, as a measure of the correlations
with and information loss into the phonon environment. We
show that unitary time evolution directly relates the decay of
Loschmidt echo or fidelity with the growth of entanglement
entropy. We also show that there is a sharp discontinuity of
the asymptotic von Neumann entanglement entropy at β = 1
in weak coupling.

The powers t−3/2 for β > 1 and t−2 for β < 1 describing
the dynamics of dressing, along with the coefficient ∝ (1 −
β )−3 in the latter case, are in agreement with the results
of Ref. [41] for these cases. This agreement is, therefore,
a confirmation that our approach via the spectral density is
correct. Hence we conjecture that the seeming discrepancy
with the results displayed in Fig. 3 in Ref. [41] in the case
β = 1 originates in that the study reported in Fig. 3 in this
reference did not reach long enough time and seemingly did
not capture the very slow dressing dynamics that our study has
shown to emerge asymptotically in this case.

(6) In the quantum master equation approach, the Born
approximation entails that the impurity and phonon density
matrices factorize at all times, and that the phonon density
matrix does not evolve in time, namely, describing the BEC
vacuum state. Therefore, this approximation neglects the cor-
relations between the impurity and phonon excitations. These
correlations are included in the Weisskopf-Wigner approach,
indeed, being an integral part of the dynamical evolution. We
showed how unitary time evolution relates fidelity decay to the
growth of impurity-BEC correlations, and therefore the emer-
gence of these correlations is an unavoidable consequence of
unitarity.

(7) The Wigner-Weisskopf state (69) is a correlated state
in which the impurity is entangled with superfluid phonons.
This state is remarkably similar to the variational state pro-
posed in Ref. [33] (“Chevy” variational state), albeit with
important differences: (a) the coefficients in this state are
completely determined by the (unitary) time evolution via
the Weisskopf-Wigner equations and are not obtained from
a variational principle, and (b) unitarity constrains these coef-
ficients to fulfill the condition |Ai

�p(t )|2 +∑
�k |AiB

�p,�k (t )|2 = 1.

For β > 1 the coefficient of the single impurity term vanishes
in the long-time limit.

While seemingly both treatments yield similar results for
various quantities, the Weisskopf-Wigner approach yields a
direct pathway to extract the entanglement entropy and to
relate its growth to the decay of the impurity fidelity. A
similar feature was noticed in Ref. [61] within the realm
of quantum Brownian motion comparing the full solution of
the equations of motion with the Born approximation for the
quantum master equation.

IX. DISCUSSION

A. Region of validity of approximations

The main approximation invoked in our study has been to
restrict the full dispersion relation of Bogoliubov excitations
Ek = ck

√
1 + (k/k∗)2 → ck. This approximation is valid for

kmax( p̃0) 
 k∗ = 2mc with kmax( p̃0) given by Eqs. (91) and
(93). As discussed in detail, the long-time dynamics is deter-

mined by the region p̃0 � 0 of the spectral density. Therefore
the most stringent constraint on the validity of the approxima-
tion arises in the case β > 1 since for β � 1 it follows that
kmax( p̃0) → 0 as p̃0 → 0. Therefore the criterion for the main
approximation to be valid is given by

2kc (β − 1) 
 2mc ⇒ (β − 1) 
 r = m

M
. (131)

Therefore the region of validity of the main approximation is
larger for a heavy impurity, narrowing for an impurity that
is lighter than the (bare) particles in the BEC. Hence, for
sufficiently small |β − 1| the main approximation invoked
to study the long-time dynamics, namely, keeping solely the
linear part of the Bogoliubov spectrum, is warranted.

B. Wave packets

We have studied the nonequilibrium dynamics considering
that the initial state is described by a single impurity of
momentum �p. A more realistic scenario would generalize
the single-impurity state to be described by a wave packet,
namely, |�(0)〉 = ∑

�p Ai
�p(0) |1i

�p; 0B〉, where now Ai
�p(0) are

the Fourier components of the single-impurity wave packet.
The Weisskopf-Wigner framework can be straightforwardly
adapted to this case, with the very simple modification of the
initial condition, with Ai

�p(0) determined by the Fourier coef-
ficients of the initial single-particle wave packet, rather than
Ai

�p(0) = 1 as used in this study. However, for generic wave
packets the dynamical evolution becomes complicated: com-
ponents with wave vectors �p obeying the Cerenkov condition
will undergo relaxation along with dressing, whereas those
outside the Cerenkov band will only undergo dressing dy-
namics. Furthermore, along with these dynamical processes,
the wave packet will also undergo dispersion and spreading
as in free evolution. Therefore, the full time dependence of a
wave packet will exhibit complicated dynamics that will be
the result of all the different processes.

C. Cascade decay

We have considered a weak coupling between the impurity
and the BEC, and the vertex describing the absorption and/or
emission of a superfluid phonon is associated with one power
of the effective dimensionless coupling λM. In weak coupling,
the leading order self-energy thus describes the process in
which the emission of a phonon is followed by its absorption
(see Fig. 2), and hence the leading order self-energy is of
order λ2M2. To this leading order the impurity with �p emits a
phonon with �k, thus leaving the impurity with �p − �k. However,
if | �p − �k| > Mc, the momentum of the impurity can still
satisfy the Cerenkov condition and continue to emit “on-shell”
phonons in a cascade: �p → �p − �k1 → �p − �k1 − �k2 → · · · .
Each step in this cascade results in one further vertex and
one more power of λM. The general form of the time-evolved
quantum state during the cascade is

|�(t )〉 = Ai
�p(t )

∣∣1i
�p; 0B

〉+∑
�k

AiB
�p,�k (t )

∣∣1i
�p−�k; 1B

�k
〉

+
∑
�k;�q

AiB
�p,�k,�q(t )

∣∣1i
�p−�k−�q; 1B

�k ; 1B
�q
〉+ · · · , (132)
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where the amplitudes are obtained from the hierarchy
of Weisskopf-Wigner equations: AiB

�p,�k (t ) ∝ λM, AiB
�p,�k,�q(t ) ∝

(λM )2, etc.
For strong impurity-BEC coupling the impurity will emit

(and absorb) phonons in a cascade diminishing its momentum
via Cerenkov phonon emission. The consistent analysis of the
dynamics in this case requires a systematic resummation of
the events described by this cascade, and the self-energy will
include rainbow and crossed vertex corrections so that the
resulting excited state will be a superposition of multiphonon
states. A systematic study of this case is a worthy endeavor;
however, it is well beyond the scope of this article.

D. β f � 1 as a dynamical attractor manifold?

In this article we focused on studying the nonequilibrium
dynamics for β � 1, revealing a slow-down of relaxation and
dressing in agreement with Ref. [41]. It would seem that
restricting the study to this region of Mach number implies
a fine tuning of initial conditions. However, the combination
of the wave packet and cascade arguments above, when com-
bined with the results obtained in our study, suggests that an
impurity quenched into a BEC with a initial Mach number
βi � 1 will relax, asymptotically, to a Mach number β f � 1
by multiphonon Cerenkov emission. To understand the main
arguments behind this conjecture, let us consider the quantum
state (69) obtained in leading order, namely, the first two con-
tributions to the quantum state (132). The one-phonon state in
(69) [or in (132)] can be interpreted as a wave packet, since
it is a linear superposition of states with wave vectors �k with
Fourier coefficients given by AiB

�p,�k (t ). As discussed above, the

amplitude AiB
�p,�k (t ) is largest for the band of wave vectors �k that

satisfy the Cerenkov condition, and among these, it is largest
for kmax = 2kc(β − 1) because the matrix element is largest
for largest value of k. If the initial value of the Mach number
of the impurity is βi = 1 + δ with δ 
 1, it follows that the
typical value of β f for the impurity in the one-phonon state in
(69) is β f = | �p − �k|/Mc � 1 − δ (with k � kmax). Therefore,
this one-phonon state contribution to the full quantum state is
stable under the higher order process of Cerenkov emission
with a two-phonon final state. However, if βi � 1 there will
be components with wave vector �k in the one-phonon wave
packet such that β f > 1. Including the higher order transition
in the Weisskopf-Wigner hierarchy, to the two-phonon state,
will allow these components to decay via Cerenkov emission
of another phonon on a longer timescale, since the transition
probability is suppressed by two more powers of the cou-
pling. Therefore, asymptotically at long time the coefficients
AiB

�p,�k (∞) will be nonvanishing only for those wave vectors �k
for which β f � 1, namely, | �p − �k|/Mc � 1. The relaxation
of this coefficient to its asymptotic value will be on much
longer timescales ∝ (λM )−4 × (β f − 1)−κ with κ a positive
integer that depends on the multiphonon phase space. Gen-
eralizing this argument to multiphonon states, we are led to
conjecture that the exact form of the asymptotic quantum state
for an impurity that was initially quenched with βi � 1 is

given by

|�(∞)〉 =
∑

�k
AiB

�p,�k (∞)
∣∣1i

�p−�k; 1B
�k
〉

+
∑
�k;�q

AiB
�p,�k,�q(∞)

∣∣1i
�p−�k−�q; 1B

�k ; 1B
�q
〉+ · · · , (133)

where the amplitudes AiB
�p,�k (∞), AiB

�p,�k,�q(∞), etc., are nonvan-

ishing only for those wave vectors for which the Mach number
of the impurity in the corresponding state is β f = | �p − �k −
�q − · · · |/Mc � 1. Unitarity implies that

∑
�k |AiB

�p,�k (∞)|2 +∑
�k;�q |AiB

�p,�k,�q(∞)|2 + · · · = 1. These arguments lead us to the

main conjecture: that for asymptotically long time, the full
quantum steady state will be a linear superposition of the im-
purity with entangled multiphonon states of the form given by
Eq. (133) in which the Mach number of the impurity is always
�1. This asymptotic state is, therefore, a dynamical attractor.
The results obtained for β � 1 indicate that this steady-state
attractor will be reached at asymptotically long time because
as the effective Mach number becomes smaller the relaxation
via the emission of the next Cerenkov phonon occurs on a
longer timescale. This analysis provides a quantum many-
body interpretation of the “classical intuitive argument,” based
on the Landau criterion for superfluidity, that a supersonic
mobile impurity will slow down by creating excitations until it
becomes subsonic. Equation (133) is the many-body quantum
state that describes this asymptotic state.

E. Trapped cold atoms

We have studied the nonequilibrium dynamics of polaron
relaxation and dressing in the case of a homogeneous BEC.
Experimentally most of the studies of many-body physics
of BEC are performed with harmonically trapped atoms;
therefore the spectrum of low-energy excitations above the
condensate is very different from the homogeneous case.
In particular the process of Cerenkov radiation of phonons,
which is the main relaxational channel for a mobile impurity
in the homogeneous case, will be substantially modified, if
relevant at all, in the case of trapped cold atoms. Therefore,
while the results of our study may be a prelude towards
understanding the nonequilibrium many-body dynamics of
impurities in a condensate, their applicability to the typical
experimental setup with trapped cold atoms would have to
be reassessed. Recently the nonequilibrium dynamics of a
subsonic impurity immersed in a one-dimensional trapped
BEC has been reported [62] also revealing important dynam-
ical aspects of entanglement [63]. A numerical solution of
the Schrödinger equation in this reference reveals intriguing
dynamics of transfer of energy from the impurity to the bath.
Although the setting and the initial condition differ from our
study, the energy transfer between impurity and bath degrees
of freedom seems to be physically similar to the relaxation
dynamics that we studied. It is definitely a worthy endeavor to
extrapolate the methods and results obtained in our study to
the case of harmonically trapped gases.
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X. CONCLUSION AND FURTHER QUESTIONS

Motivated by the fundamental importance of the polaron
as a paradigm of a quasiparticle in many-body physics, and
by current experiments that access its relaxation and dressing
dynamics with unprecedented control, we introduced an al-
ternative method to study its nonequilibrium time evolution.
We consider an impurity suddenly immersed—quenched—
with velocity v into the ground state of an homogeneous
Bose-Einstein condensate at zero temperature. A many-body
generalization of the Weisskopf-Wigner method allows us to
study the dynamics of the Loschmidt echo or fidelity (survival
probability) of the impurity along with the emergence of
correlations between the impurity and low-energy excitations
of the BEC. A wealth of dynamical scales characterize the dy-
namics of relaxation and polaron formation. Early-time tran-
sient dynamics feature quantum Zeno behavior crossing over
to a stretched exponential. The Mach number of the impurity
β = v/c with c the speed of sound of superfluid phonons
plays a crucial role in the characterization of the intermediate
and asymptotically long-time dynamics. The region β � 1
features a slowing down of relaxation and dressing dynamics
in agreement with results previously reported in Ref. [41].
For β > 1 the fidelity decays via Cerenkov emission of
long-wavelength phonons with a rate �p ∝ (β − 1)3, whereas
dressing dynamics is characterized by a power law ∝ t−3/2

on a timescale t> ∝ (β − 1)−2/3 modulated by oscillations
with frequency ∝ (β − 1)2 as a consequence of emission and
absorption of “off-shell” phonons with virtuality ∝ (β − 1)2.
For β � 1 only the process of dressing is available, resulting
in power-law behaviors for the polaron residue. For β = 1 we
find that the residue approaches its asymptotic value with a
power law t−1/2, whereas for β < 1 as (t</t )−2 on a timescale
t< ∝ (1 − β )−3/2. The sharp change in asymptotic behavior as
β crosses β = 1 is a consequence of the nonanalyticity of the
impurity spectral density for β � 1. These results show that
relaxation and dressing dynamics undergo slowing down as
β → 1. The asymptotic value of the polaron residue features a
cusp � ln |1 − β| in its β-derivative at β = 1. These features,
namely, the β dependence of �p, the power-law exponents
along with their prefactors, the oscillatory modulation of the
dressing dynamics, and the cusp in the β-derivative of the
polaron residue at β = 1, are all a hallmark of absorption and
emission of long-wavelength superfluid phonons with linear
dispersion relation.

We obtain the impurity-reduced density matrix from the
time evolution of the initial state, and its entanglement en-
tropy, as a measure of information loss and of correlations
between the impurity and excitations in the BEC. We show
how unitarity directly relates the fidelity decay of the impurity,
either via relaxation or dressing, to the growth of the entan-
glement entropy. We find a sharp transition in the asymptotic
entanglement entropy at β = 1.

Taken together, the slowing down of relaxation and dress-
ing featuring power laws in time, with timescales that diverge
as β → 1, along with the sharp discontinuity in the entan-
glement entropy and the β derivative of the polaron residue,
suggest universal dynamical critical phenomena featuring a
slowing down of nonequilibrium dynamics for β � 1. These
phenomena are a direct consequence of emission and ab-

sorption of long-wavelength superfluid phonons with linear
dispersion relation.

We have conjectured that for an impurity quenched into a
BEC with v � c, the nonequilibrium time evolution leads to
an asymptotic steady-state dynamical attractor with effective
Mach number β f � 1 via a cascade process resulting in
the impurity being entangled with multiphonon states. This
attractor will be reached at asymptotically long timescales as a
consequence of the slowing down of relaxation as the effective
β → 1.

We have also established a relation between the quantum
state obtained from unitary time evolution via the Weisskopf-
Wigner method and a variational state for a Bose polaron
proposed in Ref. [33] inspired by a similar variational state
for a Fermi polaron introduced in Ref. [46].

Further understanding of the nature of dynamical critical
phenomena for β � 1, along with a systematic method to an-
alyze the cascade processes yielding multiphonon states and
the asymptotic attractor, merits deeper study implementing
nonperturbative methods.

APPENDIX A: UNITARITY

Unitarity is equivalent to conservation of probability. The
set of Eqs. (14) for the coefficients An(t ), along with the
hermiticity of HI (t ), lead to

d

dt

∑
n

|An(t )|2 = −i
∑
m,n

[Am(t )A∗
n(t ) 〈n|HI (t )|m〉

−An(t )A∗
m(t ) 〈m|HI (t )|m〉]. (A1)

Relabeling m ↔ n one finds

d

dt

∑
n

|An(t )|2 = 0, (A2)

namely, the sum of probabilities is time independent. Setting
Ai

�p(t = 0) = 1 and all other coefficients to vanish at the initial
time yields Eq. (21).

APPENDIX B: SPECTRAL DENSITY

Changing integration variable in the angular integral in
(64) to z = vk cos(θ ) yields

ρ( p̃0; p) = λ2

v

∫ ∞

0

k2√
1 + k2

k∗2

∫ vk

−vk
dz

×δ

[
z −

(
k2

2M
+ Ek − p̃0

)]
dk, p̃0 = p0 − εp.

(B1)

The z-integral yields∫ vk

−vk
dz δ

[
z −

(
k2

2M
+ Ek − p̃0

)]

=
{

1 if − vk � k2

2M + ck
√

1 + k2

k∗2 − p̃0 � vk

0 otherwise
. (B2)

The momentum region within which the δ function in
(B2) is satisfied results in the constraint kmin � k � kmax

043617-17



BOYANOVSKY, JASNOW, WU, AND COALSON PHYSICAL REVIEW A 100, 043617 (2019)

FIG. 3. Solutions for the constraints (B2) for p̃0 > 0. The solid

line is the curve k2

2M + ck
√

1 + k2

k∗2 − p̃0 for M = c = 1.

where kmin, kmax are the intersections of the curve k2

2M +
ck
√

1 + k2

k∗2 − p̃0 with the straight lines ±vk, respectively.
These are depicted in Figs. 3 and 4 for p̃0 > 0 and p̃0 < 0,

respectively.
Once the values of kmin, kmax are established, the k-integral

in the region kmin � k � kmax is straightforward, and we find

ρ( p̃0, p) = λ2

2v
(k∗)3

{
kmax

k∗ F [kmax] − kmin

k∗ F [kmin]

− ln

[ kmax
k∗ + F [kmax]

kmin
k∗ + F [kmin]

]}
, F [k] =

√
1 + k2

k∗2 .

(B3)

For p̃0 < 0 the curve only intersects the straight line +vk and
only for v > c, there is a minimum value of p̃0 below which
there is no further solution. This minimum value defines a
threshold, at which kmin = kmax. This behavior is displayed in

FIG. 4. Solutions for the constraints (B2) for p̃0 < 0. The solid

line is the curve k2

2M + ck
√

1 + k2

k∗2 − p̃0 for M = c = 1.

Fig. 4. For v < c there is no longer intersection with the +vk
line, hence there is no solution for p̃0 < 0, v < c.

For p̃0 > 0 the curve intersects both straight lines ±vk as
shown in Fig. 3.

1. Large p̃0 limit

The large p̃0 limit of the spectral density can be extracted in
a simple manner: in the original form, Eq. (64), we can neglect
v; furthermore, for large p̃0 the δ function will be satisfied for
large k, therefore take k � k∗, hence Ek = k2/2m. Now the
integrals are straightforward and yield the asymptotic limit

ρ( p̃0, p) = λ2k∗(2μ)3/2
√

p̃0, μ = mM

m + M
(B4)

for μ p̃0 � (k∗)2.
Finding the roots kmax, kmin for arbitrary values of p̃0 and

parameters in general must be done numerically; however, as
discussed in the main text, the long-time limit is determined
by the small p̃0 region of ρ. Furthermore, we also focus on
the “critical” region v � c; as discussed above, this region is
dominated by the emission and absorption of long-wavelength
phonons whose dispersion relation is Ek = ck. The equations
that determine the intersections kmax, kmin in this case simplify
to

k2

2M
+ ck − p̃0 = ±v k, (B5)

and the acceptable solutions must correspond to k > 0.
It is convenient to introduce the following energy and

momentum scales and Mach number β,

εc = 1

2
M c2, kc = M c, β = v

c
, (B6)

in terms of which we find the following solutions.

2. β > 1

(i) p̃0 > 0: Intersection with both branches ±v k,

kmax = kc

[
(β − 1) +

√
(β − 1)2 + p̃0

εc

]
, (B7)

kmin = kc

[
−(β + 1) +

√
(β + 1)2 + p̃0

εc

]
. (B8)

(ii) p̃0 < 0: Intersection only with branch +v k

kmax = kc

[
(β − 1) +

√
(β − 1)2 + p̃0

εc

]
, (B9)

kmin = kc

[
(β − 1) −

√
(β − 1)2 + p̃0

εc

]
. (B10)

For v > c, p̃0 < 0 the solutions (93) and (94) are available
only for −εc (β − 1)2 � p̃0. This is evident from the expres-
sions (B9) and (B10) in which the argument of the square
roots is positive only for −εc (β − 1)2 � p̃0. This minimum
value of p̃0 determines a lower threshold for the spectral
density at which kmax = kmin at which point ρ( p̃0; p) = 0,
therefore the region of negative p̃0 for which the spectral
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density has support is given by

−PT � p̃0, PT = εc (β − 1)2. (B11)

This threshold can also be understood from Fig. 4: the dotted
straight line +vk becomes the tangent to the solid line (the

curve k2

2M + ck
√

1 + k2

k∗2 − p̃0) when kmax = kmin, which from
the expressions (B9) and (B10) (in the long-wavelength limit)
corresponds to p̃0 = −PT . For p̃0 < −PT there are no further
solutions, and the spectral density vanishes.

3. β < 1

There are no intersections for p̃0 < 0; there are solutions
only for p̃0 > 0, and these are given by (p̃0 > 0 only)

kmax = kc

[
(β − 1) +

√
(β − 1)2 + p̃0

εc

]
, (B12)

kmin = kc

[
−(β + 1) +

√
(β + 1)2 + p̃0

εc

]
. (B13)

For the “near critical” case β � 1 and small p̃0, which is
the relevant region for the long-time dynamics, the spectral
density simplifies substantially, and we find in this case

ρ( p̃0; p) = λ2

3β c
{[kmax( p̃0)]3 − [kmin( p̃0)]3}

= 2λ2M2 εc

3β

{[
kmax( p̃0)

kc

]3

−
[

kmin( p̃0)

kc

]3
}

.

(B14)

APPENDIX C: zp(∞)

The asymptotic value zp(∞) is given by Eq. (86), and with
the definition of the spectral density, Eq. (64), the integral over
p̃0 yields

P
∫ ∞

−∞
d p̃0

ρ( p̃0, p)

p̃2
0

= λ2P
∫ ∞

0
dk

k3√
1 + k2

k∗2

∫ 1

−1
d[cos(θ )]

× 1[
k2

2M + Ek − v k cos(θ )
]2 . (C1)

Writing

1[
k2

2M + Ek − v k cos(θ )
]2

= 1

vk

d

d[cos(θ )]

{
1[

k2

2M + Ek − v k cos(θ )
]}, (C2)

the angular integral is straightforward. Introducing the follow-
ing variables:

x ≡ k

k∗ , r = m

M
, (C3)

we find

zp(∞) = λ2k∗2

βc2
Re

{∫ ∞

0
dx

x√
1 + x2

1

rx + √
1 + x2 − β − iη

− (β → −β )

}
, η → 0+. (C4)

A closed form can be obtained for the equal mass case r = 1
for which k∗ = 2Mc: changing variables to x = 1

2 (y − 1
y ), we

find in this case

zp(∞) =
[

2λM

β

]2 [
β2 − 1

2β
ln

∣∣∣∣1 + β

1 − β

∣∣∣∣+ 1

]
. (C5)

APPENDIX D: LONG-TIME BEHAVIOR FOR v > c:

As explained in the main text, we first calculate the time-
dependent rate, γ̇p(t ) and integrate back in time with the
boundary condition that γp(t ) → �pt + zp(∞) as t → ∞.
Introducing explicitly the lower threshold PT = εc (β − 1)2,
it follows that the rate is given by

γ̇p(t ) =
∫ ∞

−PT

ρ( p̃0; p)
sin( p̃0t )

p̃0
d p̃0. (D1)

We now write ρ( p̃0; p) ≡ ρ(0; p) + ρ>( p̃0; p) + ρ<( p̃0; p),
where ρ≷ feature support only for p̃0 ≷ 0, respectively, yield-
ing

γ̇p(t ) = ρ(0; p)
∫ ∞

−PT t

sin(x)

x
dx︸ ︷︷ ︸

(a)

+
∫ ∞

0
ρ>( p̃0; p)

sin( p̃0t )

p̃0
d p̃0︸ ︷︷ ︸

(b)

+
∫ 0

−PT

ρ<( p̃0; p)
sin( p̃0t )

p̃0
d p̃0︸ ︷︷ ︸

(c)

. (D2)

(a)∫ ∞

−PT t

sin(x)

x
dx = 2

∫ ∞

0

sin(x)

x
dx −

∫ ∞

PT t

sin(x)

x
dx

= π − cos(PT t )

PT t
+ · · · (D3)

therefore

(a) = πρ(0; p)

[
1 − cos(PT t )

πPT t
+ · · ·

]
. (D4)

(b) Write

sin( p̃0t ) = −1

t

d

d p̃0
cos( p̃0t ), cos( p̃0t ) = 1

t

d

d p̃0
sin( p̃0t )

(D5)

and integrate by parts.
For β > 1 the spectral density is analytic in p̃0 as p̃0 → 0,

and it is given by

ρ( p̃0; p) = ρ(0; p) + ρ ′(0; p) p̃0 + · · · (D6)
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with ρ ′(0; p) = dρ( p̃0; p)/d p̃0 | p̃0=0, and the dots stand for
higher integer powers of p̃0. After integration by parts using
(D5), using the large and small p̃0 behavior (B4) and (D6),
respectively, and subtracting ρ(0; p), we find

(b) = 1

t
ρ ′(0; p) + O(1/t2). (D7)

(c) Use (D5) to find

(c) = −1

t

[
ρ<( p̃0; p)

p̃0
cos( p̃0t )

]0

−PT

+ 1

t

∫ 0

−PT

d

d p̃0

[
ρ<( p̃0; p)

p̃0

]
cos( p̃0t ) d p̃0, (D8)

and the first term yields

−1

t
ρ ′(0; p) + ρ(0; p)

PT t
cos(PT t ), (D9)

where we used that ρ(−PT ; p) = 0 because for p̃0 < 0 it
follows from (B9) and (B10) that kmax(−PT ) = kmin(−PT );
therefore ρ(−PT ; p) = −ρ(0; p). Combining the above re-
sults for the contributions (a)–(c), we find

γ̇p(t ) = πρ(0; p) + 1

t

∫ 0

−PT

d

d p̃0

[
ρ<( p̃0; p)

p̃0

]
cos( p̃0t ) d p̃0︸ ︷︷ ︸

(D)

.

(D10)

In the region near the upper limit p̃0 � 0, it is straightforward
to find that the spectral density features an analytic power
series expansion ρ( p̃0; p) = Ap̃0 + Bp̃2

0 + · · · ; hence upon
rescaling p̃0t → x this region yields inverse integer powers of
t : 1/t2; 1/t3 · · · . In the region near the lower limit p̃0 � −PT

it follows from Eqs. (B9), (B10), and (B14) that

ρ<( p̃0; p) � λ2 k3
c

3β c

{
6 (β − 1)2

[
PT

εc
+ p̃0

εc

]1/2

+ 2

[
PT

εc
+ p̃0

εc

]3/2}
, (D11)

and therefore near threshold we find

d

d p̃0

[
ρ<( p̃0; p)

p̃0

]
= λ2 k3

c

β c

(β − 1)2

p̃0
√

εc

1√
PT + p̃0

[1 + · · · ],

(D12)

where the dots stand for positive integer powers of (PT + p̃0).
The first term in (D11) yields the leading contribution from
the region near threshold in the long-time limit. The square-
root singularity at p̃0 � −PT yields a fractional power of
time in the long-time limit, which is the leading asymptotic
behavior. To see this insert (D12) in the integral in (D10)

and rescale (PT + p̃0)t ≡ x, the leading contribution to the
integral (D) in the long-time limit becomes

(D) = − 1

t3/2

λ2 k3
c

β c

(β − 1)2

PT
√

εc

×
{

cos(PT t )
∫ PT t

0

cos(x)(
1 − x

PT t

)√
x

dx + sin(PT t )

×
∫ PT t

0

sin(x)(
1 − x

PT t

)√
x

dx

}
, (D13)

with corrections which are higher inverse powers of t . Now,
taking the PT t → ∞ limit in the integrals and carrying out
the remaining integrals in x we finally find

(D) = −
√

π λ2 k3
c

β c

cos[PT t − π/4]

(εc t )3/2
. (D14)

Gathering the results obtained above up to leading order we
find

γ̇p(t ) = �p

2
−

√
π λ2 k3

c

β c

cos[PT t − π/4]

(εc t )3/2
+ O(1/t2).

(D15)

This result is valid for PT t � 1.
The next step is to integrate this result in time and append

the asymptotic boundary condition. The integral in time of
the oscillatory term cannot be found in a useful closed form,
it being related to a Fresnel integral. However, progress can
be made in the asymptotic long-time limit with PT t � 1 by
writing

cos[PT t − π/4] = 1

PT

d

dt
sin[PT t − π/4], (D16)

and integrating by parts, a process that can be iterated to yield∫ t cos[PT t ′ − π/4]

t ′ 3/2 dt ′

= 1

PT t3/2

[
sin(PT t − π/4) − 3

2PT t
cos(PT t − π/4) + · · ·

]
,

(D17)

where the dots stand for higher powers of 1/(PT t ) and the
integration constant is fixed by the boundary condition in the
asymptotic long-time limit. Therefore, for PT t � 1 we obtain

γp(t ) = �p

2
t + zp(∞) −

[
t>
t

]3/2

sin[PT t − π/4]

+ O(1/t2) + · · · ,

t> = 1

εc

[√
4π λ2M2

β (β − 1)

]2/3

. (D18)
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