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Two-dimensional imbalanced Fermi gas in antiparallel magnetic fields
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We study a two-dimensional Fermi gas with an attractive interaction subjected to synthetic magnetic fields,
which are assumed to be mutually antiparallel for two different spin components with population imbalance. By
employing the mean-field approximation, we show that the Fulde-Ferrell state is energetically favored over the
Larkin-Ovchinnikov state in the weak-coupling limit. We then elucidate the zero-temperature phase diagram in
the space of attraction and two chemical potentials analytically at weak coupling as well as numerically beyond it.
Rich structures consisting of quantum Hall insulator, unpolarized superfluid, and Fulde-Ferrell phases separated
by various second-order and first-order quantum phase transitions are found.
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I. INTRODUCTION

Ceaseless progress in ultracold atom experiments allows
us to control system parameters at will, such as interaction,
dimensionality, statistics, and internal degrees of freedom of
atoms [1]. Furthermore, it became possible to apply synthetic
magnetic fields to neutral atoms by optically coupling their
internal states, so that quantum phenomena induced by mag-
netic fields are also within the reach of experimental real-
ization [2–4]. This approach was further extended to create
“antiparallel” magnetic fields, which act on two different spin
components of atoms with the same magnitude but in opposite
directions [5–7].

Motivated by such experimental abilities to control the
interaction, dimensionality, and magnetic fields, the authors of
this paper previously studied a two-dimensional (2D) Fermi
gas with an attractive interaction between two spin compo-
nents in antiparallel magnetic fields [8]. Here, its phase dia-
gram at zero temperature was found to show the rich structure
consisting of pair superfluid and quantum spin Hall insulator
phases, which are separated by a second-order quantum phase
transition classified into the universality class of either the di-
lute Bose gas or the XY model. For related theoretical works,
see Refs. [9–13] on 2D Bose and three-dimensional (3D)
Fermi gases as well as Refs. [14–21] in optical lattices. The
purpose of this paper is to extend our previous analysis on the
zero-temperature phase diagram to the population imbalanced
system with particular attention on the possible Fulde-Ferrell
(FF) and Larkin-Ovchinnikov (LO) phases [22–25].

The FF state is an anisotropic superfluid state where the
order parameter has a spatially varying phase with a constant
magnitude, �(x) = eiQ·x�, so that the Cooper pairing takes
place with nonzero momentum [26]. On the other hand, the
LO state is an inhomogeneous superfluid state where the order
parameter is periodically modulated in its magnitude, such
as �(x) = cos(Q · x)� [27]. Although the FF state is often
assumed by an ansatz because of its ease to handle theoreti-
cally, the LO state has been known to be energetically favored
in the familiar population imbalanced systems [25,28–31]. In
contrast, when the antiparallel magnetic fields are applied, we

will find below that the FF state turns energetically favored
at least in the weak-coupling limit where the mean-field
(MF) approximation may be employed. After formulating the
mean-field Hamiltonian in Sec. II, we will elucidate the zero-
temperature phase diagram in the space of attraction and two
chemical potentials analytically at weak coupling in Sec. III
as well as numerically beyond it in Sec. IV.

II. MEAN-FIELD HAMILTONIAN

The system under consideration is composed of spin-1/2
fermions in 2D subjected to spin-dependent vector potentials,
whose Hamiltonian reads

H =
∑

σ=↑,↓

∫
dx φ†

σ (x)

[
− [∇ + iAσ (x)]2

2m
− μσ

]
φσ (x)

− g
∫

dx φ
†
↑(x)φ†

↓(x)φ↓(x)φ↑(x). (1)

Here, we set h̄ = 1, m is the mass of fermions, μσ is the
chemical potential for each spin component, and the coupling
constant g > 0 is assumed to be attractive.1 We also choose
the vector potentials as

A↑(x) = −A↓(x) = −Byx̂, (2)

so that different spin components experience antiparallel mag-
netic fields with the magnitude B > 0; ∇ × A↑(x) = −∇ ×
A↓(x) = Bẑ. The standard mean-field approximation leads to

HMF =
∑

σ=↑,↓

∫
dx φ†

σ (x)

[
− [∇ + iAσ (x)]2

2m
− μσ

]
φσ (x)

+
∫

dx
[ |�(x)|2

g
− �∗(x)φ↓(x)φ↑(x)

−φ
†
↑(x)φ†

↓(x)�(x)

]
, (3)

1We note that mg/h̄2 is dimensionless in 2D and is related to the
3D scattering length via mg/h̄2 = −√

8π a3D/�z within the Born
approximation, where �z ≡ √

h̄/mωz � −a3D > 0 is a transverse
harmonic-oscillator length [1].
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where �(x) = g〈φ↓(x)φ↑(x)〉 is the superfluid order
parameter.

We recall that the eigenfunction of the single-particle
Hamiltonian in the Landau gauge for σ =↑ is

χkl (x) ≡ eikx

√
L

Fl
(
y − k�2

B

)
(4)

with

Fl (y) ≡ e−(y/�B )2/2√
2l l!π1/2�B

Hl

(
y

�B

)
(5)

being the lth eigenfunction of the harmonic oscilla-
tor [32]. It solves the Schrödinger equation [−(∇ −
iByx̂)2/(2m)]χkl (x) = εlχkl (x) with the single-particle energy
provided by εl ≡ (l + 1/2)ωB, where l = 0, 1, 2, . . . labels
Landau levels. On the other hand, the eigenfunction for σ = ↓
is χ∗

kl (x) with the same single-particle energy. Here, �B ≡
1/

√
B and ωB ≡ B/m are the magnetic length and the cy-

clotron frequency, respectively, and k ≡ 2πn/L is the wave
number with n = 0, 1, . . . , mωBL2/2π . The linear size of the
system L is formally kept finite in intermediate calculations,
whereas the thermodynamic limit L → ∞ is taken at the end.

III. WEAK-COUPLING LIMIT

A. FF state versus LO state

In order for the Cooper pairing to take place with an
infinitesimal coupling g → 0, each chemical potential must
lie right at a Landau level, i.e., μσ = εlσ for some lσ ∈ N0

because the system is otherwise insulating [8]. When this is
the case, the fermion field operator can be expanded over
the eigenfunctions in Eq. (4) restricted to the lσ th Landau
level because the mixing with the other Landau levels is
negligible in the weak-coupling limit. By substituting φ↑(x) =∑

k χkl↑ (x)φ̃↑(k) and φ↓(x) = ∑
k χ∗

kl↓ (x)φ̃↓(k) into Eq. (3),
the mean-field Hamiltonian reads

HMF =
∫

dx
|�(x)|2

g

+
∑
k,k′


̃†(k)

(
0 −�̃(k, k′)

−�̃∗(k′, k) 0

)

̃(k′), (6)

where the last term is the quasiparticle Hamiltonian in the
Nambu-Gor’kov basis with 
̃(k) ≡ [φ̃↑(k), φ̃†

↓(k)]T and

�̃(k, k′) ≡
∫

dx χ∗
kl↑ (x)�(x)χk′l↓ (x) (7)

measures the overlap of two fermion wave functions with the
pair field. The resulting Hamiltonian allows us to evaluate and
compare the ground-state energies for the FF and LO states.

Because of the rotational invariance, the order parameter
in the FF ansatz can be chosen to be �(x) = eiQy�, for which
we obtain

�̃(k, k′) = δkk′eikQ�2
B fQ�. (8)

Here, the overlap is

fQ ≡ e−(Q�B )2/4

√
l↓!

l↑!

(
iQ�B√

2

)l↑−l↓
Ll↑−l↓

l↓

(
(Q�B)2

2

)
, (9)

and we employed∫ ∞

−∞
dx e−x2

Hm(x + y)Hn(x + z)

= 2mn!π1/2ym−nLm−n
n (−2yz) (10)

with the understanding of Lm−n
n (x) = (m!/n!)(−x)n−m

Ln−m
m (x) [33]. Therefore, the eigenvalues of the quasiparticle

Hamiltonian in Eq. (6) are provided by ±| fQ�| for every k,
so that the ground-state energy is

EFF

L2
= |�|2

g
− mωB

2π
| fQ�|. (11)

Its minimization with respect to � and Q leads to

min
EFF

L2
= −g

(mωB

4π
| fQ̄|

)2
, (12)

where |�| = gmωB
4π

| fQ̄| with Q̄ maximizing | fQ|. Although
Q̄ = 0 for l↑ = l↓ without population imbalance correspond-
ing to the unpolarized superfluid state as expected [8], we find
Q̄ �= 0 for l↑ �= l↓ with population imbalance corresponding

to the FF state. As examples, |Q̄|/�B = √
2, 2, and

√
5 − √

17
are found for (l↑, l↓) = (1, 0), (2,0), and (2,1), respectively.
We also note that the order parameter shows the remarkable
linear dependence on the coupling constant in contrast to
the familiar exponential dependence as a consequence of
“magnetic catalysis” [8,34].

The same analysis can be repeated in the LO ansatz,
�(x) = cos(Qy)�, for which we obtain

�̃(k, k′) = δkk′
eikQ�2

B + (−1)l↑−l↓e−ikQ�2
B

2
fQ�. (13)

Therefore, the eigenvalues of the quasiparticle Hamiltonian
in Eq. (6) are provided by ±| cos(kQ�2

B + ϕ) fQ�| with ϕ =
(l↑ − l↓)π/2 for each k, so that the ground-state energy is

ELO

L2
= |�|2

2g
− 1

L2

∑
k

∣∣ cos
(
kQ�2

B + ϕ
)

fQ�
∣∣ (14)

→
L→∞

|�|2
2g

− mωB

π2
| fQ�| (15)

with the thermodynamic limit taken at fixed Q �= 0. Its mini-
mization with respect to � and Q leads to

min
ELO

L2
= − g

2

(mωB

π2
| fQ̄|

)2
, (16)

where |�| = gmωB
π2 | fQ̄| with the same Q̄ maximizing | fQ|. By

comparing Eqs. (12) and (16), we find

min EFF = π2

8
min ELO < min ELO < 0, (17)

and the FF state thus proves to be energetically favored over
the LO state.

B. Zero-temperature phase diagram

Now that the FF state is energetically favored in the
weak-coupling limit, we set �(x) = eiQy� and elucidate the
zero-temperature phase diagram at weak coupling. To this
end, we allow each chemical potential to lie slightly off the
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FIG. 1. Zero-temperature phase diagram at weak coupling in the
plane of δμ and δh for μσ � εlσ in units of δμc defined in Eq. (20).
The unpolarized SF or FF phase is located at the center depending on
l↑ = l↓ or l↑ �= l↓, and the other four phases are QHIs whose filling
factors (ν↑, ν↓) are indicated. The quantum phase transitions denoted
by the dotted lines at |δμ| = δμc are of the second order, whereas
those denoted by the solid lines at |δh| = (δμ2 + δμ2

c )/2δμc < δμc

and at |δh| = |δμ| > δμc are of the first order.

Landau level, i.e., μσ = εlσ + δμσ with |δμσ | � ωB, so that
the mixing with the other Landau levels is still negligible. By
denoting δμ↑ ≡ δμ + δh and δμ↓ ≡ δμ − δh, the mean-field
Hamiltonian in Eq. (6) with the use of Eq. (8) is modified into

HMF = L2 |�|2
g

−
∑

k

(δμ − δh)

+
∑

k


̃†(k)

( −δμ − δh −eikQ�2
B fQ�

−e−ikQ�2
B f ∗

Q�∗ δμ − δh

)

̃(k).

(18)

Because the eigenvalues of the quasiparticle Hamiltonian are
provided by ±√

δμ2 + | fQ�|2 − δh for every k, the ground-
state energy is

E

L2
= |�|2

g
− mωB

2π
(
√

δμ2 + | fQ�|2 + δμ)

−mωB

2π
(|δh| −

√
δμ2 + | fQ�|2)>, (19)

where (x)> ≡ x θ (x) for brevity.
The resulting phases are determined by finding � and

Q minimizing the ground-state energy. It is minimized with
respect to Q always at Q = Q̄ maximizing | fQ|. A phase with
� �= 0 then corresponds to the unpolarized superfluid (SF) or
FF state depending on l↑ = l↓ (Q̄ = 0) or l↑ �= l↓ (Q̄ �= 0).
On the other hand, a phase with � = 0 corresponds to the
normal state where the system is composed of two quantum
Hall insulators (QHIs) with filling factors of (ν↑, ν↓) = [l↑ +
θ (δμ↑), l↓ + θ (δμ↓)] for two spin components of fermions.
In particular, when ν↑ = ν↓ > 0, the system without pop-
ulation imbalance is the quantum spin Hall insulator with
time-reversal invariance [8,35–37].

It is an elementary analysis to minimize the ground-state
energy in Eq. (19) with respect to �, and the obtained phase

FIG. 2. Zero-temperature phase diagram in the plane of the
average chemical potential μ = (μ↑ + μ↓)/2 and the Zeeman field
h = (μ↑ − μ↓)/2 in units of the cyclotron frequency ωB deduced
from Fig. 1 for mg = 2.5. See the caption of Fig. 1 for the other
details.

diagram is presented in Fig. 1 in the plane of δμ and δh. When
|δμ| > |δh|, we find |�| = √

δμ2
c − δμ2/| fQ̄| for |δμ| < δμc

and � = 0 for |δμ| > δμc, which are separated by a second-
order quantum phase transition at

|δμ| = δμc ≡ g
mωB

4π
| fQ̄|2. (20)

On the other hand, when |δh| > |δμ|, we find � = 0
for |δh| > δμc and for δhc < |δh| < δμc, whereas |�| =√

δμ2
c − δμ2/| fQ̄| for |δh| < δhc, δμc. They are separated by

a first-order quantum phase transition at

|δh| = δhc ≡ δμ2 + δμ2
c

2δμc
< δμc, (21)

and it continues into another first-order quantum phase tran-
sition at |δh| = |δμ| > δμc separating the two QHI phases
with different filling factors. The quasiparticle energy in the
SF or FF phase is thus found to be

√
δμ2 + | fQ�|2 = δμc

independent of δμ, and the ratio δhc/δμc varies from 1/2 to 1
for 0 � |δμ| � δμc.

The above phase diagram is valid in the vicinity of μσ =
εlσ for every lσ = 0, 1, 2, . . . , which all together leads to the
global phase diagram in the plane of the average chemical
potential μ ≡ (μ↑ + μ↓)/2 and the Zeeman field h ≡ (μ↑ −
μ↓)/2 as presented in Fig. 2. It consists of the QHI, SF, and FF
phases as well as the vacuum (ν↑ = ν↓ = 0) and is symmetric
under h → −h with ν↑ ↔ ν↓. The SF or FF and QHI phases
are separated by the second-order (first-order) quantum phase
transition along the direction of μ (h), whereas the two QHI
phases with different filling factors (ν↑, ν↓) are separated by
the first-order quantum phase transition. We note that a large
value of mg = 2.5 is artificially chosen for Fig. 2 in order to
make the FF phases visible.

IV. PHASE DIAGRAM BEYOND WEAK COUPLING

Because the FF phases occupy only the tiny portions
of the phase diagram in the weak-coupling limit, it is im-
portant to elucidate how they extend beyond it. To this
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end, we go back to the mean-field Hamiltonian in Eq. (3)
and expand the fermion field operator over all the eigen-
functions in Eq. (4) so as to allow for the mixing of the
Landau levels. By assuming the FF ansatz, �(x) = eiQy�,

making the gauge transformation, φσ (x) → eiQy/2φσ (x), and
then substituting φ↑(x) = ∑

k,l χkl (x)φ̃↑(k, l ) and φ↓(x) =∑
k,l χ∗

kl (x)φ̃↓(k, l ) into Eq. (3), the mean-field Hamiltonian
reads

HMF = L2 |�|2
g

+
∑
k,l

(εl − μ + h) +
∑
k,l,l ′


̃†(k, l )

[(
εl + Q2

8m − μ − h −�

−�∗ −εl − Q2

8m + μ − h

)
δll ′

+ iQ

2m�B

(
1 0
0 1

)(√
l

2
δl−1,l ′ −

√
l + 1

2
δl+1,l ′

)]

̃(k, l ′). (22)

Here, the last term is the quasiparticle Hamilto-
nian in the Nambu-Gor’kov basis with 
̃(k, l ) ≡
[φ̃↑(k, l ), φ̃†

↓(k, l )]T , and we employed �BF ′
l (y) =√

l/2 Fl−1(y) − √
(l + 1)/2 Fl+1(y). Because the eigenvalues

of the quasiparticle Hamiltonian are provided in the forms
of ±El − h (El > 0; l = 0, 1, 2, . . . ) for every k, the
ground-state energy is

E

L2
= |�|2

g
− mωB

2π

∑
l

(El − εl + μ)θ (� − εl )

− mωB

2π

∑
l

(|h| − El )>. (23)

The quasiparticle energy El depends on μ, �, and Q and
is confirmed to have the asymptotic form of liml→∞ El =√

(εl − μ)2 + |�|2. Therefore, the second term on the right-
hand side of Eq. (23) is logarithmically divergent and is reg-
ularized by introducing an energy cutoff �. This logarithmic
divergence should be canceled by the same form of divergence
hidden in the coupling constant [38],

1

g
= m

2π

∫ �

0

dε

2ε + εb
. (24)

Here, εb = 2� exp(−4π/mg) > 0 has the physical meaning
of the binding energy of a two-body bound state in the vacuum
without magnetic fields, which always exists for any g > 0
in 2D and can thus be used to parametrize the attraction
[39,40]. By separating out the divergent piece from the second
term, combining it with the first term, and then taking the
limit of � → ∞, the ground-state energy in Eq. (23) is made
manifestly cutoff independent as

E

L2
= m|�|2

4π

[
ln

(
2ωB

εb

)
+ ψ

(
1

2
− μ

ωB

)]

− mωB

2π

∑
l

[
El − εl + μ − |�|2

2(εl − μ)
+ (|h| − El )>

]
,

(25)

where ψ (z) is the digamma function [8].
We minimize the resulting ground-state energy numer-

ically to find � and Q by employing up to lmax = 500
quasiparticle energies, which are confirmed to be enough for
convergence of the summation over l . The obtained phase
diagrams are presented in Fig. 3 in the planes of εb and μ at (a)

h/ωB = 0.0 [8], (b) 0.5, and (c) 1.0 and in the planes of εb and
h at (d) μ/ωB = 0.5, (e) 1.0, and (f) 1.5. They consist of the
QHI (� = 0), SF (� �= 0, Q = 0), and FF (� �= 0, Q �= 0)
phases and are consistent with the phase diagram at weak cou-
pling elucidated in the previous section. In particular, we find
that each FF phase appearing at μ = (εl↑ + εl↓ )/2 and h =
(εl↑ − εl↓ )/2 with l↑ �= l↓ in the weak-coupling limit extends
well by increasing the attraction and is eventually replaced
by the SF phase with the first-order quantum phase transition.
The QHI phase is also found to be replaced by the SF phase
with the second-order (first-order) quantum phase transition
for ν↑ = ν↓ (ν↑ �= ν↓) by increasing the attraction. Because
the FF phases prove to occupy the reasonable portions of the
phase diagram, they may, in principle, be realized by ultracold
atom experiments.

V. CONCLUSION AND OUTLOOK

We studied a 2D Fermi gas with an attractive interaction
in antiparallel magnetic fields with population imbalance. By
employing the mean-field approximation, we showed that the
FF state is energetically favored over the LO state in the weak-
coupling limit. We then elucidated the zero-temperature phase
diagram in the space of attraction, average chemical potential
(μ), and Zeeman field (h) analytically at weak coupling (see
Fig. 2) as well as numerically beyond it (see Fig. 3). It
was found to show the rich structures consisting of QHI,
unpolarized SF, and FF phases, where

(i) the SF or FF and QHI phases are separated by the
second-order (first-order) quantum phase transition along the
direction of μ (h),

(ii) the two QHI phases with different filling factors
(ν↑, ν↓) are separated by the first-order quantum phase transi-
tion,

(iii) the FF phase is replaced by the SF phase with the first-
order quantum phase transition by increasing the attraction,

(iv) the QHI phase is replaced by the SF phase with the
second-order (first-order) quantum phase transition for ν↑ =
ν↓ (ν↑ �= ν↓) by increasing the attraction.

In particular, the FF phases proved to occupy the rea-
sonable portions of the phase diagram, so that they may, in
principle, be realized by ultracold atom experiments. To this
end, it is worthwhile to note that the average chemical po-
tential for trapped systems is replaced by μ(x) = μ0 − V (x)
within the local-density approximation, whereas h remains
constant [1]. Therefore, by realizing a sufficiently large μ0
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FIG. 3. Zero-temperature phase diagrams in the planes of the two-body binding energy εb and the average chemical potential μ at
(a) h/ωB = 0.0 [8], (b) 0.5, and (c) 1.0 and in the planes of εb and the Zeeman field h at (d) μ/ωB = 0.5, (e) 1.0, and (f) 1.5 in units of
the cyclotron frequency ωB. There appear the unpolarized SF and FF phases as well as QHIs with their filling factors (ν↑, ν↓) indicated. They
are separated by the various second-order (dotted curves) and first-order (solid curves) quantum phase transitions.

with |h| � N+ωB/2, a series of FF phases separated by QHIs
may appear along the path from the trap center μ(0) = μ0

towards the edge μ(|x| → ∞) → −∞.

As for future works, we plan to extend our study to
finite temperature where fluctuations beyond the mean-field
approximation need to be taken into consideration. It is also
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interesting to extend our study to 3D with population imbal-
ance where different types of FF states are possible, such
as the Cooper pairing with nonzero momentum parallel to
magnetic fields, perpendicular to magnetic fields, and both of
them.
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