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Expanding ring-shaped Bose-Einstein condensates as analogs of cosmological models:
Analytical characterization of the inflationary dynamics
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We analytically study the expansion of a Bose-Einstein condensate in a ring-shaped trap with an increasing
central radius. The evolution of the ground state is described using a scaling transform. Additionally, the
dynamics of excited azimuthal modes over the varying ground state is analyzed through a generalization of
the Bogoliubov–de Gennes approach. Our results explain some of the features observed in recent experiments
focused on testing the applicability of the system as a parallel of cosmological inflationary models. The radial
dynamics, which corresponds to the inflaton field of the cosmological counterpart, is analytically characterized:
The expansion is found to induce the oscillatory displacement of the condensate as well as the coupled variation
of the radial and vertical widths. Our findings account also for the observed redshift and emergence of the
Hubble friction in the evolution of initially prepared azimuthal modes. Our description, which traces the role of
the different components of the setup in the expansion, enhances the controllability and therefore the potential
of the system as a ground for emulating the inflationary dynamics of cosmological models.
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I. INTRODUCTION

Bose-Einstein condensates (BECs) have been proposed
as a controllable scenario for realizing analogs of funda-
mental effects primarily linked to other physical contexts.
In particular, the possibility of describing the dynamics of
excitations in BECs using equations derived from an effective
curved space-time metric [1–6] has allowed the connection
with cosmological effects. The difficulties in observing those
effects in their original environment can be avoided in BECs,
where they can be tested under laboratory conditions. Indeed,
the controlled variation of the trap frequencies, interaction
strength, dimensionality, or temperature has made possible the
implementation of different simulation schemes. Significant
advances have been achieved recently. A remarkable example
is the use of a BEC to set up a sonic parallel of a gravita-
tional black hole where the acoustic counterpart of Hawking
radiation [7–10] can be detected [11,12]. Also noticeable is
the analog of the Sakharov oscillations [13] realized through
the interference of acoustic waves generated by appropriately
varying the interaction strength in a two-dimensional BEC
[14]. Moreover, a closely related mechanism has been used to
implement the dynamical Casimir effect [15]: Quasiparticles
have been created from the vacuum by suitably modifying the
transversal trap frequencies in an elongated condensate [16].
Here we focus on recent work which can open another line
in this field of cold-atom cosmology, namely, the proposal
for setting up a parallel of inflationary universe models pre-
sented in Ref. [17]. Specifically, it has been proposed that
the evolution of an atomic BEC in a ring trap with a growing
central radius can simulate some of the characteristics of the
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primordial inflation in cosmology. The practical realization
has shown features that substantiate the analogy [17]. The
increase of the trap radius has been observed to alter the
radial dynamics in a way reminiscent of the forms predicted
for the inflaton field, i.e., for the field conjectured to drive
the cosmological expansion [18–22]. Additionally, results of
numerical simulations, to be experimentally verified, have
uncovered a scenario that seems to emulate the reheating
process, i.e., the thermalization predicted in the cosmological
context. After the expansion, the energy stored in the radial
excitations is found to induce the generation of solitons,
paralleling the preheating phase, where the inflaton field leads
to the production of particles. The solitons in turn decay
into vortices, which subsequently bring about the emergence
of stochastic currents. The eventual thermalization, although
not proved, seems to be reasonably conjectured. The paral-
lelism with the cosmological setting can also be traced in
the detected dynamics of initially prepared azimuthal modes:
The redshift of the mode frequency and a counterpart of the
Hubble friction were uncovered. Our work is intended to
clarify those analogies by giving an analytical description of
the dynamics. Our theoretical framework, based on a scaling
transform for the ground state and on a generalization of the
Bogoliubov–de Gennes (BdG) approach for the excitations,
allows dealing with a general regime of time variation in
the evolution of the condensate and incorporates corrections
to the phononic term in the dynamical dispersion relation
of the modes. Consequently, we can account for effects like
the displacement of the condensate with respect to the trap
or the coupling of the radial and vertical dynamics in the
expansion. We can also evaluate the role of the background
nonadiabaticity in the mode evolution or trace the origin of
features observed in the redshifting and the Hubble friction.
Our results can pave the way for designing elements to con-
trol the involved processes and consequently for advancing
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in the characterization of the referred effects in laboratory
conditions.

The outline of the paper is as follows. In Sec. II we
present our model system. A scaling method is applied in
Sec. III to analyze the evolution of the condensate during and
after the expansion of the trap. In Sec. IV the dynamics of
excited azimuthal modes is studied. In order to deal with the
time-dependent background, we set up a generalization of the
BdG approach. Moreover, the emergent redshift and Hubble
friction are characterized in Sec. V using an effective Hamil-
tonian description of the modes. In Sec. VI we evaluate the
appearance of effects specific to the anharmonicity of the trap
used in the experimental realization [17]. Finally, some gen-
eral conclusions are summarized in Sec. VII.

II. MODEL SYSTEM

We consider an atomic BEC in a ring-shaped confining po-
tential Vex(r, t ) whose central radius is made to vary. Specif-
ically, in cylindrical coordinates (r, θ , and z), the trapping
potential is given by

Vex(r, z, t ) = 1
2 Mω2

z z2 + 1
2 Mω2

r [r − R(t )]2 + �[r − R(t )]4,

(1)
where M is the mass of a condensate atom, ωz and ωr denote,
respectively, the vertical and radial frequencies, � accounts
for the anharmonicity of the trap in the radial direction,
and R(t ) stands for the time-dependent central radius of the
ring. In the experimental realization [17], R(t ) was made
to steadily grow in order to parallel the expansion in an
inflationary universe model. As corresponds to the charac-
teristics of the practical implementation, the potential does
not depend on the azimuthal coordinate θ . No limitations
are assumed on the relative magnitude of the radial and
vertical frequencies. The experimental arrangement, which
corresponds to ωz being significantly larger than ωr , will be
analyzed as a particular case in our general framework. The
effect of the anharmonic term �[r − R(t )]4 will be analyzed
in Sec. VI; until then, a purely harmonic confinement will be
considered.

The mean-field description of the system wave function
�(r, t ) is given by the time-dependent three-dimensional
Gross-Pitaevskii (GP) equation [23]

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2M
∇2 + Vex(r, t ) + g|�(r, t )|2

]
�(r, t ),

(2)
where g is the strength that characterizes the atom-atom
interaction. Convenient for the implementation of our ana-
lytical approach is the use of the hydrodynamic formalism.
Applying it in the Thomas-Fermi (TF) regime, we derive
a system of equations for the density ρ(r, t ) and velocity
field v(r, t ) from the time-dependent GP equation. Namely,
rewriting the wave function in terms of its modulus and phase,
i.e.,

�(r, t ) =
√

ρ(r, t )eiS(r,t ), (3)

and with

v(r, t ) = h̄

M
∇S(r, t ), (4)

we derive the continuity and the Euler-like (hydrodynamic)
equations, which read, respectively,

∂ρ

∂t
+ ∇(ρv) = 0, (5)

M
∂v
∂t

= ∇
(

−1

2
Mv2 − Vex − gρ

)
. (6)

The applicability of the TF approximation to describe the
ground-state dynamics will be assumed throughout the ana-
lytical part of the study. We have numerically checked that,
given the experimental conditions, this is a sound assumption.

Following the practical procedure, we will consider two
different preparations. First, the system will be assumed to
be in the ground state corresponding to the external potential
prior to the expansion, i.e., to Vex(r, t ) with the central radius
taking its initial value R(t = 0) ≡ R0. The evolution resulting
from the variation of R(t ) will be analytically characterized.
Second, it will be considered that, initially, an azimuthal
mode has been excited from the previously described ground
state. We will analyze how the corresponding perturbation in
the density and phase of the condensate evolves during the
expansion of the trap.

III. ANALYTICAL DESCRIPTION OF THE EVOLUTION
OF THE GROUND STATE

A. Application of a scaling approach

From the experimental results presented in Ref. [17], it is
apparent that an adiabatic approximation is not applicable:
The evolution of the condensate during the trap expansion
differs from the sequence of static ground-state configurations
corresponding to frozen values of the time-varying central
radius. To explain the experimental findings, we must set up
a theoretical framework valid in a general regime of time
variation. We will start with a simplified scenario where a
purely harmonic radial confinement is considered. It will
be shown that the mechanisms responsible for the radial
dynamics during the expansion can be already identified in
this description. Subsequently, effects specific to the radial
anharmonicity will be evaluated.

Our approach consists in a variant of the scaling methods
applied in previous studies of condensates in harmonic traps
with time-dependent frequencies [24,25]. We will adapt those
techniques to the present case, where the frequencies take
fixed values and it is the trap central radius that is varied.
Significant differences from the behavior observed in former
setups will be shown to derive from the ring geometry, specif-
ically, from the radial coordinate being the direction of the
trap expansion. As in previous presentations of the scaling
methods, we start by relating the condensate density at time
t , ρ(r, z, θ, t ), with the initial density ρ(r0, z0, θ0, 0), through
a transformation of the variables: The time evolution is in-
corporated in the scaling of the initial coordinates (r0, z0, θ0)
to give the final ones (r, z, θ ). The assumed uniformity in
the azimuthal coordinate implies that the (initially prepared)
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ground state does not depend on θ . Moreover, the uniformity
in θ is maintained in the state evolution. The equations for the
transformation of r and z read

r − R(t ) = σr (t )(r0 − R0) + λr (t ), (7)

z = σz(t )z0, (8)

where we have introduced three scaling functions: the width
factors σr (t ) and σz(t ), which account for changes in the shape
of the condensate, and the displacement factor λr (t ), which
describes a radial translation with respect to the trap. [The
introduction of an additional displacement λz(t ) in the z di-
rection will be shown to be irrelevant given the characteristics
of the considered realization.] Note that r − R(t ) corresponds
to the comoving radial coordinate used in the analysis of the
experimental results presented in [17].

Now, from the conservation of the number of particles (N
atoms are considered), we derive the equation

ρ(r, z, t ) = r0

r

1

σrσz
ρ0(r0, z0, 0), (9)

which, using the scaling transformation [Eqs. (7) and (8)], is
rewritten as

ρ(r, z, t ) = 1

r

[
r − R(t ) − λr

σr
+ R0

]

× 1

σrσz
ρ0

(
r − R(t ) − λr

σr
+ R0,

z

σz
, 0

)
. (10)

Note that the presence of the factor r0
r = 1

r ( r−R(t )−λr

σr
+ R0)

is specific to the radial coordinate. We will see that it is
because of this factor that a nontrivial variation of the shape
of the condensate, embodied by the functions σr (t ) and σz(t ),
emerges.

From Eq. (10), and taking as the initial density that given
by the Thomas-Fermi approximation, we obtain

ρ(r, z, t )

= 1

r

[
r − R(t ) − λr

σr
+ R0

]

× μ − 1
2 Mω2

z (z/σz )2 − 1
2 Mω2

r {[r − R(t ) − λr]/σr}2

gσrσz
,

(11)

where μ is the chemical potential corresponding to the system
before the expansion.

Inserting the ansatz given by Eq. (10) into the continuity
equation (5), we find, for the velocity field,

v =
[
σ̇r

σr
(r − R − λr ) + λ̇r + Ṙ

]
ur + σ̇z

σz
zuz, (12)

where ur and uz are, respectively, unitary vectors in the
radial and vertical directions. Consequently, from Eq. (4), the
condensate phase is shown to be given by

S(r, z, t )

= M

h̄

[
1

2

σ̇r

σr
r2 +

(
− σ̇r

σr
(R + λr ) + λ̇r + Ṙ

)
r + 1

2

σ̇z

σz
z2

]
.

(13)

The equations for the scaling functions σr (t ), σz(t ), and
λr (t ) are obtained by making the density given by Eq. (11)
fulfill the Euler-like equation (6). A closed set of equations is
derived if we make the approximation

r � rc(t ) = λr (t ) + R(t ) (14)

in Eq. (11), with rc(t ) being the radial coordinate of the
maximum of the density ρ(r, z, t ). That approximation is
indeed valid when the ring width is much smaller than the
central radius. Because of the expansion, if this restriction is
satisfied at the initial time, it is also fulfilled at any subsequent
time. Accordingly, we find, for the scaling functions,

σ̈r = −ω2
r

(
σr − 1

σ 2
r σz

R0

rc(t )

)
, (15)

σ̈z = −ω2
z

(
σz − 1

σrσ 2
z

R0

rc(t )

)
, (16)

λ̈r = −ω2
r λr − R̈. (17)

There is a first set of initial conditions σr (0) = 1, σz(0) = 1,
and λr (0) = 0, which derive from the form of the density of
the prepared state. Moreover, since, at t = 0, the condensate
is at rest, we must add σ̇r (0) = 0, σ̇z(0) = 0, and λ̇r (0) =
−Ṙ. With these equations, a null velocity field at t = 0 is
consistently obtained from Eq. (12). Variations in the experi-
mental realization can be incorporated into our framework by
appropriately modifying the initial conditions.

Throughout our study we have checked the validity of
the scaling-approach predictions by comparing them with the
results of a simulation based on numerically solving the GP
equation. In particular, we have confirmed the applicability of
the Thomas-Fermi approximation. The system characteristics
have allowed applying the techniques presented in Ref. [26]
for simplifying the numerical resolution of the GP equation.
Indeed, as the vertical frequency is significantly larger than
the radial one and there is no confinement in the azimuthal
direction, the vertical dynamics is incorporated through effec-
tive parameters in the equation for the radial and azimuthal
coordinates. Specifically, adapting the variational approach of
Ref. [26] to the ring geometry, we have derived a nonpolyno-
mial nonlinear Schrödinger equation applicable to the present
context. Namely, we have used the ansatz

�(r, t ) = φ(r, t ) f (z, t ; ς (r, t )), (18)

where f (z, t ; ς (r, t )) is a Gaussian of width ς (r, t ). The corre-
sponding Euler-Lagrange equations are straightforwardly ob-
tained; making the functional change φ(r, t ) = r−1/2�(r, t ),
they read

ih̄
∂�(r, t )

∂t
=

[
− h̄2

2M

∂2

∂r2
+ Vex(r, t ) − h̄2

4M

1

r2

+ g

(2π )1/2

|�(r, t )|2
rς (r, t )

+ h̄2

2M

1

ς2(r, t )

+ 1

2
Mω2

z ς
2(r, t )

]
�(r, t ), (19)

ς4(r, t ) − 2(2π )1/2

(
h̄

Mωz

)2

as
|�(r, t )|2

r
ς (r, t ) −

(
h̄

Mωz

)2

= 0, (20)
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FIG. 1. Trap radius R(t ) (solid line) and the radial position of the
maximum of the condensate density rc(t ) (dashed line) as functions
of time. The form of the radius ramp is the same as that used in
[17]. The arrows correspond to times shown in Fig. 2. The system
parameters are ωr = 2π × 200 Hz, ωz = 2π × 650 Hz, and N =
2 × 105 (N is the number of atoms).

where as = M
4π h̄2 g is the scattering length. Additionally, the

boundary condition �(0, t ) = 0 and the normalization re-
quirement 2π

∫ ∞
0 |�(r, t )|2dr = N must be imposed. Note

that the form of Eq. (19) allows the application of standard
split-operator techniques of integration. In our calculations,
the initial state of the system has been obtained through
imaginary-time propagation.

B. Characterization of the inflationary dynamics

The equations obtained for the scaling functions provide
the following clues to the system behavior.

(i) The experimentally observed departure of the ground-
state evolution from the adiabatic regime can be precisely
characterized in our approach. Equation (17) reveals that the
radial displacement of the condensate with respect to the trap
corresponds to a harmonic oscillator driven by the acceler-
ation of the trap central radius. The analysis is particularly
simple for a linear ramp: Since the driving term in Eq. (17)
disappears (R̈ = 0), it follows that the condensate, for the
considered initial conditions, oscillates around the trap inner
center position with the radial frequency ωr . In that case, it is
the initial velocity λ̇r (0) = −Ṙ that generates the oscillation;
the energy associated with the radial displacement is then a
constant determined by the ramp velocity. In the experimental
realization, a nonlinear ramp, designed to smoothly initiate
and end the time variation of R, was used. The numerical study
of the corresponding displacement, obtained by including the
specific functional form of R(t ) in Eq. (17), shows that the
oscillatory behavior is still present. This is apparent in Fig. 1,
where we depict the radius profile R(t ) along with the radial
position of the maximum of ρ(r, z, t ), rc(t ). In agreement
with the experimental findings, our results show that the
condensate is initially delayed and subsequently advanced
with respect to the trap center. It is also observed that the times
of expansion in the experiment are not sufficiently large to
observe a complete oscillation during the ramp. (Note that the
complete cycles in Fig. 1 correspond to the postinflationary
stage.)

When setting up the scaling transform, we considered that
the displacement of the condensate with respect to the trap
takes place only in the radial direction. This is not a limitation
of our model but a simplification allowed by the experimental
arrangement. Actually, the addition of a function λz(t ) to the
z transformation [Eq. (8)] is irrelevant: One trivially finds
λz(t ) = 0 for the initial conditions λz(0) = 0 and λ̇z(0) =
0, which correspond to the practical realization, where no
translation of the trap in the vertical direction was arranged.

(ii) Features specific to the trap geometry and in particular
to the fact that the driving takes place in the radial coordinate
can be identified in the equations for σr (t ) and σz(t ). Actually,
for a harmonic trap in Cartesian coordinates, since there is
no factor like r0

r in the counterpart of Eq. (9), the scaling
functions σi(t ) (i = x, y, z) obey equations similar to those
obtained for the ring trap with the factor R0

rc (t ) replaced by 1.
Then, for a realization where, starting from the condensate at
rest, the trap center is displaced, one trivially finds σi(t ) = 1
(i = x, y, z). Hence, in that setup, there is no change in the
shape of the condensate: The dynamics is solely given by the
translation functions λi(t ).

In Fig. 2 we present the effective radial density at four
different times for parameters similar to those used in the
experiments. Some features of the deformation can be iden-
tified in it. Note that the significant differences in the heights
of the density at the different times result basically from the
normalization condition in the radial coordinate. It is worth
stressing that there is almost complete agreement between the
analytical results obtained with the scaling approach and those
found in the numerical simulation. The radial deformation
incorporated by σr (t ) is hardly visible in Fig. 2. However, a
spectral analysis reveals the existence of nontrivial changes
in the widths of the condensate. As it can be useful for
a proposal of experimental detection of those changes, we
rewrite the condensate density given by Eq. (11) in terms of
effective time-dependent frequencies. Specifically, the density
is expressed as

gρ(r, z, t ) = R0

rc(t )σrσz
μ

− 1

2
Mω2

z,eff (t )z2 − 1

2
Mω2

r,eff (t )(r − rc)2,

(21)

where

ωr,eff (t ) = ωr
1

σr

√
R0

rcσrσz
, ωz,eff (t ) = ωz

1

σz

√
R0

rcσrσz
.

(22)
Now we can think of using the analysis of the frequency shifts
defined by �ωr (t ) = ωr,eff (t ) − ωr and �ωz(t ) = ωz,eff (t ) −
ωz as an operative form of evaluating the condensate deforma-
tion. The nontrivial evolution of �ωr (t ) and �ωz(t ), rooted
in the coupling of σr (t ) and σz(t ), is illustrated in Figs. 3
and 4. The much smaller magnitude of the deformation in
the z coordinate is apparent. The values of �ωr (t )/ωr imply
relative changes of at most ∼0.4 × 10−2.

(iii) Important for tracing parallelisms with the cosmolog-
ical reheating is the characterization of the system behavior
once the expansion stops. Equation (17) predicts that, after the
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FIG. 2. Reduced radial density ρ(r)/ρm at four different times [ρm denotes the maximum of ρ(r) before the expansion]. The labels (a)–
(d) correspond to the times identified in Fig. 1. The dashed lines represent the results obtained analytically with the scaling approach. The solid
lines correspond to the results obtained by numerically solving the nonpolynomial nonlinear Schrödinger equation. The system parameters are
the same as those used in Fig. 1.

inflation, the condensate oscillates with the radial frequency.
This is observed in Fig. 1. The persistence of this (regular)
oscillation, which can be regarded as an effective radial dipole
mode, is specific to the considered case of a purely harmonic
confinement. As shown in Sec. VI, a more complex behavior
emerges when the anharmonic term is incorporated into the
description. Indeed, the trap anharmonicity present in the
practical setup can be identified as one of the factors respon-
sible for the complex dynamics detected in the numerical
simulation presented in Ref. [17].

(iv) The nonlinear character of the equations for the
width factors persists after the expansion. A picture of the

FIG. 3. Effective dynamical shift in the radial frequency

�ωr (t ) = ωr ( 1
σr

√
R0

rcσrσz
− 1) as obtained from our analytical scaling

approach. The system parameters are the same as those used in
Fig. 1.

condensate deformation can be obtained from Figs. 3 and 4.
As the factor R0

rc (t ) has decreased during the ramp, a more reg-
ular behavior emerges in the postinflationary stage. Actually,
a spectral analysis reveals the quasiperiodic character of the
outputs in �ωr (t ) and �ωz(t ). Some clues to the dominant
frequencies can be extracted from the linearization of the sys-
tem of equations (15) and (16). Assuming that the expansion
ends at t f [R(t ) = R f for t � t f ], we take σr � σr, f + δσr

and σz � σz, f + δσz, where σr, f = σz, f = (R0/R f )1/4 are the
equilibrium values of σr and σz at the end of the expansion.

FIG. 4. Effective dynamical shift in the radial frequency

�ωz(t ) = ωz( 1
σz

√
R0

rcσrσz
− 1) as obtained from our analytical scaling

approach. The system parameters are the same as those used in
Fig. 1.
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Then, working to first order in δσr and δσz, one finds the
equations

¨δσr = −ω2
r (3δσr + δσz ) (23)

¨δσz = −ω2
z (δσr + 3δσz ), (24)

which (still) display the coupling of the radial and vertical
widths in the associated normal modes. It is possible to go
further analytically when the characteristic times are widely
different. Let us consider the case corresponding to ωz being
significantly larger than ωr , which is close to the experimental
realization. As shown in the Appendix, in that situation, an
effective decoupling of δσr and δσz can be shown to occur.
The frequencies of the oscillations in the radial and vertical
widths are then given, respectively, by ω̃r = √

8/3ωr and
ω̃z = √

3ωz. The spectral analysis of the detected outputs can
provide the data required for the experimental verification of
these results.

Beyond the considered expanding scenario, our approach
is applicable to a general variation of R. In particular, it is
possible to tackle the effects of a steady reduction or of sudden
changes in the radius. In the application to a decreasing-radius
arrangement, the approximation r0

r � R0
rc (t ) must be reevalu-

ated. Additionally, since the (nonlinear) coupling of the radial
and vertical widths is determined by the quotient R0

rc (t ) , it can be
predicted to lead to stronger effects in a contracting scenario.

The study can be straightforwardly generalized to include
changes in the trap frequencies or an initial displacement in
the z direction. The implications of those variants of the basic
setup for the selective excitation of modes are evident. Ac-
tually, useful clues to the design of specific characteristics in
the (atomic) inflaton field can be extracted from the obtained
analytical results.

IV. DYNAMICS OF THE AZIMUTHAL MODES

Apart from tracing the evolution of the fundamental state,
the experiments of Ref. [17] were focused on the effect of the
ring expansion on azimuthal modes initially prepared in the
condensate. In the practical procedure for exciting the modes,
a perturbation δV (θ, t ) was applied to the external potential.
Subsequently, the unperturbed potential (uniform in θ ) was

reestablished and the expansion of the ring was implemented.
In our description of those processes, we write the condensate
wave function �(r, t ) as the sum of that of the evolved ground
state �0(r, t ), obtained in the preceding section, and the per-
turbation δ�(r, t ) excited via the modification of the external
potential. In order to directly compare with the (experimental
and theoretical) results presented in Ref. [17], it is convenient
to express the perturbation as δ�(r, t ) = �0(r, t )δϕ(r, t ).
Therefore, we write

�(r, t ) = �0(r, t )[1 + δϕ(r, t )]. (25)

Using this ansatz, the connection with the perturbed density
and phase, which are split as

ρ(r, t ) = ρ0(r, t ) + δρ(r, t ), (26)

S(r, t ) = S0(r, t ) + δS(r, t ), (27)

is simply given by the equations

δS(r, t ) = Im{δϕ(r, t )}, (28)

δρ(r, t ) = 2ρ0(r, t )Re{δϕ(r, t )}. (29)

To characterize the evolution of δϕ(r, t ), we will set up a
generalized version of the BdG approach, which will allow us
to describe the dynamics of the modes over the time-varying
background.

A. Generalized Bogoliubov–de Gennes approach

As in the standard procedure [9,10], we start by defining
the column vector

δ� ≡
(

δ�

δ�∗

)
. (30)

Its evolution, obtained through the linearization of the time-
dependent GP equation [Eq. (2)], is given by

ih̄
∂δ�

∂t
= LBdGδ� + W . (31)

In this equation, two contributions to the dynamics can be
differentiated. First, the homogeneous part, characterized by
the BdG operator

LBdG ≡
(− h̄2

2M ∇2 + Vex + 2g|�0|2 g�2
0

−g�∗2
0 −(− h̄2

2M ∇2 + Vex + 2g|�0|2
)
)

, (32)

accounts for the role of the time-dependent substrate in the
evolution of the perturbation. Here LBdG presents an explicit
time dependence through �0 and Vex. Second, the source
matrix

W ≡
(

W

−W ∗

)
, (33)

with

W (r, t ) = δV (θ, t )�0(r, t ), (34)

incorporates the effect of the modification of the external
potential. Equation (31) extends the range of applicability of
the BdG approach to nonstationary setups. In its derivation, no
adiabatic approximation has been made for the time variation
of the background. Note that, formally, our approach allows
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dealing with quantum-pressure effects. However, this line will
not be explored in the present work, as we will introduce for
�0(r, t ) the result obtained through the scaling method, which
incorporates the Thomas-Fermi approximation.

Now, as the analysis focuses on the azimuthal modes, we
use the ansatz

δϕ = 1√
2π

∑
n

(αneinθ + α−ne−inθ ) ≡
∑

n

δϕn,

n = 1, 2, . . . , (35)

and introduce δ�(r, t ) = �0(r, t )δϕ(r, t ) into Eq. (31). The
use of constant coefficients αn in the ansatz works better as the
quotient between the ring width and the ring length decreases.
Hence, its applicability in the considered setup is sound. Then,
after averaging over the radial and vertical coordinates with
the ground-state density ρ0(r, z, t ) found in the preceding
section, we obtain, for the mode amplitudes,

ih̄

(
α̇n

α̇∗
−n

)
=

(
�n(t ) K(t )

−K(t ) −�n(t )

)(
αn

α∗
−n

)
+

(
Vn(t )

−V∗
−n(t )

)
,

n = 1, 2, . . . , (36)

where

�n(t ) = h̄2

2M
n2

〈
1

r2

〉
+ g〈ρ0〉, n = 1, 2, . . . , (37)

K(t ) = g〈ρ0〉, (38)

Vn(t ) = 1√
2π

∫ 2π

0
dθ δV (θ, t )e−inθ , n = 1, 2, . . . . (39)

The averaged terms are given by〈
1

r2

〉
= 2π

N

∫ ∞

−∞
dz

∫ ∞

0
r dr

1

r2
ρ0(r, z, t )

and

〈ρ0〉 = 2π

N

∫ ∞

−∞
dz

∫ ∞

0
r dr ρ2

0 (r, z, t ),

where we have taken into account the normalization of the
density, i.e.,∫ 2π

0
dθ

∫ ∞

−∞
dz

∫ ∞

0
r dr ρ0(r, z, t ) = N.

Time dependence enters the averages through the evolved
ground-state density. The averaging over the radial and ver-
tical coordinates is justified given the strong confinement in
those directions. Here it is worth stressing that our approach
corresponds to a time-dependent variational method. Indeed,
Eq. (31) can be derived from a least-action principle [6].
Moreover, Eq. (36) matches the Euler-Lagrange equations
obtained by introducing the ansatz proposed for δ�(r, t ) =
�0(r, t )δϕ(r, t ) into the corresponding action functional. That
framework consistently incorporates the averaging over the
radial and vertical coordinates.

From Eq. (36) it is apparent that there is no coupling
between modes with different index n. This is a consequence
of the axial symmetry: The expansion does not mix azimuthal
modes. A parallel treatment of the different modes is then
feasible. It is also evident that there are no differential aspects

associated with specific values of n. Therefore, without loss of
generality, the analysis can be focused on a particular n mode.
Accordingly, in the following, the ansatz in Eq. (35) will be
replaced by

δϕn = 1√
2π

(αneinθ + α−ne−inθ ). (40)

B. Hamiltonian description of the evolution of the mode
amplitude

Significant advances in the analytical characterization of
the dynamics can be achieved using an effective Hamiltonian
approach to the evolution of the mode amplitudes. It is shown
that Eq. (36) can be derived from the classical Hamiltonian

Hn = �n(t )(α∗
nαn + α∗

−nα−n) + K(t )(α∗
nα

∗
−n + αnα−n)

+ [Vn(t )(α∗
n + α−n) + c.c.] (41)

through the Hamilton equations ih̄α̇n = ∂Hn
∂α∗

n
and ih̄α̇∗

−n =
− ∂Hn

∂α−n
(in the following, we will take h̄ = 1). Note that, since

δV (θ, t ) is real, V∗
−n(t ) = Vn(t ). In this framework, we present

now a separate treatment of the excitation of the modes and of
their evolution during the expansion.

1. Excitation process

In the experiments, the perturbing potential δV , applied to
excite the azimuthal modes, was (temporarily) incorporated
through a rectangular ramp. Then the expansion of the trap
was initiated. We can account for the excitation process with
the previously derived effective Hamiltonian. Since there is no
population in the modes when δV is (sharply) introduced, the
initial conditions are

αn(0) = 0, α−n(0) = 0. (42)

Moreover, as the expansion has not started by that time, there
is no time dependence in Vex and in �0. Hence, in Eq. (41), �n

and K are constant coefficients. They will be denoted by �(0)
n

and K(0). Here Vn is also constant since, once applied, δV does
not vary until its (abrupt) cutoff. Consequently, the descrip-
tion of the condensate perturbation simplifies considerably:
The (undriven) Hamiltonian Hn corresponds to two coupled
harmonic modes αn and α−n, displaced by constant terms Vn.
Defining the variables βn and β−n through the relations

αn = βn − Vn

�
(0)
n + K(0)

, α−n = β−n − V∗
n

�
(0)
n + K(0)

, (43)

the effective Hamiltonian Hn is rewritten as

H̃n = �(0)
n (β∗

n βn + β∗
−nβ−n) + K(0)(β∗

n β∗
−n + βnβ−n), (44)

where constant increments in H̃n have been omitted. Then,
with the pertinent initial conditions, derived from Eqs. (42)
and (43), one can trivially obtain the evolution of βn and
β−n and in turn that of the original variables αn and α−n.
The hold time of the applied rectangular ramp determines
the population of the generated mode: Specific values of the
mode amplitudes αn and α−n can be achieved by (suddenly)
disconnecting the perturbing potential δV (θ, t ) (and therefore
canceling the coefficients Vn), at appropriate times. Indeed,
by changing the duration interval of the perturbation, a whole
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range of mode populations can be reached. In the experimen-
tal setup, a sinusoidal perturbing potential δV (θ ) = ε sin(nθ )
was applied. Consequently, a mode with a sinusoidal profile,
i.e., with αn = −α−n, can be shown to be excited.

2. Effect of the ring expansion on the evolution
of the mode amplitude

Once the source potential is disconnected and the expan-
sion of the ring is made to start, the dynamics of the variables
αn and α−n is governed by the Hamiltonian

Hn = �n(α∗
nαn + α∗

−nα−n) + K(α∗
nα

∗
−n + αnα−n), (45)

where �n and K are now time-dependent coefficients given,
respectively, by Eqs. (37) and (38). Using the real variables
Jn, J−n, ηn, and η−n, defined through the relations

Jn = |αn|2, J−n = |α−n|2, (46)

ηn = − arg{αn}, η−n = − arg{α−n}, (47)

the Hamiltonian is rewritten in terms of action-angle variables
as

Hn = �n(Jn + J−n) + 2K
√

JnJ−n cos(ηn + η−n). (48)

As previously indicated, we work with well-defined initial
conditions which fulfill αn(0) = −α−n(0). (We have redefined
the time origin: t = 0 corresponds now to the initial time for
the trap expansion.)

Convenient for simplifying the description of the time
evolution is the application of the canonical transformation
defined by the generatrix function

F = 1
2 [J+

n (ηn + η−n) + J−
n (ηn − η−n)]. (49)

Using the corresponding generalized coordinates

J+
n = Jn + J−n, J−

n = Jn − J−n (50)

η+
n = 1

2 (ηn + η−n), η−
n = 1

2 (ηn − η−n), (51)

the Hamiltonian is converted into

Hn = �nJ+
n + K

√
J+2

n − J−2
n cos(2η+

n ), (52)

and, from the Hamilton equations, we find

˙J−
n = 0, η̇−

n = −K J−
n√

J+2
n − J−2

n

cos(2η+
n ), (53)

˙J+
n = 2K

√
J+2

n − J−2
n sin(2η+

n ),

η̇+
n = �n + K J+

n√
J+2

n − J−2
n

cos(2η+
n ). (54)

From these equations, it follows that J−
n (t ) is a constant of

motion, which, for our initial conditions, vanishes. In turn,
from Eqs. (53), (51), and (42), it is found that η−

n (t ) =
η−

n (0) = −π/2. Making use of the constant of motion, the
evolution of the mode wave function is expressed as

δϕn(t ) = 1√
2π

√
J+

n (t )

2
e−iη+

n (t )(ei(nθ+π/2) + e−i(nθ+π/2))

= 1√
π

√
J+

n (t )e−iη+
n (t ) sin(nθ ). (55)

Moreover, inserting this equation into Eq. (28), one finds, for
the perturbed phase,

δS(θ, t ) = − 1√
π

√
J+

n (t ) sin[η+
n (t )] sin(nθ )

≡ −χn(t ) sin(nθ ), (56)

where, as convenient for the forthcoming discussion, we have
singled out the amplitude χn(t ). Using the same procedure in
Eq. (29) and averaging over radial and vertical coordinates,
the perturbed density is found to be given by

δρ(θ, t ) = N

π3/2

√
J+

n (t ) cos[η+
n (t )] sin(nθ )

≡ δnn(t ) sin(nθ ), (57)

with δnn(t ) standing for the associated amplitude. In the
following, we will see that the above equations, which give
a complete description of the dynamics of the modes, allow
improving the understanding of the experimental results.

V. CHARACTERIZATION OF THE REDSHIFT
AND THE HUBBLE FRICTION

In Ref. [17], the expansion was observed to induce the
redshift of the mode frequency and the appearance of an
effective damping term, identified as a parallel of the (cos-
mological) Hubble friction. In the model applied to explain
those results, the evolution of the excited azimuthal modes
was described using an effective space-time metric derived
from the background state in the hydrodynamic formalism.
Specifically, it was the evolution of the amplitude χn(t ) of
the perturbed phase that was theoretically characterized: A
second-order differential equation corresponding to a damped
harmonic oscillator was obtained for χn(t ). In the derivation
of the effective metric, the ground-state density was assumed
to follow the instantaneous Thomas-Fermi distribution, i.e.,
an adiabatic approximation for the substrate was applied.
In that framework, the experimental findings were partially
reproduced. The redshift and the Hubble-friction analog were
traced. However, difficulties in precisely reproducing the
experimental value of the effective friction constant were
reported [17]. In our study, χn(t ) is identified from Eq. (56)
as

χn(t ) = 1√
π

√
J+

n (t ) sin[η+
n (t )]. (58)

Moreover, from Eq. (57) it follows that the amplitude of the
perturbed density is

δnn(t ) = N

π3/2

√
J+

n (t ) cos[η+
n (t )]. (59)

In order to compare with the results presented in [17], we
have used the equations of motion [Eqs. (53) and (54)] to
characterize the dynamics of the phase amplitude χn(t ). From
those equations we have obtained the differential equation

χ̈n − �̇n + K̇
�n + K χ̇n + (

�2
n − K2

)
χn = 0, (60)
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which can be regarded as corresponding to a harmonic oscil-
lator with a time-dependent frequency

ωn(t ) =
√

�2
n(t ) − K2(t ) (61)

and an effective friction term with the time-dependent damp-
ing coefficient

�H (t ) = − �̇n(t ) + K̇(t )

�n(t ) + K(t )
. (62)

From the Hamiltonian character of the dynamics, it is clear
that there is no dissipation in the system. Terms like friction
or damping are used in this context simply to emphasize the
decrease in the energy of the perturbation, which in fact results
from the driven expansion.

The analysis of the functional forms of �H (t ) and ωn(t )
requires evaluating the averages over radial and vertical coor-
dinates present in Eqs. (37) and (38). Using our analytical re-
sults for the evolved ground-state function, we have obtained

�n(t ) � C1r−2
c (t ) + C2(t )r−ν

c (t ), (63)

K(t ) � C2(t )r−ν
c (t ), (64)

where

C1 = n2

2M
, (65)

C2(t ) = 1

3π

√
2gMωr,eff (t )ωz,eff (t )N

� 1

3π

√
2gMωrωzN = C2(0), (66)

ν = 1/2. (67)

[The validity of the approximation made in Eq. (66) can be
checked from Figs. 3 and 4.] In turn, we have found that the
dominant behaviors of the mode frequency and the effective
damping coefficient are given, respectively, by

ωn(t ) �
√

2C1C2(0)r−(2+ν)
c (t ) + [

C1r−2
c (t )

]2
, (68)

�H (t ) �
(

ν + (2 − ν)
C1

2C2(0)
rν−2

c (t )

)
ṙc(t )

rc(t )
≡ γH

ṙc(t )

rc(t )
.

(69)

Note that our approach has allowed using rc(t ) = R(t ) +
λr (t ), instead of R(t ), to incorporate the radial dependence of
our results. This actually conveys a more precise characteriza-
tion of the studied effects.

A. Time-dependent frequency

Equation (68) is the dynamical counterpart, valid in any
regime of time variation, of the dispersion relation of the static
system. In it, the redshift of the mode frequency is apparent:
As the expansion proceeds, i.e., as rc grows, both contribu-
tions to ωn(t ), namely, the phononic term 2C1C2r−(2+ν)

c (t ) and
the superluminical component [C1r−2

c (t )]2, diminish. Given
its slower decrease, the phononic term becomes dominant as
the expansion goes on. When the superluminical component
can be neglected, the frequency behaves as ωn ∼ r−(2+ν)/2

c .

With the obtained value ν = 1/2, we find ωn ∼ r−1.25
c , close to

the experimental result. As will be shown in the next section,
the inclusion of the anharmonic confinement improves the
agreement.

Additional differential effects of the superluminical com-
ponent are apparent in the dependence of ωn(t ) on the mode
index. (Note that n enters Eq. (68) through C1 [see Eq. (65)].)
The linear behavior, rooted in the phononic term, appears cor-
rected by the n2 dependence. Absent in the expression for the
effective frequency obtained in [17], the quadratic dependence
appears here because of the more complete description of the
modes.

The above findings, such as those obtained for the radial
and vertical excitations in Sec. III, are relevant beyond the
expansion scenario. For instance, the mere particularization of
the above expressions to the case of a constant central radius
is interesting in itself: The results imply significant advances
in the characterization of the axial modes in a static ring trap.
Indeed, that application of the study can be considered as a
parallel of the work presented in Ref. [27] on the properties of
the longitudinal modes in a (static) elongated condensate.

B. Effective friction term

The appearance of the quotient ṙc (t )
rc (t ) in Eq. (69) estab-

lishes the connection with the (cosmological) Hubble friction.
In the theory presented in [17], the friction was found to have
the form �H (t ) = γH

Ṙ(t )
R(t ) . However, the proposed model was

unable to precisely reproduce the experimental findings with
the obtained value of the damping parameter γH = 1. In order
to explain the results, the friction was remodeled ad hoc by
phenomenologically modifying the damping term. With that
variation of the model, some estimates of the optimal value
of γH were made. The best fit to the experimental results was
found to correspond to γH = 0.55. The structure of the friction
term revealed by our approach exempts us from introducing
phenomenological elements in the description: Our results fit
quite well the experimental findings, even in the considered
case of harmonic trapping. Indeed, retaining only the domi-
nant term in Eq. (69), we obtain the approximate expression
γH = ν = 1/2. Since C1 grows with n2, the correction to γH =
1/2, given by the term (2 − ν) C1

2C2
rν−2

c (t ), can be neglected
here given the small value of the index n for the modes excited
in the experimental realization.

Useful insight into the actual meaning of the effective
friction is obtained by considering the adiabatic limit in the
(driven) dynamics of the phase amplitude. The existence of
an adiabatic invariant was already apparent in the theoretical
framework applied in [17]. In our description, using the
reduced Hamiltonian derived by introducing the constant of
motion J−

n (t ) = 0 into Eq. (52), we find that the (adiabatic-
invariant) action IA,n is

IA,n = En

ωn
, (70)

where En, given by

En = (�n − K)χ2
n + (�n + K)δζ 2

n , (71)

is the analog of the energy for the mode-amplitude dynamics.
[In this equation, we have introduced the reduced density
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amplitude δζn(t ) ≡ δnn(t )(N/2π )−1.] Additionally, express-
ing the energy as a function of the maximum value χn,max of
the phase amplitude, the adiabatic invariant is given by

IA,n =
√

�n(t ) − K(t )

�n(t ) + K(t )
χ2

n,max(t ) = χ2
n,max(t )√

1 + 2C2
C1

r2−ν
c (t )

,

(72)

which generalizes the expression obtained in [17]. More direct
insight is obtained by rewriting IA,n in terms of the maximum
value of the reduced density amplitude δζn,max,

IA,n =
√

�n(t ) + K(t )

�n(t ) − K(t )
δζ 2

n,max(t )

=
√

1 + 2
C2

C1
r2−ν

c (t )δζ 2
n,max(t ). (73)

Here it is apparent that, as the expansion proceeds, since the

factor
√

1 + 2C2
C1

r2−ν
c (t ) grows, the amplitude of the density

perturbation decreases; consequently, the mode tends to van-
ish. Although the decrease of the mode energy, linked to that
of the effective frequency by Eq. (70), can be operatively inter-
preted in terms of an effective friction, one must be aware that
the system is nondissipative. The effective damping is actually
induced by the driving of the system incorporated in R(t ).
More precisely, it is the expansion that generates the energy
decrease. This nondissipative origin of the effect becomes
evident when the contraction of the ring is considered: In that
variant of the setup, the mode energy can be predicted to grow.

A comment on the effect of the substrate nonadiabaticity
on the mode dynamics is in order. Here it is worth recalling
that the averages present in the above analysis have been
carried out using the background density obtained in Sec. III,
which is valid irrespective of the regime of time variation. We
have found that, although the similar magnitude of some of the
characteristic times involved in the dynamics is an argument
against the assumption of adiabaticity, some aspects of the
system evolution permit a less restrictive interpretation of the
adiabaticity criteria. Namely, whereas in the radial dynamics
an approach with no time-regime limitations is absolutely
needed to account for the displacement of the condensate from
the trap center, in the analysis of the azimuthal excitations, an
adiabatic approximation for the substrate is shown to already
reproduce salient features of the modes. Indeed, the forms
obtained for ωn(t ) and �H (t ) with an adiabatic approach are
similar to those given, respectively, by Eqs. (68) and (69): The
only modification is the replacement of the function C2(t ) by
the (constant) coefficient C2 = 1

3π

√
2gMωrωzN . That approx-

imate agreement is understood taking into account the mean-
ing of the averaging over the radial and vertical coordinates,
applied in the characterization of the modes. That coarse
graining tends to smooth out the (oscillatory) background
dynamics. Hence, the strong confinement in the radial and
vertical directions, which guarantees the feasibility of the
averaging, implies the attenuation of the substrate nonadia-
baticity when entering the azimuthal mode dynamics. The re-
sulting blurring of the oscillations justifies the approximation
of the substrate evolution as an effective following of the trap.

FIG. 5. Trap radius R(t ) (solid line) and the radial position of
the average value of the radial coordinate of the condensate rc(t )
(dashed line) as functions of time. The form of the radius ramp is
the same as that used in [17]. The arrows correspond to times shown
in Fig. 6. The system parameters are the same as those used in Fig. 1;
additionally, �/h = 0.8 Hz μm−4.

That explains the satisfactory global picture of the (adiabatic)
description given in [17].

VI. ANALYSIS OF THE ROLE OF THE TRAP
ANHARMONICITY IN THE SYSTEM DYNAMICS

In the model used in the previous sections, a harmonic
confinement has been considered. Now we turn to assess
the emergence of differential effects linked to the trap
anharmonicity.

A. Evolution of the ground state in an anharmonic trap

Since the nonlinear confinement cannot be tackled with the
scaling methods, we must deal with numerically solving the
GP equation with the complete trapping potential present in
Eq. (1). Again, we have used the ansatz given by Eq. (18) and
have solved Eqs. (19) and (20). We stress that the nonlinear
confining potential in the radial direction is straightforwardly
incorporated in the applied method. The numerical results
depicted in Fig. 5 show that the short-term oscillatory ra-
dial displacement of the condensate presents characteristics
similar to those of the harmonic case. In contrast, at larger
times, differences are observed, in particular, as the damping
of the oscillations sets in. This is actually a dephasing of the
wave-packet components due to the anharmonic confinement.
Additionally, a more irregular evolution of the condensate
shape is observed, as shown in Fig. 6. This is particularly
evident after the expansion. Because of the deformation, the
evolution cannot be regarded now as corresponding to a radial
dipole mode. The complex character of the postinflationary
dynamics detected in the numerical simulations of [17] is al-
ready apparent in our effective monodimensional description:
It can be interpreted as resulting from the reflection of the
displaced state, generated by the radial translation during the
expansion, from the walls of the (sharp) anharmonic potential.
The energy of the state, determined by the displacement at
the end of the expansion, grows with the velocity of the
radius ramp. Previous studies [28–30] of the generation of
solitons in related contexts provide useful clues to this picture

043613-10



EXPANDING RING-SHAPED BOSE-EINSTEIN … PHYSICAL REVIEW A 100, 043613 (2019)

FIG. 6. Reduced radial density ρ(r)/ρm at four different times [ρm denotes the maximum of ρ(r) before the expansion]. The labels (a)–
(d) correspond to the times identified in Fig. 1. The system parameters are the same as those used in Fig. 5. The results were obtained by
numerically solving the nonpolynomial GP equation.

of the preheating stage. From them, one can conjecture the
key importance of reaching significant values of the ramp
velocities, and therefore of the state energy, to the emergence
of solitons. The precise characterization of the production of
solitons and vortices is left for future work.

B. Trap-anharmonicity corrections to
the azimuthal-mode dynamics

In order to evaluate the effect of the trap nonlinearity on
the dynamics of the azimuthal modes, we have repeated the
procedure used in Sec. V to derive the differential equation
for χn(t ) considering now the quartic potential �[r − R(t )]4

and applying an adiabatic approach for the evolved ground
state. Since the inclusion of the (sharp) anharmonic term
increases the radial confinement, the quality of the averaging
increases and consequently a higher accuracy of the adiabatic
approximation can be expected.

The obtained expressions for the mode frequency ωn(t )
and for the effective friction term �H (t ) have the same
form as their harmonic counterparts, given in Eqs. (68) and
(69). Only the characteristic parameters differ: The previously
given harmonic parameters C2 and ν are replaced now by the
anharmonic ones

C(an)
2 = 1

11

(
2

π2

)3/7

λ1/7

(
21g

√
MNωz�(3/4)

�(1/4)

)4/7

, (74)

ν (an) = 4/7. (75)

With the obtained value of ν (an), we find for the effec-
tive frequency ωn ∼ R−(1+2/7), in complete agreement with
the experimental results. Moreover, the friction coefficient is
found to be γH = ν (an) = 4/7, close to the estimate of the

value that best reproduces the experimental results, γH =
0.55, and significantly different from γH = 1, derived with
the model presented in Ref. [17]. Once more, it is apparent
that the introduction of phenomenological damping to fit the
experimental findings becomes unnecessary in our approach.

VII. CONCLUSION

The presented analytical characterization of the different
mechanisms relevant to the inflationary dynamics of the con-
densate constitutes a useful tool in the analysis of the exper-
iments of Ref. [17]. Particularly interesting findings of our
study are the oscillatory character of the radial displacement
of the condensate and the coupling of the radial and vertical
widths in the modes excited by the expansion. Our picture has
allowed evaluating the differential role of the radius ramp in
those effects. Whereas the shape scaling functions are directly
affected by R, it is the acceleration R̈ that enters, as a driving
term, the equation for the condensate displacement. Also
noticeable is how the mode coupling, which is specific to the
considered ring geometry and becomes especially important
in a contracting setup, can be modified by changing the
relative magnitude of the radial and vertical frequencies.

Despite the complex character of the radial dynamics, i.e.,
of the inflaton-field analog, it is possible to trace the origin
of the preheating process to two elements: the radial displace-
ment of the condensate at the end of the radius ramp and the
nonlinear component of the trapping potential. Our analysis
can assist the design of strategies to control the process. For
instance, given the indispensable role of the anharmonicity,
the use of a stronger harmonic confinement [17] can be
predicted to suppress the preheating. Additionally, the require-
ment of working with fast ramps to observe the complex
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postinflationary dynamics can be linked to the need to have
a significant amplitude in the radial displacement: The gen-
eration of solitons via the reflection of the displaced states in
the walls of the anharmonic confinement requires sufficiently
high energy. It is also concluded that, in an adiabatic regime,
since there is no radial displacement with respect to the trap,
the complex postinflationary processes are not activated.

The generalized BdG approach used to analyze the az-
imuthal modes has allowed improving the characterization of
the redshifting. Indeed, the expression found for the dynam-
ical dispersion relation has revealed the contribution of the
superluminical component, which cannot be neglected when
high-index modes are involved. Also, an extended picture of
the Hubble-friction mechanism has been given. As a result, a
precise fit of the effective damping constant has been achieved
without introducing phenomenological corrections in the ba-
sic model.

The applicability of the scaling approach to generic vari-
ations of the trap radius (including contractions) can provide
a variety of analytical results on redshifting (or blueshifting)
and Hubble friction (or acceleration), which can enrich the
versatility of the system as a scenario for cold-atom cos-
mology. Additionally, the particularization of the study to
a constant radius has the general interest of describing the
normal modes in a static ring trap. Methods for the selective
excitation of modes and for their experimental detection can
be designed from the given picture.

The generation of solitons and vortices in the postinflation-
ary dynamics is left for future work. To this end, a detailed
characterization of the role of the condensate displacement
at the end of the expansion should be tackled. The relevance
of dynamical instability to the considered system should also
be evaluated. Although the presence of unstable modes in the
analyzed inflationary dynamics has been disregarded, they can
have a significant role in other regimes. In this regard, the
possibility of tracing a parallel in the ring-trap scenario of
the mechanism responsible for the dynamical Casimir effect
studied in Ref. [31] could be explored. In that work, appropri-
ate changes in the transversal frequencies of elongated BECs
were used to modify the effective interaction strength in the
longitudinal direction. The excitation of specific modes from
the vacuum state via parametric resonance were predicted.
In our system, the azimuthal interaction strength can also be
modified through changes in the radial and vertical dynamics.
Hence, it is pertinent to analyze the potential use of resonances

to excite modes from the vacuum and to establish the con-
nection with other processes where unstable modes are also
relevant.
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APPENDIX: EFFECTIVE DECOUPLING OF THE
CONDENSATE RADIAL AND VERTICAL WIDTHS

For ωz � ωr , approximate solutions to the system of equa-
tions (23) and (24) can be obtained through an adiabatic ap-
proximation. (Note that the term adiabatic in this context has
a meaning different from that corresponding to the dynamics
of the background with respect to the trap variation.) First, as
δσr evolves much more slowly than δσz, Eq. (24) is solved for
a frozen value of δσr , which will be denoted by ˜δσr :

¨δσz = −ω2
z ( ˜δσr + 3δσz ). (A1)

The equilibrium value is then given by

δσz,eq = −
˜δσr

3
. (A2)

Now writing

δσz = δσz,eq + ˜δσz, (A3)

we obtain, from Eq. (A1),

¨̃δσz = −3ω2
z

˜δσz, (A4)

which is trivially solved to give

˜δσz = C sin(
√

3ωzt + ϑ ), (A5)

where the constants C and ϑ are determined by the initial
conditions. Now introducing δσz, as given by Eqs. (A3) and
(A5), into Eq. (23) and averaging the higher-frequency signal,
one finds

¨δσr = − 8
3ω2

r δσr . (A6)

Hence, from this equation and from Eq. (A4), the effective
mode frequencies are obtained as ω̃r = √

8/3ωr and ω̃z =√
3ωz.
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