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Finite-temperature degenerate perturbation theory for bosons in optical lattices
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Bosonic atoms confined in optical lattices can exist in two different phases, Mott insulator and superfluid,
depending on the strength of the system parameters, such as the on-site interaction between particles and the
hopping parameter. This work is motivated by the fact that nondegenerate perturbation theory applied to the
mean-field approximation of the Bose-Hubbard Hamiltonian at both zero and finite temperature fails to give
consistent results in the vicinity of the Mott insulator—superfluid phase transition, e.g., the order parameter
calculated via nondegenerate perturbation theory reveals an unphysical behavior between neighboring Mott
lobes, which is an explicit consequence of degeneracy problems that artificially arise from such a treatment. This
problem also appears in other bosonic systems that present similar Mott-lobe structures. Therefore, in order to
fix this problem, we propose a finite-temperature degenerate perturbation theory approach based on a projection
operator formalism which ends up solving such degeneracy problems in order to obtain physically consistent

results for the order parameter near the phase transition.
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I. INTRODUCTION

Optical lattices are laser arrangements which enable a
spatially periodic trapping of atoms due to the interaction
between the external electric field and the induced dipole mo-
ment of the atoms [1-4]. A gas composed of bosonic atoms in
an optical lattice can be described by the Bose-Hubbard model
[5,6], which has three main parameters: the on-site interaction
parameter, the hopping parameter, and the chemical potential.
Depending on the magnitude of the parameters, the system
can realize two different phases, the Mott insulator or the
superfluid phase [7—15]. If the on-site interaction parameter is
much larger than the hopping parameter, the system is in the
Mott insulator (MI) phase. This phase is characterized by a
strong localization of the atoms. By decreasing the amplitude
of the periodic potential, so that the hopping parameter be-
comes much larger than the atom-atom interaction parameter,
the system undergoes a phase transition to a superfluid (SF)
phase, where the atoms are delocalized. Such differences
in the localization of bosons make it possible to measure
the phase the system is currently in through time-of-flight
experiments [8,16]. The MI-SF transition can happen even at
zero temperature, driven by quantum mechanical fluctuations,
thus characterizing a quantum phase transition [17].
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The main difficulty in solving the Bose-Hubbard Hamil-
tonian is the nonlocality of the hopping term. Thus a com-
mon path for obtaining a first approximation of the MI-SF
quantum phase diagram is a mean-field calculation, which
approximates the Bose-Hubbard Hamiltonian by a sum of lo-
cal Hamiltonians [7]. Following this simplification, Rayleigh-
Schrodinger perturbation theory (RSPT) is typically used for
obtaining the mean-field phase diagram at zero temperature
[17]. However, there are problems that arise from RSPT, since
it does not properly deal with the degeneracies that occur
between two consecutive Mott lobes. One of such RSPT
problems concerns the calculation of the condensate order
parameter which falsely vanishes between consecutive Mott
lobes [18,19].

Also, other methods have been suggested in order to im-
prove the mean-field quantum phase diagram for bosons in
optical lattices, such as in Ref. [20], which uses a variational
method and the field-theoretic concept of the effective po-
tential. In addition, the MI-SF phase transition at arbitrary
temperature was investigated in Ref. [21] using an effective
action approach. Furthermore, in Refs. [22,23] an effective
action approach was derived for the Bose-Hubbard model
within the Schwinger-Keldysh formalism in order to han-
dle time-dependent problems at finite temperature. Likewise,
Ref. [18] implemented a nearly degenerate perturbation the-
ory for the zero-temperature case, which led to better results
for the order parameter (OP) when compared to those from
the RSPT calculations. The authors of Ref. [24] applied
the Floquet theory in order to analyze the effects of peri-
odic modulation of the s-wave scattering length upon the
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quantum phase diagram of bosons in 2D and 3D optical lat-
tices. More recently, the Brillouin-Wigner perturbation theory
was applied in order to correct such degeneracy-generated
unphysical results at zero temperature [19]. It turns out that
nondegenerate finite-temperature perturbation theory, as ap-
plied in Refs. [21,25], also presents degeneracy problems
similar to RSPT. Indeed, RSPT is equivalent to the usual
finite-temperature perturbation theory in the zero-temperature
limit. Therefore, degeneracy-related problems are also ex-
pected to appear at low enough temperatures. Moreover,
beyond our considered bosonic gas in an optical lattice, the
degeneracy-related problems also emerge in different systems
as in Refs. [26-29].

The present work is concerned with correcting the degen-
eracy problem that artificially arises from such perturbative
approaches regarding a system composed of bosonic atoms
confined in an optical lattice at finite temperature. Starting
from the mean-field approximation for the Bose-Hubbard
Hamiltonian and considering the Landau expansion for the
order parameter in the vicinity of the MI-SF phase transition,
we perform a perturbation theory in imaginary time. In ad-
dition, in order to fix the degeneracy problem, we introduce
a projection operator formalism for the finite-temperature
system. The main idea of this degenerate approach is to
separate the Hilbert subspace in which the degeneracies are
contained from its complement. This system is then exactly
diagonalized inside the degenerate subspace, while the effects
of the interaction between the two subspaces are taken into
account perturbatively. Such a procedure corrects the degen-
eracy problem and leads to physically consistent results for
the condensate density.

In Sec. II, we introduce the mean-field approximation
for the Bose-Hubbard Hamiltonian in order to get rid of
its nonlocality, which transforms the originial Bose-Hubbard
Hamiltonian into a sum of local Hamiltonians, thus allowing
us to work with separated lattice sites. In Sec. IT A, we briefly
discuss the Landau theory for second-order phase transitions,
which enables us to expand the system free energy as a power
series of the OP in the vicinity of the MI-SF phase transition.
Furthermore, the Landau theory gives us the equation for
the phase boundary. In Sec. II B, we apply the imaginary-
time-dependent nondegenerate perturbation theory (NDPT)
considering the system in the vicinity of the phase transition.
In this way, we treat the OP perturbatively in order to get
expressions for the Landau coefficients and, consequently,
obtain the phase boundary as well as the OP, close to the
phase boundary. Following the calculation of the Landau coef-
ficients, Sec. II C exposes the unphysical behaviors of the OP
and the particle density between two consecutive Mott lobes,
which is an explicit consequence of the degeneracies that
are not adequately handled within the framework of NDPT
at low enough temperatures. This inconsistency in the the-
ory is the motivation for our proposed degenerate approach,
which is worked out in detail in Sec. III. In Sec. IIT A, we
evaluate the condensate densities for different temperatures
and values of system parameters making use of our proposed
finite-temperature degenerate perturbation theory (FTDPT).
In Sec. III B, we turn our attention to a region between two
consecutive Mott lobes in the phase diagram, where the su-
perfluid clearly dominates and also a region where the NDPT

fails at very low temperatures. We compare the results of the
NDPT and the FTDPT to conclude that our degenerate method
corrects all inconsistencies. Finally, we calculate the particle
densities in Sec. III C for different temperatures and describe
the existence of a melting of the wedding cake like structure.

II. MEAN-FIELD APPROXIMATION

The description of spinless bosonic atoms confined in an
optical lattice is given by the Bose-Hubbard Hamiltonian,

N U i
i At ata A At PP
Hgy = E E[ a;a;a;a; —t <§ .> aa; — ' a;a;. (D
iJ

1

The respective parameters are the following: ¢ represents
the hopping parameter, U stands for the on-site interaction
parameter describing the interaction between particles, and
 denotes the chemical potential within a grand-canonical
description. Furthermore, 61} and @; are the usual bosonic
creation and annihilation operators at site i, respectively. Note
that in this model only nearest-neighbor hopping is allowed
and this restriction is depicted by (i, j).

Due to the nonlocal character of the hopping parameter,
a standard mean-field approximation is usually the simplest
way to solve a problem of this kind. The fundamental concept
behind such an approach is to approximate the nonlocal
hopping term by a local one. This procedure results in the
mean-field Hamiltonian [7,18,20,25],

. U
Hvr = 32(@2 — ) — Z“ﬁi
— 12y (Wra; + Wa] — W), 2

where z denotes the number of nearest neighbors, ¥ = (a;),
and #; = 5’; a; is the number operator. Since (2) is a sum of
local Hamiltonians, we restrict ourselves in the following to

the one lattice site Hamiltonian:

.U
H= E(ﬁz — i) — pi—tz(Va+wa — ). (3)

A. Landau theory

Landau argued that the free energy can be written as a
polynomial function of the order parameter in the vicinity of
a phase transition [30],

FW* W) =ay+a| V[ +agW|* +---. 4)

Since F is considered to be an analytic function of W
and since the Bose-Hubbard Hamiltonian described by (1)
possesses a global U(1) phase invariance, a, will not vanish
only for even values of n. Therefore, for small values of
|W|, we can consider only the lowest-order terms in (4), i.e.,
ay, ap, and a4 as nonvanishing. For a4 > 0, a second-order
phase transition may occur. This originates from the fact that,
if a; > 0, the only solution of 9F /0¥ =0 is ¥ = 0, thus
corresponding to the MI symmetric phase, while if a, < 0, the
effective potential F has infinitely many minima with || # 0
which differ only in the phase of W and correspond to the
SF phase [25]. Thus we conclude that the condition a, =0
defines the boundary between the two phases.
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B. Nondegenerate perturbation theory

As mentioned before, the transition from Mott insulator to
superfluid is followed by a symmetry breaking and can be
characterized by a change of the order parameter from zero to
a nonzero value. Since we are considering our system in the
vicinity of a phase transition, || has a small value and hence
we treat the hopping term in (3) as a perturbation. Thus (3)
decomposes according to H = Hy + V into an unperturbed
Hamiltonian

Hy = %(ﬁz — 1) — ph VW (5)
and the perturbation
V = —tz(V*a+ wah). (6)
The unperturbed eigenenergies are
E,,:%(nz—n)—un+tz|\1'|2, (7)
where the quantum numbern = 0, 1, 2, ... corresponds to the

number of bosons per site.

At this point we are interested in evaluating how the
perturbation changes the free energy of the system. For this
purpose, we must work out the partition function,

Z = Tr[e P, (8)

in order to obtain the free energy of the system. The quantum-
mechanical evolution operator with imaginary time, i.e., U =
e PH | can be factorized according to

U = e PH0(p), 9)

where U;(B) is the interaction picture imaginary-time evolu-
tion operator. The equation for the time evolution operator in
the interaction picture is [31]

dUn(r)

= —Vi(\)Ui(7), (10)
dt
with
Vi(r) = ety ¢=Ho (11)
and 2 = 1.

Equation (10) has to be solved with the initial value
U1(0) = 1. This can be done iteratively, thus allowing the
construction of a perturbative expansion. Up to fourth order
in the interaction we have [25]

. B R B 7 . .
Ui(B) =1 —/ dflvl(fl)-i-/ dTI/ doVi(t)Vi(12)
0 0

0

B 7 23
—/’dn/'dn/'dnwunwugwug
0 0 0

B 7 23
+ / d‘L’l / dl’z / d‘[3
0 0 0

x(/ etV ()i (1) Vi (). (12)
0

It turns out that for the perturbative Hamiltonian in (6)
all odd-order terms in (12) vanish. Therefore, we can restrict
ourselves to the calculation of the zeroth, second, and fourth-
order terms in (12).

Making use of the time-evolution operator in the interac-

tion picture Z = Tr[e"m0 UI(,B )], we calculate the partition
function,

Z="Y e PPin|Oup)n), (13)
n=0

with the single-site eigenstates |n) corresponding to the eigen-
values in Eq. (7). The zeroth-order term is

o0
ZO =) e fh, (14)
n=0

The second and fourth-order terms Z@® and Z® are calcu-
lated in detail in Appendix A.

From the partition function, we then evaluate the free
energy,

f:_%mz. (15)

Up to fourth order we get

1 zZO oz 1z
~ oLz 2 [z
F =~ 5 |:an tZot 20 2(Z<0>> . (16)

Therefore, by comparing (4) and (16) we read off the
Landau expansion coefficients:

1
ap=——InZO,

(17a)
11 2@

“TTRwEZO! (7o)
11 [2®  1/72z0\?

At zero temperature, we obtain results which are equivalent
to RSPT. In particular, the Landau expansion coefficients
reduce to

ag=E, —tz|\lf|2, (18a)
+1
a =tz + (tz)z(n— + = ) (18b)
n,n+1 An,nfl
4 nn—1) n+1)n+2) n?
ay = (12) 2 2 3
An,nflA”v”—2 An+1,nA”v”+2 Arzfl,n
(n+1)> nn+1) nn+1)
A?H—l,n A121-+—l,nA”*1a” A121,11—1 A”+1a" ’
(18¢)

where A; ; = E; — E;.

The explicit solution for a, = 0 gives the phase boundaries
in Fig. 1, as in [25]. From Fig. 1 we read off that thermal
fluctuations mainly affect the phase boundary between two
Mott lobes due to fluctuations in the number of bosons per
site.

C. Nondegenerate perturbation theory inconsistency

As already pointed out, NDPT is expected to exhibit
degeneracy-related problems. Indeed, by directly observing
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tz/U

wu

FIG. 1. Phase diagram for the inverse temperatures 8 = 5/U
(dotted-dashed black), 8 = 10/U (dashed red), 8 = 30/U (dotted
green), and 8 — oo (continuous blue).

the coefficient denominators in (18b) and (18c) we clearly
identify such degeneracy problems. Whenever (/U becomes
an integer n, there is an equality between two consecutive
energy values, for instance, E, and E, |, thus characterizing
a divergence in these expressions.

According to (4), we can consider the Landau expansion
up to fourth order for the free energy in the vicinity of a phase
transition. Extremizing (4) with respect to the order parameter
leads to

— = 2a4|¥|* =0, 19
IV ar + 2a4| V| 19)
with the solution in the superfluid phase
WP =22 (20)
2(14

Therefore, in order to explicitly derive the degeneracy-
related problems we calculate the particle density,
oF
n=-——, (2D
au

and the condensate density |¥|?> via NDPT.

2.5F
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The plot of |¥|? and n as a function of /U in Fig. 2 is
interesting for our purposes since it reveals unphysical behav-
iors, which are a consequence of NDPT: the order parameter
approaches zero at a point where no phase transition occurs
while the particle density shows strange behaviors, especially
at the degeneracy points, presenting divergences at /U € N.
Figure 2(a) shows Eq. (20) for tz/U = 0.2 for a varying
chemical potential. We observe that, indeed, the OP is well
behaved in most parts of the diagram. However, it also shows
an inconsistency: at integer values of /U the order parameter
for the zero-temperature system goes to zero, while for 7 > 0
it mimics the zero-temperature behavior by decreasing its
values despite not vanishing.

Since, for finite temperatures, NDPT also shows a similar
unphysical behavior typical of RSPT, in the following section
we demonstrate how such problems can be fixed at finite
temperature.

III. DEGENERATE APPROACH

In this section, we introduce our method which consists of
a degenerate perturbative calculation making use of projection
operators. As we aim at describing the region between two
neighboring Mott lobes, we define a subspace of the Hilbert
space which is composed of two degenerate states with n and
n + 1 particles via the projection operator
P = |n){n| + |n+1){n +1]. (22)
This way the corresponding complementary operator is given
by

(23)

We begin our analysis by considering the one-site mean-
field Hamiltonian (3) and regard, as in Sec. II B, the hopping
term (6) as a perturbation for (5). We multiply both sides of
the perturbation by the identity operator, f=P+0,and get

H=Hy+@P+0V(E+0).

(24)

,
——’—
-

<

Rl bl

FIG. 2. Condensate density (a) from (20) and particle density (b) from (21) via NDPT as functions of u/U for tz/U = 0.2 as well as
B =5/U (dotted-dashed black), 8 = 10/U (dashed red), 8 = 30/U (dotted green), and § — oo (continuous blue).
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Then we define the new unperturbed Hamiltonian and the new
perturbation as

o = Hy + PV P, (25a)
V=PV0+QVP+QVO. (25b)

The Hamiltonian in Eq. (25a), written in the basis of the
unperturbed eigenstates, is a block diagonal matrix, whose
only nondiagonal block is

£ _ E, —tz¥/n+ 1 . (26)
0 —tz¥*n+1 E, 11

Its eigenvalues and eigenstates are given by

E,+E, 1
£ = % £ (B Ey P4 W P 1],
(27a)
—1/2
|5:|:_En|2
i) =[1+—or "
| i) |: +1212|‘I’|2(7’l+1)
iy B8 oy 27b)
n —F—————|N °
tz/|¥2(n+ 1)

As pointed out in Sec. II B, we must evaluate the partition
function (8) in order to calculate the free energy (15). The
only difference is that now we are working with the new un-
perturbed Hamiltonian (25a) and the new perturbation (25b).
With this the time evolution operator now reads

U = e PPy, (28)
|

Z0 = tzzzlllllz{(n + 2)ﬂ[|<<b+ln + 1>|2(

The equation for the imaginary-time-evolution operator in the
interaction picture is

@ = —Vi(0)Uh(), (29)
T

with

Vi) = e @BVO + OVP + OVO)e "M, (30)
. The solution of Eq. (29) with the initial condition LA{I(O) =
I up to second order is given by

R R B R B 7 . R
Up) =1I —/ dTlVI(T1)+/ dTl/ doVi(t)Vi(12).
0 0

0
€29

Evaluating the partition function Z = Tr[e‘/sﬁolfll(ﬂ)], we
have

Z = P (L Uh(B) D) + e P (D [Uh(B)| D)

+ Y e PEmith(B)|m). (32)
meQ
The zeroth-order term in (31) yields in (32)
ZO) — p=BE | P Z e PEn. (33)
meQ

Furthermore, we read off from (6), (30), and (25b) that the
first-order contribution in (32) must vanish.

Finally, the second-order term, which is calculated in detail
in Appendix B, gives

e*ﬂ&r _ e*ﬂEnJrz e*ﬂf— _ e*ﬁEnﬂ
—> + [ P_|n+ 1>|2<—)}

An-‘r2,+

An+2,—

e P+ _ o=PEi e PE- _ o=PEi
- nﬁ[|<¢+ln>|2<—> + |<d>|n>|2(—)}

AVEI

e PEnsi _ o=PEn B o=PEn

+ Z (m+1)< A

meQ m,m+1
m#n — 1

where we have introduced the abbreviation A; L = E; — &,

From Eq. (34), we observe that the difference between the
degenerate energies E, and E,;; will no longer appear in the
denominator of the free energy as it did in the NDPT treat-
ment, thus solving the degeneracy-related problems discussed
above.

A. Condensate density

Now we turn our attention to the calculation of the conden-
sate density, which turns out to coincide with the superfluid
density in the mean-field approximation [19]. Our degenerate
approach, up to second order, results in the partition function
given by Z = Z© 4 Z® with (33) and (34), which is free
from any divergence despite the degeneracies. From the parti-
tion function, we obtain for the system free energy (15)

1 ® z2)
]-":—E|:an +%] (35)

Am.,m+1

An—l,—

67,35,”7, _ e*ﬁEm 18 e*ﬁEm > }
+ m - , (34)
) Z ( Az Am,mfl

meQ m,m—1
m#n + 2

(

Hence we evaluate the condensate density |¥|? by solving

aF

3T = 0. (36)

We apply this procedure by considering different temperatures
in Fig. 3.

In order to check the fidelity of the calculated condensate
densities we must observe the phase boundary evaluated by
FTDPT, which is given by

oF

P ——— =0. 37
VR, (37)

This procedure leads to the same phase diagram evaluated
by NDPT. From Fig. 1 we read off that for small values
of tz/U there are bigger portions of values of u/U where
the condensate density can be evaluated, since we regard
the Landau expansion of the order parameter being valid
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FIG. 3. Condensate densities as functions of p/U evaluated from FTDPT via (36) for four different temperatures: (a) § = 5/U, (b) B =
10/U, (c) B = 30/U, and (d) T = 0. Different point styles correspond to different hopping: tz/U = 0.2 (blue circles), tz/U = 0.15 (orange
squares), tz/U = 0.1 (green thombuses), 1z/U = 0.05 (red triangles), and rz/U = 0.01 (purple inverted triangles).

in the vicinity of the phase transition, i.e., the smaller the
hopping, the bigger the region of the calculated condensate
density. Therefore, we conclude that we are able to reliably
calculate |W|? via FTDPT near the phase boundary in Fig. 3.
Furthermore, we observe that for ©/U € N the condensate
densities no longer vanish or approach zero as they do when
calculated from NDPT.

B. Comparison between NDPT and FTDPT

Now we turn our attention to the point between two consec-
utive Mott lobes in order to analyze the differences between
the condensate densities calculated via NDPT and FTDPT
between the Mott lobes # =0 and 1, and n =1 and 2, as
shown in Fig. 4. We observe that the NDPT gives condensate
densities that approach zero or have a decreasing behavior
at the degeneracy point, which correspond to ©/U = 0 for
the region between n =0 and n =1 and are depicted in
Figs. 4(a) and 4(b), while for the region between the first
and the second Mott lobes, i.e., n = 1 and 2, the degeneracy
occurs at /U = 1 and is depicted in Figs. 4(c) and 4(d). Such
behavior indicates an inaccuracy of the theory, since it mimics
the unphysical vanishing of the OP typical of RSPT, whichis a
direct consequence of not taking into account the degeneracies
that happen in between two consecutive Mott lobes. While
NDPT presents such unphysical behavior due to the incorrect
treatment of degeneracies, FTDPT gives consistent results

for the condensate density between two consecutive Mott
lobes.

We observe from Fig. 4 that the condensate densities
calculated via FTDPT, which are represented by the solid
lines, do not present any decreasing behavior in the vicinity
of the degeneracy, concluding that they are consistent in all
considered regions of the phase diagram. In particular, at
integer /U the condensate densities no longer vanish or
present a decreasing behavior as they do when calculated from
NDPT. The decreasing behavior presented by the condensate
densities calculated via NDPT can clearly be observed by the
solid lines in Fig. 4. Such decreasing behavior is a direct con-
sequence of the incorrect treatment of degeneracies by NDPT,
which happens to occur between two consecutive Mott lobes.

C. Particle density

We calculate the particle density (21) making use of our
developed FTDPT. We consider different temperatures and
different hopping values for the purpose of analyzing their ef-
fects on the density of particles. We plot the resulting equation
of state for two different values of the hopping parameter and
four different values of the temperature, thus observing the
melting of the structure as in Refs. [11,32], as shown in Fig. 5.

We observe the effects that the change of both the temper-
ature and the hopping have upon the particle density in Fig. 5.
First, we conclude that increasing the temperature makes the
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FIG. 4. Comparison between the condensate densities calculated via FTDPT (points) and NDPT (lines) for the temperatures g = 30/U
(left panel) and T = O (right panel) for rz/U = 0.2 (blue circles and continuous blue lines), tz/U = 0.15 (orange squares and dashed orange
lines), and tz/U = 0.1 (green rhombuses and dotted green lines). Panels (a) and (b) correspond to the region between n = 0 and 1, while

(c) and (d) correspond to the region between the first and second lobes.

particle density vary more smoothly when compared to those
particle densities with lower temperatures. This fact is due to
thermal fluctuations, which make the system more feasible
to exist in the superfluid phase. Moreover, by comparing the
left panel to the right one we observe the melting of the Mott
lobes due to an increased hopping, which is also very intuitive:
the particles, having more kinetic energy, are more likely to
hop from one site to another, which is characteristic for the

SF phase. Another factor responsible for making the curves
smoother is the increase of the chemical potential, u/U. The
reason for this relies on the fact that the bigger ©/U becomes,
the smaller the Mott lobes are, as can be seen in Fig. 1. Thus
the system is more likely to exist in the superfluid phase for
bigger values of u/U.

Now we must turn our attention to the points of the
figures where the degeneracies happen, which correspond to

FIG. 5. Equation of state for the hopping strengths (a) tz/U = 0.05 and (b) 1z/U = 0.1 and the temperatures 7" = 0 (continuous blue),
B =30/U (dotted green), 8 = 10/U (dashed red), and 8 = 5/U (dotted-dashed black).
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w/U =0, 1, and 2. We observe that our calculations lead to
no unphysical behavior happening at those regions, meaning
that our developed FTDPT method possesses no inconsistency
in the calculation of the equation of state for the mean-field
approximation of bosonic atoms confined in optical lattices.
Finally, as the NDPT leads to a weird behavior of the particle
densities, together with divergences and discontinuities in the
vicinity of the degeneracies, i.e., u/U € N, we also conclude
that FTDPT gives reliable results for the particle density
since there is no decreasing behavior or discontinuities in the
vicinity of the degeneracies in Fig. 5.

IV. CONCLUSIONS

By using a projection operator formalism we were able to
generalize the usual nondegenerate perturbation theory for the
mean-field approximation of the Bose-Hubbard Hamiltonian
at finite temperatures. With this we have solved the degen-
eracy problems which are typical for nondegenerate pertur-
bation theories. We introduced the mean-field considerations
applied to the Bose-Hubbard Hamiltonian, followed by the
Landau theory regarding second-order phase transitions. Also,
we showed that NDPT results in an inconsistent behavior
for the order parameter: it predicts a phase boundary in a
region of the phase diagram where there should be none.
Subsequently, we developed a degenerate perturbative method
based on a projection operator formalism that corrects all such
contradictions which arise from NDPT due to degeneracies
that occur between two adjacent Mott lobes. Our approach
was able to eliminate all the problematic divergences in the
thermodynamic potential, which allowed us to accurately
evaluate the condensate densities and the particle densities
in the vicinity of the MI-SF phase transition for different
temperatures and different hopping values. Further, we drew
the finite-temperature phase diagrams in order to check the
consistency of the previously calculated condensate densities.

Moreover, for the zero-temperature regime, which is de-
picted in Fig. 3(d), the results for the condensate densities
are similar to those obtained in [19], which uses a Brillouin-
Wigner treatment for the perturbation expansion followed by
a proper diagonalization in order to calculate the system free
energy. That approach differs from the one used in this work.
While the Brillouin-Wigner approach is also able to correct
the degeneracy problems from NDPT, it can only be applied
to the zero-temperature case. On the other hand, the theory
presented in this paper corrects degeneracy problems for both
zero and finite temperatures, thus providing a relatively simple
method for calculating the condensate density in a wide range
of optical-lattice systems.

Also, let us remark that, in the NDPT approach, the fourth-
order term is necessary for the calculation of the condensate
density since it is the first nontrivial solution for the extremiza-
tion of the free energy in Egs. (19) and (20). However, this is
not the case with our FTDPT due to fact that the exact solution
of the problem in the projected Hilbert space automatically
generates high-order terms. Therefore, our FTDPT is an effec-
tive resummation of the power series generated by NDPT. In
FTDPT, the second- and higher-order calculation only include
extra effects due to the nonprojected Hilbert space. Indeed it
is even possible to calculate the condensate density from the

zeroth-order term, as one can observe from Eq. (33), since
it has an implicit dependency of the OP. Therefore, we have
restricted ourselves to the second-order correction. In order
to check how important the fourth-order corrections would
be, we compared our results considering the zero-temperature
case with Ref. [19], which is a degenerate approach that
considers the fourth-order term. The analogous results, 7 = 0,
in the present paper are shown in Fig. 3(d). The errors between
the degenerate-approach-calculated |¥|? of these two papers
are, for the hopping strengths, 7z/U = 0.2, 0.15, 0.1, 0.05, and
0.01, 4.12%, 1.17%, 0.69%, 0.5%, and 0.38%, respectively.
Consequently, we consider the errors to be small enough in
such a way that it justifies our neglect of the fourth-order term.

Finally, it is important to notice that the method developed
in this paper can also be applied to out-of-equilibrium systems
[22,23], bosonic optical lattices with three-body constraint
[26], and different geometry lattices such as Kagomé lattice
[27] and triangular and hexagonal lattices [28], as well as the
Jaynes-Cummings lattice [29].
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APPENIX A: NONDEGENERATE CALCULATION
OF Z@ AND Z@

In this Appendix we are concerned with the detailed calcu-
lation of Z® and Z® via the nondegenerate approach. The
second-order term reads

0 B T
20 =Y e [Can [ anbi . @b
n=0 0 0
Inserting (11) in (A1) we have
oo ﬂ T
z® = Ze_ﬂE"/ dT1/ dt(n|
o 0 0

x e y) g=rif guthy o—raflo |n). (A2)
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As |n) are eigenstates of Ho, Eq. (A2) reduces to

oo ﬂ T N .
ZO =N et / dn, / A6 = ([ =10 gm0 ) (A3)
n=0 0 0
According to (6) we have
> B T . .
ZO =2 e / dry / drae™ ~E (n|(W*a + Wa e e (Wra + wah)|n), (A4)
n=0 0 0

yielding
o B 7|
22 — 42,2 Z e PEn / dr / At " E W /nin — 1|+ ¥*'Vn+ 1{n+ 1))
n=0 0 0

X (W /ne ™ ™WE1 1y — 1) + W/n+ L@ ™E+ | 4 1)). (A5)
The scalar products reduce (AS5) to
> B 7
Z(Z) — t2Z2|\IJ|2 Ze—ﬂEn/ dfl/ d‘L’z(n e(Tl—‘Ez)An.”,] + (n + l)e(fl—TZ)Aanrl). (A6)
s 0 0
Finally, the integrations yield
> BAun—1 _ BAnnt1 _
ePsn. 1 e 1
ZO =2 |WPY e Phin . - A’g +@m+1) . —~ Aﬁ : (A7)
=0 An,n—] n,n—1 A,,y,,_,_l n,n+1

where we have used the abbreviation A; ; = E; — E; for differences between two eigenvalues (7).
For the fourth-order term we have

o B 7 2 73
20 =Y et [Can [V [Can [ anoiieheieben. (A8)
n=0 0 0 0 0
Inserting (5) and (11) in (A8) gives
s B 7 © L5} R . . .
ZW = Ze_ﬂE“ / dr / dt, / dts / dtye T WE |V eV (1)Vi(13)e™ 0V |n). (A9)
0 0 0 0 0

According to (6) we have
o0 B T L5} 7
ZW =272 Z e PEn / dr / dv / dts / dre T WE (W e mTTE (1| 4 W+ T e™TER (4 1))
o 0 0 0 0

x V e o enfoy (g fy o™ mE |y 1) 4 Wi+ 1 e B E | 4 1Y), (A10)
Using again (5) and (11) in (A10) results in

x B 7 ) 7
Z® =t4z42e_ﬁE"/ dn/ dl’z/ dl’3/ drge W
= 0 0 0 0

x [Wy/ne ™ ™WE (Wy/n — Te B2 (n — 2| + W*/ne ™5 (n])

+ U+ 1 e TE (\yme—rﬁ" (n] + Wi n £ 2 e B n+2)]

x [W*/n e ™ Em (W — 1 eBE2n — 2) + W /ne™Er|n))

+ Wn+ 1™ ™5 (W /n + 1 e |n) + W/n + 2 ™2 n + 2))), (A1)

which, from the scalar products, reduces to

[e%e} B T] 1% 3
ZW =t4z4|qj|42e*ﬁ5" / dt / do / dry / dty
=0 0 0 0 0

x [n(n — 1)e(t]_ut)A/x.n—le(TZ_'r})An—],n—Z +(+ D+ z)e(fl—m)An.nHe(fz—fz)An+|.n+z

4 nze(TI*TA)An,n—le(TZ*Tz)Au—I,n +n(n+ l)e(flffz)An.n—le(f3ff4)An,n+1

+n(n+ l)e(fl—fz)An.n+1e(fs—u)An,»H +(n+ l)ze(rl_TZ)An.lH»]6(73_74)An.n+l]. (A12)
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The integrations result in

e BAnu—2 _
ePsn 1 1 1
ZO =ty et {n(n -1 < - )
=0 An,nfl Anfl,anAn,an Anfl,n72 An,n72

ePhnm1 1 1
+n(n—1) +

Ai'nflAn,n—Z An,n—l An—l,n—2
Bl _ 1 1 B ePBnn-1 1
+nn—1) ( — )—n(n—l) ( + )
Ain,IAn—l,n—Z An,nfl Anfl,n72 A%’nfl Anfl,an An,an
Pl _ 1 1
+m+Dn+2) < - )
An,nJrl Athl,nJrZ An,n+2 An+1,n+2 An,n+2
D4 ] ( Loy )
n n
Aﬁ’nJ’»l An.n+2 An,n-‘,—l An-',—l,iH—Z
L D2y ( : 1 ) (n+ Dn+ 2L (eﬁAMH P )
n n — —n n
Aﬁ'n+1An+l,n+2 An,n-&—l An-!—l,n+2 Ai’nJ’»l ArH—l.n-‘r2 An,rH—2
1 — eﬁA/Ln—l ﬁ ﬂ2
3 2 2 2 BAnn-1 2
o A3,r171 o Ar3z,nfl ( e ) o 2A5,nfl
4 nn+1) (e/sA;t,n+l -1 N 1 — ePBnn-i ) a4 D) 1 — ePlnn-i < 1 N 1 )
nn
AinJrlAn—l,n+l An,nJrl An,nfl A%ynflAn.n-H An,nfl An,nJrl

2
+nn+1) p (Al + ! >+n(n~|—1) e

An,nflAn,nJrl n,n—1 An,nJrl ZAn,nflAn,nJrl

nn+1) (eﬂAM] -1 N 1— eﬂA/,Am) Fn4 D) 1 — ePBunti < 1 N 1 )
nn
AinflAn-H,n—l An,n—l An,n+1 5’n+1An,n—l An,n—H An,n—l

2
+nn+1) p (Al + ! >+n(n+1) e

n,n+1 An,nfl n,n+1 An,nfl 2An,n+1 An,nfl
2 1— eﬂAn.nH 5 ,3 s ) ﬂ2
341 —F——F+ + 15— 2+ )+ (n+ 1) —5— 1. (A13)
n,n+1 n,n+1 2An,nJrl

APPENDIX B: DEGENERATE CALCULATION OF 2®
This Appendix is devoted to the evaluation of (32) for the second order of (31)

B 7] . R B T . .
20 _ b f dr, / ds (@4 [Py Vi ()| D) + e FE / dr, / dts (@_[Vi(x)Pi(m) D)
0 0 0 0

B 7 . .
+y e | dr | do mVin)Vi()im). (B1)
meQ 0 0

We shall perform the calculation of each term separately and identify them as Z® = 2® 4 2@ 4 z®,
As the evaluation of Z(f) and Z? are completely equivalent we perform a generic calculation for both contributions. Inserting
the expression for the perturbation in the interaction picture (30) in the first term we have
B 7l N N N N
ZP) = P / dr / dry (@4|e"™(PVQ + QVP + QVQ)e " e (PV O + QVP + QV Q)e 0 |dy).  (B2)
0 0
As |®.) are eigenstates of 7L, we get
5 B gl R A . A A
20 = e f i, / dy T DL BV O + OV D + OV Q) Poem BV + OV + OV O) b)) (BI)
0 0
As we have Q|C[>i) =0, 15|<I>i) = |®4) as well as Q and P represent Hermitian operators (B3) reduces to

B 2 ) y
Z:(tZ) — e—ﬁfi / dr / dr, e(rl—tz)fi<(Di|VQe—nHoerz7'loQV|<Di). (B4)
0 0
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From (6) and (27b) and using the scalar products

(n|®.) [1+ £ —E,f ]_1/2 (B5a)
n = - , a
* 2210+ 1)
—-1/2
|5:|: - En|2 En - S:I:
(n+1]0s) = [1 + , (B5b)
1222 (n+ 1) 1z WA (n + 1)
we have
B T
20 =% [T [ an e R @ il — 114+ W (@l DV 20+ 2D)
0 0
¢ oo (U (| D) /aln — 1) + W (n 4 1[DL)vn + 2ln + 2)). (B6)
The evaluation of (B6) leads to
B 7
2 = P2 |wpe / dz, / dry (77N (D) P 4 PR (4 D) (@ + D). (B7)
0 0

Evaluating the integrations in (B7) yields finally

ﬂAi,,_] _ ,BAin+2 —
Zf)=tzzz|‘lflzeﬁ£i|:n|(®i|n)|2<e L F >+(n+2)|<<1>i|n+1>|2<€ Lf )] (B8)

2 2
AL, Ay, AL 2 Ay

The last term to be calculated is Z@. The first steps of this calculation are similar to those from the evaluation of Z{*.
Therefore, we have

)e M0 |m)

(Q)
<>
>
_l’_
[\
<>
>

20 = Y o / dr / drs (mle" BV O + OV P + OV Q) oo o (PY ) +
meQ

_Zgﬂsf / d‘[]/ dr, em™ TZ)Em<m|Ve*TIHOeT2H0V|m>

meQ
=1’ e ﬁE/ dn/ dvy e "E (W mim — 1] + W m + L(m + 1])
meQ
x e o2 o (W* Sl — 1) + W/m + 1m + 1)). (BY)

Applying the exponential operators to the eigenstates we are left with

Zz(nZ) ZZE_ﬁE / dTI/ dr, (M —)En

meQ

y \IJ\/— T|5+ m_ 1|<D+><q)+| +e—r|57<m_ 1|(D ) d>_| + Ze—ﬂEm/<m— 1|m/><m/|
meQ

+Wm+ I e ™ (m+ 1| D) ( Dy | + e " (m+ 1D (D_| + Z e E (m 4+ 1m") (m"|

m'eQ

x | w* f 1:25+ CD |m_ 1)|(I) ) rzc‘:_(cp |m_ 1)|(I) + Z T E, m///|m >|mw>

m"eQ
FWVm+ T e (@ fm+ 1) @y) + (D |m+ DID_) + > e (m" lm+ 1)|m™") | | (B10)
o

When we evaluate the multiplication among the terms between brackets, we must be aware of the fact that the cross terms, i.e.,
those that contain W? or W*?2, give zero since they contain the products (m — 1|®4) and (m + 1|®.), which cannot both be
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nonzero because it is not possible for m 4+ 1 and m — 1 to be equal to n or n + 1 at the same time. So, we are left with

B T
ZP =02 WP ) et / dv / do, [me“lfzmm’+|<<1>+|m—1>|2+me<“72>Af"v-|<<1>_|m—1>|2
0 0

meQ

Hm Y TR i — 1) + (m + DT (D m + 1)

meQ

+ (m A+ DT D+ (1) Y T [ ) |2}. (B11)

Finally, the integrations lead to

m'eQ

Q) 22002 _BE, L PP —1
ZD =21y e m[m|<<1>+|m—1>| ( -

2
meQ AmA—

/
m'eQ m,m

ePBum — 1 B eBAnt — 1 B
+mZ( A A |<m—1|m/>|2+<m+1)|<c1>+|m+1>|2< - )

Al A, -

Am,+

/SA”’v*_
i )+m|<d>_|m—1>|2<e L ﬂ)

A2 A

2
Am,+ Ap

eﬂAm’i -1 /3 eﬂAm‘m” -1 ﬁ "
+ (m+ D|(®_|m + 1>|2( - )+(m+ ny ( e Am,m//>|<m+ 1m >|2}. (B12)

m'eQ

Combining the contributions (B8) and (B12) the second-order term of the partition function reads

ﬂA+.zx—l S 1

e

Z(z) _ t2Z2|\I/| e—ﬂf+ i’l|(<b+|n)|2 > N :3
AL At

eBr-n1 1

5 Pl ] 13
+ (n+2)(Py|n+ 1) 5 -
AL Ag iz

+ 122 | WP [n|<<1>_|n>|2< A7
—,n—1

eBlm+ _

) eBB-m2 _ B
- + n+2)(DP_|n+ 1) -
A—,n—l Az_’n_;,_z A—,n+2

+ 2P e P [m|<c1>+|m - 1>|2<

2
meQ Am,-‘r

+mZ

A? A

m,—

B A =1 P
— d_ —1 —
5, ) Hmiesim = DF (-

Bl — 1 ePlmsr
< 3 S >|<m—1|m/>|2+<m+1)|<<I>+|m+1>|2( __F )
meQ Amsm’ A

2
Am,Jr Am,+

eﬂA"l’7 -1 ﬁ eﬂAm'm” -1 :3 7
+ (m+ D[(_|m + 1>|2< - >+(m+ ny ( s Am,m//)|(m+ 1m >|2}. (B13)

m'eQ

Taking into account that the scalar products (m — 1|m’) and (m + 1|m”) lead to one further restriction each in the summations,

thus we finally obtain Eq. (34).
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