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Spinor bosons in optical superlattices: A numerical study
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The ground state of spin-1 ultracold bosons trapped in a periodic one-dimensional optical superlattice
is studied. The two sites of the unit cell have an energy shift between them, whose competition with the
spin-dependent strength is the main focus of this paper. Charge-density wave (CDW) phases appear for
semi-integer and integer densities, leading to rich phase diagrams with Mott insulator, superfluid, and CDW
phases. The spin-dependent interaction favors insulator phases for integer densities and disfavors CDW phases
for semi-integer densities, which tend to disappear. Also, quantum phase transitions at finite values of the
spin-dependent strength are observed. For integer densities, Mott insulator-superfluid-CDW insulator transitions
appear for an energy shift lower (higher) than the local repulsion for the global density ρ = 1 (ρ = 2).
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I. INTRODUCTION

The emergence of the cold-atom area has led to the ap-
pearance and observation of interesting physical phenomena
such as new states of matter and quantum phase transitions
[1–3]. In particular, the creation of purely optical traps with
lasers unfreezes the spin degree of freedom of alkaline-earth
atoms, allowing one to observe a Bose-Einstein condensate
for each hyperfine state [4], spin domains [5], coherent spin
dynamics [6], Larmor precession [7], and spontaneous sym-
metry breaking [8], among other phenomena. The above
observations have turned spinor bosons into a subject of great
interest, which can be described by the spin-1 Bose-Hubbard
model, which considers the kinetic energy, a local two-body
repulsion, and a local spin-dependent interaction [9]. For
antiferromagnetic coupling, an even-odd asymmetry in the
Mott lobes appears; i.e., for an even global density in the
system, the Mott lobes grow as the spin parameter increases,
while odd global density decreases. Also, it has been shown
that the odd lobes exhibit a dimerized order, while the even
lobes exhibit competition between a nematic phase and a spin
singlet one [10–24].

The high degree of control of optical lattices allows con-
fining atoms in lattices with diverse spatial configurations;
among them is the superlattice, whose arrangement is char-
acterized by a periodic potential [25–27]. Also, a superlattice
potential with an energy offset between two sites A and
B has been generated in square and honeycomb lattices,
where bosons and fermions were loaded, respectively [28,29].
Different ground states were observed, and transitions from
superfluid to insulator can be manipulated.
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Spinless bosons in nonhomogeneous lattices have been
considered by several authors, using diverse analytical and
numerical methods [30–40]. From a general point of view,
these studies found that the ground state can be diverse, as a
function of the parameters; for instance, charge-density wave
(CDW), Mott insulator, superfluid, and Bose glass phases
have been reported. In particular, for bosons confined in ABn−1

chains, i.e., a lattice that consists of repeating a unit cell
with n sites where between the A and B sites there is an
energy offset λ, insulator phases for densities ρ = α/n were
found, with α being an integer, and these insulator phases are
separated by superfluid regions. For any n value, it has been
reported that for integer densities ρ, the system exhibits ρ + 1
insulator phases: a Mott insulator phase and ρ CDW phases.
For noninteger densities larger than one, several CDW phases
appear [40].

Superfluid to Mott insulator transitions with spinor bosons
confined in optical lattices have been observed [3,41,42];
however, neither the possibility of driving this transition
through a structural deformation of the unit cell nor the topo-
logical character of the different phases has been considered
in the experiments, and the question about the consequences
of considering the internal degrees of freedom on the critical
points of inhomogeneous lattices arises. In order to stimulate
experiments and give an idea about what to expect, we ad-
dress this issue in this paper. In a pioneering study, Wagner
et al. used the mean-field approximation to study spinless and
spin-1 bosons in an intercalated potential and concluded that
spin-dependent interactions change the occupation numbers
of individual lattice sites [43]. Motivated by the above sce-
nario, we went beyond the mean-field approximation and used
the density-matrix renormalization-group method [44,45] to
study spin-1 bosons in a superlattice potential, considering
an effective antiferromagnetic local interaction. We found
that the spin-dependent interaction favors insulator phases for
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integer densities, which can arise from a finite or zero value of
the spin-dependent strength, depending on the particular value
of the energy shift. The CDW phases for semi-integer densi-
ties decrease and tend to disappear with the spin-dependent
strength. Phase diagrams as a function of the energy shift or
the spin-dependent interaction were calculated at the thermo-
dynamic limit. The above results can stimulate the quantum
simulation of higher spin chains in cold-atom setups and the
possible connection between the internal degrees of freedom
and the topological character of the diverse phases [38].

The outline of this paper is as follows. In Sec. II we
explain the Hamiltonian model that describes spin-1 bosons
in a superlattice potential, and the limit case without a kinetic
energy term (atomic limit) is analyzed, leading to the first
phase diagrams. The chemical potential at the thermodynamic
limit is calculated numerically and shown in Sec. III, where
the main phase diagrams appear. In Sec. IV we summarize
our principal results and state our conclusions.

II. MODEL

A system of spinor bosons with spin F = 1 in one di-
mension can be described by considering a kinetic term
with a hopping parameter between the neighbor sites t , a
local repulsion interaction of strength U0, an effective local
interaction due to the spin with strength U2, and finally the
local potential undergone by each boson in the lattice. The
Hamiltonian associated with the above system is given by

Ĥ = −t
∑

〈i, j〉,σ
(â†

i,σ â jσ + â†
j,σ âiσ ) + U0

2

∑

i

n̂i(n̂i − 1)

+ U2

2

∑

i

(
F̂ 2

i − 2n̂i
) +

∑

i

λin̂i − μ
∑

i

n̂i, (1)

where â†
i,σ (âi,σ ) is the creation (annihilation) operator of a

boson at site i in the magnetic sublevels σ = 1, 0,−1; n̂i

is the number operator; and F̂i = ∑
σ,σ ′ â†

i,σ Tσ,σ ′ âi,σ ′ is the
spin operator, with Tσ,σ ′ the spin-1 Pauli matrices. Here μ

represents the chemical potential and λi quantifies the local
external potential undergone by the bosons, which is periodic
with a unitary cell AB, such that λi = 0 if the site is A and
λi = λ if the site is B (see Fig. 1). Note that −1 < U2

U0
=

a2−a0
a0+2a2

< 0.5, where an are the scattering lengths. For an
antiferromagnetic (U2 > 0) homogeneous chain, an even-odd
asymmetry between the Mott lobes was found, while in the
ferromagnetic case (U2 < 0), both superfluid and insulator
phases exhibit magnetic quasi-long-range order. Although the
ferromagnetic case may be interesting, we chose an antifer-
romagnetic spin-dependent interaction in our inhomogeneous
chain and all our results will be limited to this case.

To explore the ground state of spinor bosons in an AB
chain, we first consider the atomic limit [t = 0 in the Eq. (1)]
in which the energy for ni particles in the unit cell is given by

E0(ni ) = U0

2
ni(ni − 1) + U2

2
(〈Fi〉2 − 2ni ) + λini − μni,

(2)

where 〈F̂ 2〉 = 0 for an even number of particles and 〈F̂ 2〉 = 2
if the number of particles is odd, when an antiferromagnetic

FIG. 1. Schematic of the setup related to the Hamiltonian (1).
Spin-1 bosons are in a superlattice optical potential (AB chain). Here
t is the hopping parameter to the nearest neighbor, U0 is the on-site
repulsion interaction, U2 is the exchange interaction, and λ is the
energy shift between sites. The arrows indicate the hyperfine state of
each atom F z = 1 (up), F z = −1 (down), and F z = 0 (none).

interaction is considered. At the atomic limit, the ground
state is characterized by a particular occupation of each site
of the unit cell, and a change of state can happen when
the parameters vary. This change of state takes place when
E0(ni + 1) − E0(ni ) is equal to zero; hence the boundaries
between different states are given by lines of the chemical
potential ( μ

U0
) in terms of λi

U0
and U2

U0
as

μ

U0
= λi

U0
− 2U2

U0
+ ni (3)

if ni is odd and

μ

U0
= λi

U0
+ ni (4)

if ni is even. The ground-state phase diagram in the plane
chemical potential versus the energy difference is shown in
Fig. 2. Here we consider that 2U2/U0 = 0.38, and the hori-
zontal (inclined) lines set the border for which the number of
particles at site A (B) changes according to the relations (3)
and (4). The number of particles in a unit cell is shown such
that points on the left (right) correspond to the occupation of
the site A (B). This figure shows us that the ground state can be
a Mott insulator or a CDW state and that transitions between
them can be driven by the energy shift λ or the spin-dependent
interaction U2. For instance, phase transitions from a Mott to a
CDW insulator are obtained for integer global densities, while
for semi-integer densities, only transitions between different
CDW insulators are possible. The critical point for the latter
transitions does not depend on the spin-dependent interaction
U2, whereas for the former the critical point will depend on
the density and the spin-dependent interaction. We observe
that for ρ = 1, the critical point is located at λ = U0 − 2U2,
while for ρ = 2 it is at λ = U0 + 2U2.

The special case when λ/U0 = 1.0 at the atomic limit is
depicted in Fig. 3. On the vertical axis are the values of the
chemical potential μ, while on the horizontal axis the values
of U2 are displayed, both in terms of U0. Note that, according
to Eqs. (3) and (4), the phase diagram is different. This does
not suggest transitions from the Mott insulator phase to the
CDW phase for integer densities. The Mott insulator for ρ = 1
does not appear, and semi-integer CDW regions are separated
by Mott or CDW insulator regions with integer densities.
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FIG. 2. Phase diagram at the atomic limit of spin-1 bosons
confined in an AB chain. The distribution of the particles at sites A
and B into the insulator regions is illustrated. Closed circles indicate
that there is a particle and open circles that there are no particles. The
left (right) group of circles belongs to the site A (B). It can be seen
that only lines with odd ni change by a downward shift in the vertical
axis for 2U2

U0
and the size regions change, keeping the critical point for

ρ = 3/2.

Also, this phase diagram suggests that the insulator regions for
integer densities appear, starting at U2 = 0. For larger values
of λi/U0, interesting things happen at the atomic limit. For
instance, no Mott insulator phases appear for λi/U0 = 2, and
for lower values a CDW to Mott transition with a density
ρ = 2 is expected for a finite value of the spin-dependent
interaction U2 (not shown).

FIG. 3. The t = 0 phase diagram in the plane chemical potential
versus the spin-dependent interaction. The symbols are the same as
those in Fig. 2. Here we set λ/U0 = 1.
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FIG. 4. Chemical potential versus the inverse of the lattice size
for a system of spinor bosons with ρ = 3/2 and U2/U0 = 0.2. Two
different values of the energy shift were considered: (a) λ/U0 = 0.95
and (b) λ/U0 = 2.0. At the thermodynamic limit, a finite charge gap
(� �= 0) is obtained in (a), while it vanishes in (b).

III. NUMERICAL RESULTS

The atomic limit of the Hamiltonian (1) shows us that
as spinor bosons are confined in the AB chain, diverse
insulator phases can appear and transitions between them
can occur. However, beyond the atomic limit, the quantum
fluctuations will modify the above picture, and a numeri-
cal analysis becomes important We chose the density-matrix
renormalization-group (DMRG) method to study the Hamil-
tonian (1). The calculations were carried out by keeping m =
350 states, where the accuracy of the discarded weight was
10−5 in the worst case. The ground-state energy difference
between successive sweeps (from left to right) was on the
order of 0.01. The hopping and the local interaction param-
eters were fixed and we considered the values t = 1 and
U0/t = 10, respectively. It is well documented in the literature
that the insulator phases are characterized by a finite charge
gap � = μp − μh at the thermodynamic limit, μp (μh) being
the chemical potential for adding (removing) a particle, and
are given by

μp(L) = E (N + 1, L, F z ) − E (N, L, F z ) (5)

and

μh(L) = E (N, L, F z ) − E (N − 1, L, F z ), (6)

where E (N, L, F z ) is the system energy with N particles, L
sites, and spin projection F z. In Fig. 4 we show the evolution
of the chemical potential for adding and removing a particle
as a function of the inverse of the lattice size, for a system
of spinor bosons with a global density ρ = 3/2 and an an-
tiferromagnetic spin-dependent interaction U2/U0 = 0.2. We
observed that the μp (μh) decreases (increases) monotoni-
cally as the system size grows; however, for λ/U0 = 0.95
[Fig. 4(a)], both quantities tend to different values at the
thermodynamic limit (1/L → 0), indicating that for these
conditions the system has a finite charge gap �/U0 = 0.38
and the ground state is a CDW, as predicted at the atomic limit
(Fig. 2).
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FIG. 5. Density ρ = N/L versus the chemical potential for
spinor bosons without a spin-dependent interaction (U2 = 0). Here
three different values of the energy shift were considered, λ/U0 =
0.95, 1.95 and 2.50. The chemical potential values correspond to
those at the thermodynamic limit.

On the other hand, Fig. 4(b) shows the case for λ/U0 =
2.0. The tendency of both chemical potentials to attain a
unique value at the thermodynamic limit can clearly be seen,
namely, μ/U0 = 1.90 and �/U0 = 0. Therefore, there is a
superfluid phase separating the CDW phases with global
density ρ = 3/2 as the energy shift increases, keeping the
others parameters constant. Clearly, outside the atomic limit
we obtain quantum phase transitions between superfluid and
insulator phases, which are absent in Figs. 2 and 3. The above
finding leads us to study the phase diagram of spinor bosons
confined in an AB chain far away from the atomic limit.

So far, our results suggest that the ground state can be
gapped or gapless; hence we must explore the evolution of the
chemical potential at the thermodynamic limit as the number
of spinor bosons increases for different sets of parameters.
For spinor bosons without a spin-dependent interaction (U2 =
0), a situation that corresponds to the spinless bosons case,
we show in Fig. 5 the density ρ = N/L as a function of
the chemical potential. It is well known that for a homo-
geneous lattice λ/U0 = 0, the ground state is superfluid for
noninteger densities, displaying a continuous increase in the
density vs the chemical potential curve. However, for integer
densities the ground state is a Mott insulator and horizontal
discontinuities (plateaus) appear in the curve, where the width
of the plateau informs the value of the gap. For bosons in an
AB chain with λ/U0 = 0.95 [see Fig. 5(a)], the Mott insulator
plateaus for integer densities disappear and instead plateaus
are observed for semi-integer densities, where the ground state
is a CDW with the particular unit cell filling {A = 1, B = 0}
for ρ = 1/2 and {2, 1} for ρ = 3/2, according to the phase
diagram in Fig. 2. Note that negative values of the chemical
potential appear. This means that the ground-state energy
decreases in order to increase the number of particles, keeping
the entropy constant [46]. For larger values of the energy
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FIG. 6. Density ρ = N/L versus the chemical potential for
spinor bosons. The energy shift was set at λ/U0 = 0.95 and different
nonzero values of the spin-dependent interaction were considered.
The chemical potential values correspond to those at the thermody-
namic limit.

shift (λ/U0 = 1.95), the plateau for ρ = 3/2 disappears, the
CDW phase for ρ = 1/2 is maintained and enlarged and the
insulator phases for integer densities reappear [see Fig. 5(b)].
However, it is expected that the latter insulator phases will not
correspond to Mott ones; instead they will be CDW insulator
phases (Fig. 2). Note that plateaus for all semi-integer and
integer values of the density will appear as the energy shift
grows [see Fig. 5(c)]. In conclusion, the superlattice potential
leads to the emergence of diverse CDW insulator phases
for semi-integer and integer densities and drives quantum
phase transitions between insulator phases (Mott or CDW)
and superfluid ones for particular values of the parameters.
The above results and phase diagrams have previously been
obtained by some authors, using diverse numerical methods
[35–37,40].

The effective description of spinor bosons provides a local
spin-dependent interaction term, whose effect on the ground
state of spinor bosons in an AB chain we want to study. In
Fig. 6 we display the density ρ = N/L versus the chemical
potential for bosons in an AB chain with λ/U0 = 0.95 and
the spin-dependent interactions U2/U0 = 0.2 [Fig. 6(a)] and
U2/U0 = 0.4 [Fig. 6(b)]. For the energy shift λ/U0 = 0.95
and without a spin-dependent interaction, we show in Fig. 5(a)
that only for semi-integer densities are there insulator phases,
namely, CDW ones. When we turn on the spin-dependent
interaction [see Fig. 6(a)], we observe that the plateaus for
integer densities reappear, which indicates that a quantum
phase transition from a superfluid to an insulator phase is
driven by the spin-dependent interaction for a given AB chain.
Recall that the atomic limit says that the critical point is
U2/U0 = 0 for both integer densities. According to the phase
diagram in Fig. 3, we note that the plateaus for semi-integer
densities are present, but their width has changed, in particular
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FIG. 7. Phase diagram for spinor bosons in a superlattice type AB
at the thermodynamic limit. Here the energy shift was set at λ/U0 =
0.95. The white regions correspond to superfluid phases, the blue
regions indicate CDW phases for semi-integer densities, the yellow
region shows the Mott insulator phase, and the pink region shows
the CDW phase for integer densities. The dashed lines correspond to
the chemical potential as the number of boson increases, shown in
Fig. 6. The points represent the boundaries of the insulator phases
calculated with the DMRG method.

the plateau for ρ = 3/2. As the spin-dependent interaction
increases, the plateaus for integer densities are larger, while
the ones for semi-integer densities decrease quickly, which
follows the atomic limit results, and therefore we expected
that the insulator phases for semi-integer densities would tend
to disappear as U2/U0 → 0.5 [Fig. 6(b)].

In Fig. 6 we see that insulator phases for integer densities
are favored by the spin-dependent interaction, but what kind
of insulator are they? We calculated the density profile and
found that for ρ = 1, the particle distribution in the unit cell
is {2, 0}, and hence the ground state is a CDW for this density.
However, for ρ = 2 the average occupation per site is 〈n(i)〉 ≈
2.0, which indicates that the ground state is a Mott insulator
(not shown).

The phase diagram of spinor bosons confined in an AB
chain with an energy shift λ/U0 = 0.95 is shown in Fig. 7. The
points correspond to the thermodynamic limit of the chemi-
cal potential for different values of spin-interaction strength
(U2/U0) and give the boundaries of the insulator regions.
Comparing it with the phase diagram at the atomic limit
(Fig. 3), we note that the kinetic energy generates superfluid
regions that separate the insulator ones, prohibiting a quantum
phase transition between them even without a spin-dependent
interaction. The predicted insulator regions at the atomic limit
are present in the phase diagram. For small values of U2/U0,
the predominant regions are the CDW for semi-integer densi-
ties ρ = 1/2 and ρ = 3/2 with the charge distribution in the
unit cells {1, 0} and {2, 1}, respectively, although the charge
gap for the insulator with density ρ = 3/2 is smaller than that
predicted. As the spin-interaction strength grows the insulator
regions for semi-integer densities decrease and tend to disap-
pear as U2/U0 → 0.5, as can be seen in the figure, where the
extreme value U2/U0 = 0.49 was considered. We found that
the insulator regions for integer densities appear for different
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FIG. 8. On-site number density plotted against the lattice site
index at density ρ = 2 and values smaller or larger than the crit-
ical point. Here we consider an AB chain with λ/U0 = 1.5 and
(a) U2/U0 = 0.05 and (b) U2/U0 = 0.45. Open boundary conditions
were used. The lines are visual guides.

nonzero values of the spin-dependent interaction and quantum
phase transitions from a superfluid to an insulator phase take
place at the critical values U2c/U0 = 0.012 and U2c/U0 =
0.032 for the densities ρ = 1 and ρ = 2, respectively. As
mentioned before, the insulator region for the density ρ = 1
corresponds to a CDW phase with a distribution of particles
in the unit cell {2, 0}, whereas there is a Mott insulator
phase for ρ = 2. The insulator phases for integer densities
grow as the spin-interaction strength increases, dominating
the phase diagram at the limit U2/U0 → 0.5. For both integer
densities, we observed that the upper border quickly assumes
an almost constant value, displaying a horizontal line, while
the lower border evolves almost linearly, which reminds us of
the prediction of the atomic limit (see Fig. 3).

Previous studies of spinless bosons confined in an AB
chain show that quantum phase transitions take place at an
energy shift around multiples of the local repulsion U . For this
reason, we chose λ/U0 = 0.95 to do our previous analysis.
However, what happens for larger values of the energy shift?
In Fig. 8 the on-site number density profile is shown for
λ/U0 = 1.5 and a global density ρ = 2. Far from our previous
result, we obtained a pattern of three particles at site A and
one at site B when the spin-dependent interaction is U2/U0 =
0.05. Hence, for this set of parameters, the insulator regions
for integer densities correspond to CDW phases. The on-site
number density profile for U2/U0 = 0.45 oscillates around the
double occupancy, which indicates that the ground state is a
Mott insulator. The above results suggest that for finite values
of the spin-interaction strength, a quantum phase transition
takes place for a fixed density ρ = 2 and λ/U0 = 1.5.

Figure 9 shows the chemical potential values at the
thermodynamic limit as a function of the spin-dependent
interaction. In this phase diagram, superfluid, Mott insulator,
and CDW insulator phases appear, where again superfluid
phases surround and separate the insulators phases. In the cur-
rent case, we consider λ/U0 = 1.5 and observe that the CDW
insulator phases for semi-integer densities preserve the main
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FIG. 9. Phase diagram for spinor bosons in a superlattice type AB
at the thermodynamic limit. Here the energy shift was set at λ/U0 =
1.5. The white regions correspond to superfluid phases and the blue
regions indicate CDW phases for semi-integer densities. The Mott
insulator phase is represented in yellow, whereas the CDW phase
for integer densities is in pink. The dashed lines correspond to the
density profiles shown in Fig. 8. The points represent the boundaries
of the insulator phases calculated with the DMRG method.

characteristics discussed in Fig. 7 for an energy shift
λ/U0 = 0.95. A new fact shown in the current phase diagram
is that without a spin-dependent interaction, there is a finite
charge gap for integer densities, which indicates that there will
be no quantum transitions near U2/U0 = 0, and both insulator
regions are CDW phases, in accordance with the spinless
case. Note that for density ρ = 1, the overall evolution of
the boundaries is similar to those discussed in Fig. 7, except
for the fact that this phase exists without a spin-dependent
interaction, and this particular charge distribution in the unit
cell {2, 0} is determined by the antiferromagnetic interaction
that dominates the phase diagram. However, for a global
density ρ = 2, Fig. 8 suggests a quantum transition for a
finite value of U2/U0, and we observe two regions for this
density. The first region corresponds to a CDW insulator,
and a quantum phase transition from a CDW insulator to a
superfluid takes place. A second quantum phase transition
from a superfluid to a Mott insulator occurs, and the latter
phase survives up to the limit U2/U0 → 0.5. These two
quantum phase transitions are very close: We estimate that
they are in the range U2/U0 = (0.150, 0.155).

For larger values of the energy shift (for instance, λ/U0 =
2.0), we expect a phase diagram with insulator phases for
integer densities and only one CDW insulator phase for semi-
integer ones, i.e., there is no CDW insulator with density
ρ = 3/2 for any value of the spin-interaction strength, which
is accordance with Fig. 4(b). It is also predicted that the
area of the CDW insulator with density ρ = 2 will increase
and that the critical points will move to larger values of the
spin-dependent interaction.

Without spin-dependent interaction, the well-known phase
diagram in the plane chemical potential versus the en-
ergy shift shows Mott-superfluid-CDW transitions as the en-
ergy shift increases for integer densities, which take place
around λ/U0 = 1. Also, CDW-superfluid-CDW transitions

FIG. 10. Phase diagram in the plane of chemical potential versus
the energy shift for spinor bosons with the spin-dependent interaction
U2/U0 = 0.2. The chemical potential values are calculated at the
thermodynamic limit. The white regions correspond to superfluid
phases and the blue regions indicate CDW phases for semi-integer
densities. The Mott insulator phase is represented in yellow, whereas
the CDW phase for integer densities is in pink. The points represent
the boundaries of the insulator phases calculated with the DMRG
method.

occur for the density ρ = 3/2 around λ/U0 = 2. The unit cell
configuration for the first CDW is {2, 1} and for the second
one it is {3, 0}. Finally, a growing and ever present CDW insu-
lator phase for ρ = 1/2 was reported [35–37,39,40]. Turning
on the spin-dependent interaction (U2/U0 = 0.2), we obtain a
phase diagram of the chemical potential as a function of the
energy shift with the same phases as the phase diagram with
U2/U0 = 0 (see Fig. 10). We observe that the overall behavior
of the CDW insulator phases for semi-integer densities is the
same as that reported previously, a quantum phase transition
from the CDW insulator to the superfluid taking place around
λ/U0 = 2 for a density ρ = 3/2, in accordance with Figs. 2
and 4. The great changes occur for the integer densities; here
the Mott-superfluid-CDW transitions do not occur around
λ/U0 = 1. For ρ = 1, the Mott insulator region decreases,
and the transitions take place around λ/U0 ∼ 0.48, whereas
the spin-dependent interaction favors the Mott insulator phase
for ρ = 2, moving the critical region to λ/U0 ∼ 1.61. As
expected, the above critical points are displaced with respect
to the atomic limit forecast, due to the quantum fluctuations.

IV. CONCLUSION

We investigated the role of the spin degree of freedom on
the ground state of spinor bosons confined in a superlattice
potential with a unit cell {A, B} that has an energy shift λ

between its sites. Taking into account the local repulsion U0

and the effective spin interaction term U2 for spin-1 bosons,
we obtained that the spatial structure of the lattice generates a
charge redistribution that leads to charge-density wave phases.

Studying the Hamiltonian model at the atomic limit (with-
out a kinetic term) and calculating the chemical potential with
the density-matrix renormalization-group method, we built
phase diagrams in the plane chemical potential as a function of
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the energy shift or the spin-dependent interaction for several
sets of parameters. Fixing the energy shift, we found that the
CDW phases for semi-integer densities decrease and tend to
disappear as U2/U0 → 0.5. Also, the spin-dependent interac-
tion favors insulator phases for integer densities, which can
arise from a finite or zero value of the spin-dependent strength
depending on the particular value of the energy shift. For a
global density ρ = 2 and λ > U0 CDW, insulator-superfluid-
Mott insulator quantum phase transitions can be driven for
finite values of the spin-dependent interaction.

The phase diagram as a function of the energy shift shows
that the CDW insulators with semi-integer densities preserve
their main characteristics, as in the spinless case (U2 = 0).
However, the Mott insulator-superfluid-CDW insulator quan-
tum phase transitions do not occur around λ ∼ U0; in partic-
ular, the critical point will be at λ < U0 for a global density
ρ = 1 and at λ > U0 for ρ = 2. A more precise determination
of the critical points was not possible due to the large local
Hilbert space (considering up to three bosons per site, the local
dimension is 20) and our limited computational resources, but
we believe that the overall physics reported in this paper will
not change.

A possible experimental implementation of the model stud-
ied here may consider 23Na atoms, for which U2 	 0.04U0

and the superfluid to Mott insulator transitions have been
observed in cold-atom setups [42]. Also note that diverse lat-
tice configurations and inhomogeneities have been achieved
using optical lattices [25–29], which allows predicting that
the model considered could be implemented and the predicted
transitions would be observed. One perspective of this con-
tribution is to consider the ferromagnetic case, which corre-
sponds to confining Rb atoms in an inhomogeneous optical
lattice, and an attempt to connect our results with a very recent
experimental measures of a superlattice with a three-site unit
cell [47] is left for future work.
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