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Finite-temperature dynamics of a Tonks-Girardeau gas in a frequency-modulated harmonic trap
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We study the out-of-equilibrium dynamics of a finite-temperature harmonically trapped Tonks-Girardeau gas
induced by periodic modulation of the trap frequency. We give explicit exact solutions for the real-space density
and momentum distributions of this interacting many-body system and characterize the stability diagram of the
dynamics by mapping the many-body solution to the solution and stability diagram of Mathieu’s differential
equation. The mapping allows one to deduce the exact structure of parametric resonances in the parameter space
characterized by the driving amplitude and frequency of the modulation. Furthermore, we analyze the same
problem within the finite-temperature hydrodynamic approach and show that the respective solutions to the
hydrodynamic equations can be mapped to the same Mathieu equation. Accordingly, the stability diagram and
the structure of resonances following from the hydrodynamic approach are exactly the same as those obtained
from the exact many-body solution.
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I. INTRODUCTION

Characterizing and understanding the behavior of quantum
many-body systems driven out of equilibrium is one of the
grand challenges of modern physics. The problem is par-
ticularly challenging when treating the dynamics of realistic
finite-temperature systems, rather than systems evolving from
the zero-temperature ground state. Here we solve this problem
for a paradigmatic model in many-body physics—a Tonks-
Girardeau (TG) gas [1] of bosons interacting in one dimension
(1D) via hard-core repulsion. The specific dynamical protocol
that we consider is periodic modulation of the frequency of
the harmonic trapping potential, which continuously drives
the system out of equilibrium. Periodically driven systems
are rather common in nature and form an important class
of problems in quantum dynamics. In the present context, a
periodically driven TG gas can be realized in ultracold atom
experiments [2–6], and therefore our results are of direct rele-
vance to the ongoing experimental progress in ultracold atom
physics, aimed at developing a fundamental understanding of
out-of-equilibrium phenomena in many-body physics [7–11].

Previously, a harmonically trapped single particle has been
widely studied and the effect of modulating either the position
of the trap center or the strength of the trapping potential
has been thoroughly investigated [12–19]. More recently, in
the context of many-body out-of-equilibrium dynamics, the
periodic modulation of the trapping frequency of a one-
dimensional system of interacting bosons at zero temperature
was considered by Quinn and Haque [20] (see also [21,22]
for a related work). In particular, they focused primarily on
the energy absorption of the system and the structure of
energy resonances for interaction strengths varying from no
interactions through to the strongly interacting TG regime.

In this paper, we extend the analysis of Quinn and Haque in
the TG regime to characterize the nonequilibrium dynamics of
the gas at finite temperatures and show how the solution to this

many-body problem can be mapped to the solution of Math-
ieu’s differential equation [23,24]. The approach we use has
been developed recently in [25] and provides an exact finite-
temperature theory that can in general model the dynamics of
a TG gas in arbitrary trapping potentials. So far this treatment
has been applied to a harmonically trapped TG gas driven out
of equilibrium via a quench of the trap frequency from an
initial value to a fixed final value [26]. Such a quench protocol
invokes familiar breathing-mode oscillations of the density
profile; however, an unexpected many-body effect—dubbed
many-body bounce—was also found in the dynamics of the
momentum distribution. The many-body bounce manifests
itself as an additional narrowing of the momentum distribution
during the breathing mode oscillation cycle and is similar to
the phenomenon of frequency doubling first observed in a
weakly interacting 1D Bose gas [27,28].

The mapping to Mathieu’s equation is facilitated through
a scaling solution that exists for the nonequilibrium dynamics
of the TG gas in a time-varying harmonic trap [20,25,26,29].
Such a scaling solution allows the evolution of the density
and momentum distributions of the gas to be determined
through a single scaling parameter, which itself satisfies
an ordinary second-order nonlinear differential equation, the
Ermakov-Pinney equation [30,31]. For a specific case of sinu-
soidal modulation of the trap frequency, the solutions to the
Ermakov-Pinney equation can be found through the mapping
to Mathieu’s equation. Mathieu’s equation itself possesses
stable and unstable solutions, with a nontrivial structure of
parametric resonances, which ultimately determine the dy-
namics and the stability diagram of the many-body TG gas
that we analyze here in detail.

In addition to the exact many-body analysis, we study the
dynamics of the TG gas using a finite-temperature hydrody-
namic approach developed in [28]. Solutions to the hydro-
dynamic equations are facilitated through the same scaling
parameter (satisfying the same Ermakov-Pinney equation) as
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that in the exact many-body theory [30,31]. Accordingly, the
mapping to Mathieu’s equation, the stability diagram, and the
structure of parametric resonances that follow from the hy-
drodynamic approach are also the same. Thus, the frequency
modulation of a harmonically trapped Tonks-Girardeau gas
represents yet another dynamical scenario, in addition to a
simple quench protocol studied in [26], which can be ade-
quately described by such a theory.

II. MODEL AND SCALING SOLUTIONS

A. Exact many-body solution in a time-dependent
trapping potential

The model system we consider is the Tonks-Girardeau
gas [1,32] corresponding to a 1D system of N impenetrable
(hard-core) bosons of mass m confined by a one-body time-
dependent trapping potential V (x, t ). The same model can be
viewed as the limiting case of the Lieb-Liniger gas [32] with
a two-body contact interaction potential, gδ(x − x′), in which
the 1D coupling strength g → ∞. [To keep the discussion
general, we do not specify the form of V (x, t ) until the
specifics of harmonic trapping come into play.]

Due to the Fermi-Bose gas mapping applicable to the
Tonks-Girardeau model [1,33–35], to every N-particle wave
function of the bosonic problem, �B

N,k (x1, . . . , xN ; t ) (where
the index k enumerates the different states that may occur in
the given N-particle sector), there corresponds an antisymmet-
ric wave function �F

N,k (x1, . . . , xN ; t ) for a similarly trapped
system of noninteracting spinless fermions, and vice versa:

�B
N,k (x1, . . . , xN ; t )=A(x1, . . . , xN )�F

N,k (x1, . . . , xN ; t ), (1)

where the unit antisymmetric function A(x1, . . . , xN )=∏
1� j<i�N sgn(xi − x j ) ensures the symmetrization of the

bosonic wave function. Accordingly, observables that do not
depend on the sign of the many-body wave functions are
readily given by their fermionic counterparts [34], whereas
those that depend on the sign behave differently.

The free-fermion N-particle wave function itself is
constructed as a Slater determinant �F

N,k (x1, . . . , xN ; t )=
detN

i, j=1[φki (x j, t )]/
√

N! of single-particle wave functions
φki (x, t ) evolving according to the time-dependent
Schrödinger equation:

ih̄
∂φki (x, t )

∂t
= − h̄2

2m

∂2φki (x, t )

∂x2
+ V (x, t )φki (x, t ), (2)

with the initial wave functions φki (x, 0) being the eigen-
states of the trapping potential V (x, 0), with eigenenergies
Eki such that the total energy Ek =∑N

i=1 Eki . Thus, the index
k ={k1, . . . , kN } in �

B/F
N,k labels the different sets of single-

particle quantum numbers ki that may occur in the initial
N-particle state. The initial N-particle state is described by
�F

N,k (x1, . . . , xN ; 0), which itself evolves according to the N-
particle Schrödinger equation:

ih̄
∂�F

N,k

∂t
= Ĥ �F

N,k, (3)

where

Ĥ =
N∑

i=1

[
− h̄2

2m

∂2

∂x2
i

+ V (xi, t )

]
. (4)

We next assume preparation of the system such that its
initial state at time t =0, in the trapping potential V (x, 0),
is described by a grand-canonical ensemble at temperature
T0 and chemical potential μ0. This defines the statistical
weights PN,k = 1

Z e(μ0N−Ek )/kBT0 � 0 attached to the occurrence
of states �B

N,k (x1, . . . , xN ; 0) in the ensemble, where Z =∑
N,k e(μ0N−Ek )/kBT0 is the grand-canonical partition function.

With the initial state preparation specified, the Fermi-Bose
mapping allows one to reduce the problem of treating finite-
temperature dynamics of a trapped TG gas to a single-particle
basis. In particular, combining such mapping with the Fred-
holm determinant approach of [25] leads to a computationally
efficient way of calculating exactly the reduced one-body
density matrix of the system, ρ(x, y; t ), and hence important
physical observables of the gas, such as its real-space density

ρ(x, t )=ρ(x, x; t ) (5)

and the momentum distribution

n(k, t )=
∫∫

dx dy e−ik(x−y)ρ(x, y; t ). (6)

More specifically, the reduced one-body density matrix can
be computed as a simple double sum [25]:

ρ(x, y; t ) =
∞∑

i, j=0

√
fiφi(x, t )Qi j (x, y; t )

√
f jφ

∗
j (y, t ), (7)

where Qi j are the matrix elements of the operator Q(x, y; t ) =
(P−1)Tdet P, with

Pi j (x, y; t )=δi j − 2sgn(y − x)
√

fi f j

∫ y

x
dx′φi(x

′, t )φ∗
j (x′, t ),

(8)
and fi are the Fermi-Dirac occupancies fi = [e(Ei−μ)/kBT0 +
1]−1 of single-particle orbitals φi(x, 0).

B. Scaling solution in a harmonic trap

In general, the calculation of the one-body density matrix
using Eq. (7) requires the evaluation of the overlap matrix
elements Pi j (x, y; t ) between the time-evolved single-particle
wave functions φ j (x, t ), starting from the initial wave func-
tions φ j (x, 0). For the case of a harmonic trap,

V (x, t ) = mω2(t )x2/2, (9)

the initial wave functions φ j (x, 0) are given by the well-
known Hermite-Gauss orbitals for the initial trap of frequency
ω0 =ω(0), with the 1D harmonic oscillator energy eigenval-
ues given by Ej = h̄ω0( j + 1

2 ), whereas the evolved wave
functions, for arbitrary ω(t ), can be found exactly using a
scaling transformation [29,36,37]:

φ j (x, t ) = 1√
λ

φ j

( x

λ
, 0

)
exp

[
i
mx2

2h̄

λ̇

λ
− iE j (t )t

]
, (10)

where Ej (t )= h̄ω0( j + 1
2 ) 1

t

∫ t
0 dt ′/λ2(t ′), and the scaling

function λ(t ) satisfies a second-order nonlinear differential
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equation known as the Ermakov-Pinney equation [30,31]:

λ̈ + ω2(t )λ = ω2(0)

λ3
, (11)

with the initial conditions λ(0)=1 and λ̇(0)=0.
The scaling transformation (10) leads to a simple scaling

solution for the evolution of the reduced one-body density
matrix [25,26]:

ρ(x, y; t ) = 1

λ
ρ0(x/λ, y/λ)eimλ̇(x2−y2 )/2h̄λ, (12)

where ρ0(x, y)=ρ(x, y; 0) is the one-body density matrix for
the initial thermal equilibrium state. Such a scaling solution
simplifies the analysis enormously as the one-body density
matrix needs to be calculated only once, at time t =0, while
the specifics of the dynamics is reduced to the solution of the
Ermakov-Pinney equation for a single scaling parameter λ(t ).

As has been shown by Pinney [31], the general solution
to the Ermakov-Pinney equation (11) can be constructed by
combining two independent solutions (λ1(t ), λ2(t )) of the
respective homogeneous equation:

λ̈ + ω2(t )λ = 0, (13)

which describes a simple harmonic oscillator with time-
dependent frequency. More specifically, the general solution
is constructed as

λ(t ) =
√
Aλ2

1(t ) + Bλ2
2(t ) + 2Cλ1(t )λ2(t ) (14)

where the constants A, B, and C satisfy the constraint equa-
tion AB − C2 = ω2(0)/W 2, and where W = λ1λ̇2 − λ2λ̇1 is
the Wronskian (which is a constant, in accordance with Abel’s
identity) of the two independent solutions. This constraint
equation, together with the initial conditions on the scaling
function, λ(0)=1 and λ̇(0)=0, uniquely fix the coefficients
A, B, and C. Note that the function λ must be real and positive
in order to keep the probability densities |φ j (x, t )|2 positive,
and as such the positive branch of the square root is assumed
in (14).

In Sec. III below we will consider a specific dynamical
protocol in which the TG gas evolves under sinusoidal modu-
lation of the harmonic trap frequency ω(t ). In this case, the
homogeneous differential equation (13) can be mapped to
Mathieu’s equation. Solutions to Mathieu’s equation and their
stability properties are known and will be presented in Sec. IV,
hence allowing us to construct the solutions to the Ermakov-
Pinney equation and ultimately analyze the dynamics of the
density and momentum distributions of the TG gas. Before
doing so, however, we momentarily pause to point out that
the evolution of a harmonically trapped TG gas under the
same dynamical protocol can be also analyzed using the finite-
temperature hydrodynamic approach developed in [26,28].

C. Hydrodynamic treatment

In the hydrodynamic approach, the TG gas evolves ac-
cording to the following equations for the local 1D density,

ρ(x, t ), the hydrodynamic velocity, v(x, t ), and the entropy
per particle, s(x, t ) [26,28]:

∂tρ + ∂x(ρv) = 0, (15)

∂tv + v∂xv = − 1

m
∂xV (x, t ) − 1

mρ
∂xP(x, t ), (16)

∂t s + v∂xs = 0, (17)

where V (x, t ) is the trapping potential [given by Eq. (9) in
the present case], and P(x, t ) is the local pressure that follows
from the thermodynamic equation of the state.

As the equation of state for the TG gas is the same as that
for an ideal Fermi gas, the solutions to Eqs. (15)–(17) are also
the same as those for the ideal Fermi gas; they are given by
the following scaling transformations [26,28]:

ρ(x, t ) = ρ0(x/λ(t ))/λ(t ), (18)

v(x, t ) = xλ̇(t )/λ(t ), (19)

T (t ) = T0/λ
2(t ). (20)

Here, ρ(x, t = 0) = ρ0(x) is the initial density profile and
T0 is the initial temperature of the gas [38], whereas λ(t )
is a scaling parameter which satisfies the same Ermakov-
Pinney equation (11) as in the exact many-body treatment
[26,28]. Therefore, under sinusoidal modulation of ω(t ) as
in Eq. (21) below, one can use the mapping to Mathieu’s
equation and the same solutions for the scaling parameter
λ(t ) that follow from them. Accordingly, the stability prop-
erties of these solutions (see Sec. IV B) have the same impli-
cations on the hydrodynamics of the TG gas as in the exact
many-body treatment, implying that the ensuing stability di-
agram and the structure of parametric resonances of the TG
in a frequency-modulated harmonic trap can be reproduced
exactly from the hydrodynamic approach.

Specific examples of calculations of the dynamics of the
TG gas that follow from the hydrodynamic approach will
be presented in Sec. VI. These calculations are carried out
as in [26,28] and include the dynamics of the momentum
distribution of the gas. The latter does not trivially follow from
the above solutions for the real-space density distribution.
Despite this, the momentum distribution of the gas can be
constructed from the solutions for the density distribution,
owing to the local density approximation that is intrinsic to
the hydrodynamic approach. For ease of reference we outline
this construction in Appendix A.

III. MAPPING TO MATHIEU’S EQUATION FOR
SINUSOIDAL MODULATION

From here on we focus on the dynamics of the harmoni-
cally trapped TG gas in response to a sinusoidal modulation
of the trap frequency:

ω2(t ) = ω2
0[1 − α sin(
t )]. (21)

Here, ω0 is the trap frequency in the preparation stage of
the initial (t � 0) thermal equilibrium state, whereas 
 and
α (0 � α � 1), which define the parameter space of the
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problem, characterize the frequency and amplitude of subse-
quent modulation of ω(t ) after time t > 0.

Using ω2(t ) given by Eq. (21), along with the change of
variable 
t = π/2 − 2τ , one can show that the homogeneous
differential equation (13) takes the canonical form of Math-
ieu’s equation [23] for the function z(τ ) = λ[(π/2 − 2τ )/
]:

z̈(τ ) + [a − 2q cos(2τ )] z(τ ) = 0, (22)

which is parametrized in terms of

a =
(

2ω0




)2

and q = 2ω2
0α


2
. (23)

The two independent solutions of Mathieu’s equation are
given by the even and odd Mathieu functions denoted, re-
spectively, by C(a, q, τ ) and S(a, q, τ ), and therefore the two
independent solutions to the homogeneous Ermakov-Pinney
equation can be written as

λ1(t ) = C

(
4ω2

0


2
,

2αω2
0


2
,
π

4
− 
t

2

)
, (24)

λ2(t ) = S

(
4ω2

0


2
,

2αω2
0


2
,
π

4
− 
t

2

)
. (25)

By combining these two solutions and solving the con-
straint equations for the coefficients A, B, and C in Eq. (14),
the general solution to the Ermakov-Pinney equation can be
written as

λ(t ) = 1

|W | {ω
2(0)[λ2(0)λ1(t ) − λ1(0)λ2(t )]2

+ [λ̇2(0)λ1(t ) − λ̇1(0)λ2(t )]2}1/2. (26)

This function indeed satisfies the initial conditions λ(0)=1
and λ̇(0)=0, and we note that since the Wronskian of two
independent solutions of a differential equation cannot be
equal to zero the function λ(t ) is well defined.

We mention here that physically a slightly different modu-
lation scenario to Eq. (21) is to use cosine modulation of the
form

ω2(t ) = ω2
0[1 + α cos(
t )]. (27)

In this case, the modulation of frequency begins slowly and
without discontinuity in the derivative (i.e., with a zero slope
in the time derivative, whereas in the former case of sine
modulation the modulation begins abruptly). Nevertheless, the
case of cosine modulation can still be solved using the solu-
tions we present in this paper for sine modulation; however,
one must be careful in making the appropriate variable trans-
formations. Specifically, the solutions for cosine modulation
can be obtained from the solutions (24) and (25) by a simple
time translation t → t − π/2
 and setting q → −q, where q
is defined in Eq. (23).

IV. SOLUTIONS TO MATHIEU’S EQUATION

In what follows, we discuss the explicit form of the
Mathieu functions, the method of calculating them, and their
stability properties in the (a, q) parameter space, which ulti-
mately determine the physical properties of the periodically

modulated TG gas. We consider the frequency modulation
given by Eq. (21) and restrict ourselves to the case of q > 0, or
equivalently α > 0 [from Eq. (23)], with the recognition that
the transformation τ → τ + π/2 simply changes the sign of
q in Eq. (22). Therefore the case q < 0 (α < 0) can be treated
by simply translating the time t → t + π/
 in the solutions
for q > 0 [i.e., take t → t + π/
 with q > 0 in Eqs. (24) and
(25) and propagate these solutions through Eq. (26) to obtain
λ(t ) for the equivalent q < 0 case].

A. Construction of the two independent solutions
to Mathieu’s equation

The differential equation (22) represents the motion of a
classical particle in a π -periodic potential, and therefore from
Floquet’s theorem we have that a first fundamental solution
can be written in the form

z1(τ ) = eiντ f (τ ), (28)

where ν is the Floquet exponent (also referred to as the Math-
ieu characteristic exponent), which depends on the parameters
a and q, and f (τ ) is a periodic function with period π , i.e.,
f (τ + π ) = f (τ ). By virtue of its π periodicity, the function
f can be represented using the Fourier expansion:

f (τ ) =
∞∑

n=−∞
cne2inτ , (29)

where cn are the expansion coefficients.
Inserting this form of f (τ ) into Mathieu’s equation (22)

one obtains a system of linear equations for the coefficients
cn, which can be written in matrix form. The condition of
having a nontrivial solution to this set of equations results in a
matrix determinant equation involving the Floquet exponent ν

(see Appendix B for details). For given values of a and q this
equation can be solved to obtain ν. In particular, for a �= 4 j2

(where j is an integer) one finds that

ν = 2

π
arcsin

[√
�(0) sin2(

√
aπ/2)

]
, (30)

whereas for a = 4 j2 ( j ∈ Z) one finds that

ν = 1

π
arccos[2�(1) − 1]. (31)

Here, �(0) and �(1) are numerical coefficients to be obtained
from

�(ν) ≡ det

(
δnm + (δn+1,m + δn−1,m) q

(2n + ν)2 − a

)
, (32)

at ν = 0 and 1, respectively. In the above equation, the integer
indices n and m in the infinite determinant run from −∞ to
∞, but in practice they must be truncated at a high absolute
value that is sufficient for numerical convergence.

From the properties of the matrix determinant involving
ν, one can further show (see Appendix B) that if ν is a
solution to the determinant equation then ±ν ± 2n (with n
being an integer) is also a solution. Therefore, from Eqs. (30)
and (31) one can deduce that when the arguments of the
inverse trigonometric functions lie within the interval [−1, 1]
(depending on the values of a and q) it is sufficient to only
consider solutions for ν in the interval ν ∈ [0, 1]. The cases
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with ν = 0 and 1 correspond, respectively, to even and odd
integer values of the Floquet exponent. When, on the other
hand, the arguments of the inverse trigonometric functions in
(30) or (31) lie outside the interval [−1, 1], then the Floquet
exponent becomes complex, in which case it can either be a
pure imaginary number ν = iη or have the form ν = 1 + iη,
with η < 0.

Once the Floquet exponent ν is known from Eq. (30) or
Eq. (31), one can solve the system of equations for the Fourier
coefficients cn (see Appendix C) and finally construct the first
fundamental solution z1(τ ), Eq. (28), in explicit form. For
constructing the second fundamental solution, z2(τ ), we note
that Mathieu’s equation is unchanged by the time-reversal
transformation τ →−τ . This means that

z2(τ ) = z1(−τ ) = e−iντ f (−τ ) (33)

is also an independent solution of Mathieu’s equation (22),
provided that the Floquet exponent is either complex or real
but not an integer. Therefore, the function z2(τ ) given by
Eq. (33) can be taken as the second independent solution of
Mathieu’s equation, in these cases.

When ν is an integer (we recall that the only two integer
values of ν that we need to consider are ν = 0 and 1), the
first fundamental solution z1(τ ) becomes π or 2π periodic
(according to the parity of ν), and by Ince’s theorem [24] the
second linearly independent solution cannot have a period of
either π or 2π . This means that z2(τ ), defined by Eq. (33),
no longer constitutes an independent solution of Mathieu’s
equation (22) as it becomes simply proportional to z1(τ ).
Instead, the second independent solution in this case is given
by z2(τ ) = βτ z1(τ ) + g(τ ) [24,39], where β is a constant and
the function g(τ ) has the same periodicity as z1(τ ). An explicit
expression for z2(τ ) in terms of a series of products of Bessel
functions is given in Appendix C.

In conclusion, except for the special case when ν = 0 or
1, the two independent solutions z1(τ ) and z2(τ ) can always
be combined to form the even and odd solutions of Mathieu’s
equation,

C(a, q, τ ) = z1(τ ) + z2(τ )

2z1(0)
, (34)

S(a, q, τ ) = z1(τ ) − z2(τ )

2ż1(0)
, (35)

such that C(a, q, 0) = 1 and Ċ(a, q, 0) = 0, whereas
S(a, q, 0) = 0 and Ṡ(a, q, 0) = 1. Note that the normalization
used here is quite arbitrary and has no consequences in the
construction of the scaling function λ(t ) as the normalization
constants are absorbed by the coefficients A, B, and C in
Eq. (14).

B. Stability of solutions to Mathieu’s equation

The long-time asymptotic behavior of the scaling function
λ(t ), and hence the behavior of physical observables such as
the density and momentum distributions of the trapped TG
gas, are in direct bijection with the stability properties of the
solutions to Mathieu’s equation. As such, to characterize the
long-time dynamical behavior of the harmonically trapped
TG gas, one needs only to examine the stability properties
of these solutions. The solutions are said to be stable if they

(a)

(b)

FIG. 1. Real (a) and imaginary (b) parts of the Floquet exponent
ν in the (a, q) plane. The dashed lines separate the regions in which
the solutions to Mathieu’s equation are stable [color-mapped regions
in (a), or equivalently black regions in (b)] and unstable [black and
white regions in (a), or the color-mapped regions in (b)]; see text for
details.

remain bounded when τ → ∞, and they are unstable if they
tend to ±∞ when τ → ∞. From Eqs. (28) and (33), we can
see that stable solutions correspond to ν being real, whereas
unstable ones correspond to ν being complex. In addition to
their stability, the solutions can be classified according to their
periodicity: when ν = p/r is a rational fraction less than unity,
with p and r being mutually prime integers, the solutions
have a period of 2πr, and when ν is an irrational number the
solutions have no specific periodicity.

In Figs. 1(a) and 1(b) we show the density plots of, respec-
tively, the real and imaginary parts of the Floquet exponent
ν in the (a, q) plane, calculated using Eqs. (30) and (31). On
these plots, the dashed (magenta) lines show the boundaries
between the stable and unstable regions. The Floquet (or the
Mathieu characteristic) exponent on these boundaries is an
integer (modulo the periodicity), ν(a, q) = n mod 2 (i.e., ν =
0 or 1), with n ∈ Z indexing the band. For a given q, the values
of the parameter a, for which the Floquet exponent ν(a, q)
lies on the stability boundaries, are called the characteristic
values of Mathieu’s equation and are denoted as an(q) for
even (cosine elliptic) solutions and bn(q) for odd (sine elliptic)
solutions. As can be seen from the Floquet solution (28) and
the Fourier expansion (29), on the even band the fundamental
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solution z1(τ ) is π periodic, whereas on the odd band the
fundamental solution has period 2π . We recall that, for ν = 0
or 1, only the fundamental solution z1(τ ) has a period of π or
2π , whereas the second independent solution is not periodic
and is given by a series involving products of Bessel functions
(see Appendix C).

The parameter space between the different bands corre-
sponding to unstable solutions is shown in Fig. 1(a) by black
(where Re ν = 0) and white (where Re ν = 1) regions. On
the other hand, the parameter space corresponding to stable
solutions is shown by the color-mapped regions, located in
an(q) < a(q) < bn+1(q) (with n = 0, 1, 2, . . . and a0 < 0).
The Floquet exponent is real in these regions, with 0 < ν < 1,
and the solutions to Mathieu’s equation are given by (28) and
(33). The Fourier expansion coefficients in Eq. (29) are also
real in these regions, and lead to real-valued solutions.

Respectively, in Fig. 1(b), the black regions, where Im ν =
0, correspond to stable solutions, whereas the color-mapped
regions correspond to unstable solutions. In the unstable
regions, the Floquet exponent is either pure imaginary ν =
iη, with η > 0, which is the case in the regions b2n(q) <

a(q) < a2n(q) [where Re ν = 0 in Fig. 1(a)], or it is given
by ν = 1 + iη, with η < 0, which is the case in the regions
b2n+1(q) < a(q) < a2n+1(q) [where Re ν = 1 in Fig. 1(a)].
In these unstable regions, the Fourier expansion coeffi-
cients are generally complex, which ultimately leads to com-
plex solutions of Mathieu’s equation. In practice, however,
it is simpler to work with real valued solutions, and in
Appendix C we show how one can use the symmetry of
the Fourier expansion coefficients in order to absorb their
complex phase factor in the definition of the first and second
fundamental solutions, after which these solutions become
real valued.

Discarding the actual values of the Floquet exponent in the
(a, q) parameter space and concentrating merely on whether ν

is real or complex leads to the familiar stability diagram (see,
e.g., [24]) of solutions to Mathieu’s equation, which is shown
in Fig. 2 in the positive quadrant of the (a, q) plane.

V. STABILITY DIAGRAM OF THE TG GAS

We now return to our physical problem of the TG gas in the
frequency-modulated harmonic trap. The frequency modula-
tion is parametrized in terms of two independent parameters,

 and α, characterizing, respectively, the frequency and am-
plitude of modulation of the trap frequency through Eq. (21).
Mathieu’s equation, on the other hand, is parametrized in
terms of a and q, and the mapping between these pairs of
parameters is given by Eq. (23). This particular form of
mapping means that Mathieu’s parameters a and q are not
independent, but are related by

a =
(

2ω0




)2

, q = α

2
a. (36)

Moreover, the physical restriction 0 � α � 1 on the ampli-
tude parameter α restricts the values of q to 0 � q � a/2,
hence the physically unattainable region of q > a/2 or a <

2q, shown in Fig. 2.
For given values of the physical parameters (
,α) (where


 is measured in units of ω0), the point (a, q) is uniquely

FIG. 2. Stability diagram of solutions to Mathieu’s equation in
the (a, q) parameter space. The gray regions correspond to stable
solutions, whereas the white regions correspond to unstable solu-
tions. The red shaded region where a < 2q corresponds to physically
unattainable parameter space, which follows from the restriction
0 � α � 1 on the modulation amplitude in Eq. (21) and from the fact
that the pair (a, q) are not independent, but are related by Eq. (36)
(see text).

specified, and gives the stability of the solution to Mathieu’s
equation through the Floquet exponent ν(a, q). However,
from an experimental point of view it is more practical to
fix, for instance, the modulation amplitude α and search for
modulation frequencies 
 (or values of a) that lead to the
desired stable or unstable dynamics. It is therefore more
convenient to work in the (a, α) parameters space, rather than
in the (a, q) space.

Using (a, α) as our parameters, we can now map the
stability diagram of Fig. 2 to the parameter space of (a, α)
by first fixing the amplitude α, or equivalently the slope 2/α

of any straight line a = (2/α)q in Fig. 2, and then following
the trace of this line through stable and unstable regions. The
intersections of this line with consecutive characteristic lines
an(q) and bn+1(q), where n = 0, 1, 2, . . . , define a set of val-
ues of q and hence a in between which the solution is stable.
In this way, we can arrive at the new stability diagram in the
(a, α) parameter space shown in Fig. 3, which is equivalent to
the physically attainable part of the diagram of Fig. 2.

Parametric resonances

The stability diagram of Fig. 3 can also be read in terms of
an experimental scenario in which one fixes the modulation
frequency 
 (or the parameter a) and then searches for the
modulation amplitude α for stable or unstable dynamics.
This corresponds to following a straight horizontal line at a
fixed value of a in Fig. 3; the values of α for which such
a line remains in the white (gray) region give the range of
modulation amplitudes for which the dynamics are unstable
(stable). Examples of such lines, corresponding to driving
frequencies 
 which are equal to fractions of 2ω0,


 j = 2ω0/ j, (37)

are shown in Fig. 3(a) for j = 1, 2, . . . , 5.
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FIG. 3. Stability diagram of the dynamics of the TG gas. Gray
regions correspond to stable dynamics, whereas the white regions
correspond to unstable dynamics. Straight horizontal lines at a =
1, 4, 9, 16, 25 correspond to a set of fractional driving frequencies

 j = 2ω0/ j (with j = 1, 2, 3, 4, 5), which lead to parametric reso-
nances for small driving amplitudes α (see text for further details).

These special values of frequencies are the same as in
the phenomenon of parametric resonance, well known in the
problem of a classical oscillator subject to (an externally
driven) time variation of the parameters [40], as well as in
the problem of a (single-particle) quantum oscillator with
time-varying frequency [36]. In these systems, as well as in
the present many-body problem of the TG gas, the oscillatory
response of the system can be resonantly amplified (and is
hence unstable) at certain driving frequencies.

The primary parametric resonance corresponds to a = 1, or
to j = 1 in 
 j = 2ω0/ j, which is the frequency of the natural
breathing mode oscillations [26] of the TG gas. It occurs for
arbitrary values of the modulation amplitude α as indicated
by the fact that the respective horizontal line in Fig. 3(a)
remains in the white (unstable) region for all 0 < α � 1. The
second resonance, corresponding to a = 4 (or j = 2), displays
a similar behavior.

In contrast, for j � 3 the lines of fixed a = j2 (or a =
9, 16, 25, . . .) start (for α > 0) in the gray (stable) regions.
This is because the lower boundaries of the unstable regions
(dashed lines in Fig. 3) corresponding to j � 3 all have
positive curvature at small α and remain above the respective
values of a = 9, 16, 25, . . . for all α. As such, the resonant
enhancement (i.e., unstable behavior) occurs at values of a
that are shifted upwards relative to a = 9, 16, 25, . . . (in terms
of frequencies, 
 is shifted downward relative to the exact
fractional values of 
 j = 2ω0/ j). We note that this upward
shift, as well as the width of unstable regions, increases with j;
in fact, for relatively small modulation amplitudes, the width
of the resonance region �a j scales as �a j ≈ j2 jα j

23( j−1)[( j−1)!]2

[41]. Moreover, for large enough j (namely, j � 8) it is
possible for the upper bound of the unstable region to cross
the next resonant line of constant a = 64, 81, . . .; in other
words, it becomes possible for the horizontal line of fixed

FIG. 4. The scaling solution λ(t ) as a function of the dimension-
less time 
t , for a = 1 (or 
 = 2ω0) and α = 0.6.

a = 64, 81, . . . to reenter the white (unstable) region of the
previous (lower j) resonance as α is increased from 0 to 1.

The structure of resonances of the parametrically driven
TG gas has been previously discussed in [20]; however, the
exact boundaries of stable and unstable regions, as obtained
here in Fig. 3 from the stability properties of Mathieu’s equa-
tion, have not been identified to the best of our knowledge.

VI. EVOLUTION OF THE DENSITY AND
MOMENTUM DISTRIBUTIONS

We first reiterate that the long-time dynamical behavior of
the trapped TG gas can be determined through the stability
diagram presented in Fig. 3. For analyzing the transient behav-
ior, however, one needs to resort to explicit time-dependent
calculations of the dynamics. Such calculations provide in-
sight on how the choice of modulation parameters, as well
as the finite temperature of the gas, can affect dynamical
features at short to intermediate times. In what follows, we
thus examine both the real-space density and momentum dis-
tributions of the gas and present two typical examples which
exemplify common behaviors in both the stable and unstable
regions of the parameter space, using both the exact many-
body approach and the hydrodynamic approach outlined in
Sec. II. We also show how finite-temperature effects alter the
behavior of the gas in these two examples.

A. Unstable dynamics

In Fig. 4 we show the evolution of the scaling function
λ(t ) for modulation parameters (a, α) = (1, 0.6). The choice
(a, α) = (1, 0.6) lies on the primary parametric resonance,
corresponding to j = 1 in Eq. (37) and hence the driving fre-
quency of 
 = 2ω0, and therefore the dynamics are unstable.
Accordingly, the sequence of the peaks in the scaling solution
λ(t ) grows exponentially (on a long-time scale), whereas the
oscillations that accompany the exponential growth are due to
the natural breathing mode behavior [26].

Figure 5 shows the resulting dynamics of a finite-
temperature TG gas containing N = 16 particles at a relatively
low initial temperature T0. The temperature is parametrized
in terms of the dimensionless parameter θ0 = kBT0/Nh̄ω0,
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FIG. 5. Dynamics of a TG gas containing N = 16 particles, for (a, α) = (1, 0.6) and an initial dimensionless temperature of θ0 =
kBT0/Nh̄ω0 = 0.01. The dimensionless density ρ(x, t )lHO and momentum distributions n(k, t )/lHO (where lHO = √

h̄/mω0 is the harmonic
oscillator length) computed using the exact quantum model are shown, respectively, in (a) and (b), whereas the same quantities computed
using the hydrodynamic approach are shown in (c) and (d). The dimensionless half width at half maximum (HWHM) of the density
distribution, wx (t )/lHO, as predicted by both theories is shown in (e); similarly, the dimensionless HWHM of the momentum distribution,
wk (t )lHO, is shown in (f). Instances of the many-body bounce are shown in (f) with arrows. The color scale for the full height of
the distributions ρ(x, t ) and n(k, t ) is cropped at some point to allow details of the width of these distributions to be seen more
clearly.

where Nh̄ω0/kB is the temperature of quantum degener-
acy. We show the evolution of the particle number den-
sity ρ(x, t ), the momentum distribution n(k, t ), and the re-
spective widths of the gas determined from both the exact
quantum theory and the hydrodynamic approach. According
to Eq. (12), the magnitude of the density ρ(x, t ) depends
inversely on λ(t ). Thus, the sequential minima of ρ(0, t ),
when the density profiles are the broadest, diminish as λ(t )
grows, whereas the respective peak widths (when the density
profile is the narrowest) grow in proportion to λ(t ). The
behavior of the momentum distribution n(k, t ) is reciprocal
to that of the real-space density. However, the sequence of
narrow and broad distributions is interrupted by an additional
narrowing of the momentum distribution at time instances

when the density distribution is also narrow. This is a man-
ifestation of the phenomenon of quantum many-body bounce,
studied for the breathing mode oscillations of the Tonk-
Girardeau gas in [26], which in turn is similar to the phe-
nomenon of frequency doubling in the weakly interacting 1D
quasicondensate [27,28].

We note that, for the lower-temperature dynamics which
we present in Fig. 5, the hydrodynamic theory predicts very
well the features obtained from the exact theory.

In Fig. 6, we present the dynamics resulting from the same
modulation parameters as in Fig. 5, but for a gas at a higher
initial temperature of θ0 = 0.5. As can be seen from the width
of the momentum distribution, the higher-temperature exam-
ple displays thermal broadening. The thermal broadening,

(a) (c) (e)

(b) (d) (f )

Quantum
Hydrodynamic

Quantum
Hydrodynamic

H
O

H
O

H
O

HO

HO HO

HO

H
O

H
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H
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FIG. 6. Same as in Fig. 5, but for a higher temperature, θ0 = kBT0/Nh̄ω0 = 0.5.
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FIG. 7. The scaling solution λ(t ) as a function of the dimension-
less time 
t , for a = 16 (or 
 = ω0/2) and α = 0.8.

however, is apparent only for a short amount of time, and
eventually it is overwhelmed by the large-scale dynamical
broadening resulting from the unstable nature of the scaling
parameter λ(t ). Accordingly, most of the dynamical features
remain largely unaltered by the temperature of the gas at
longer times. However, the thermal broadening does signif-
icantly affect the many-body bounce [26], which is far less
pronounced compared to the low-temperature case.

Within the hydrodynamic theory, which is derived here
for temperatures lower than the temperature of quantum de-
generacy (so that the density profile is well approximated
by an inverted semicircle), the real-space density does not
depend on temperature. As such, the density profile cannot
capture any alterations from thermal effects. On the other
hand, the momentum distribution in the hydrodynamic theory
is explicitly dependent on temperature through the width of
the Lorentzian distribution (see Appendix A). In our higher-
temperature example, this is evident in the overall broadening
of the momentum distribution, which is in agreement with
the exact theory. The hydrodynamic theory also accurately
captures the blurring effect of the increased temperature on the
momentum width at the inner turning points where the many-
body bounce occurs, even though the quantitative agreement
with the exact theory is poorer in the immediate vicinity of
these inner turning points [26].

B. Stable dynamics

In Fig. 7 we show the evolution of the scaling function λ(t ),
for modulation parameters a = 16 (or 
 = ω0/2) and α =
0.8. This parameter choice corresponds to stable or bounded
dynamics, which generally can be periodic or aperiodic.
More specifically, the Floquet exponent in this example is
ν ≈ 0.1991, for which the solution is aperiodic. However,
this value of ν is close to ν = 1/5, which results in strictly
periodic dynamics (with a period of 10π , following from the
periodicity conditions given in Sec. IV B); accordingly, the
example under consideration is nearly periodic and hence we
only show the behavior of λ(t ) within 
t ∈ [0, 10π ].

The high-frequency oscillations in λ(t ) within this period
are a result of beating arising from the contribution of only a
few most significant Fourier coefficients in the expansion of
Eq. (29). As ρ(x, t ) = ρ(x, 0)/λ(t ), the same high-frequency

oscillations show up in the dynamics of the density profile
and its width shown in Fig. 8. In contrast, the dynamics of the
momentum distribution and its width show oscillations that
occur at approximately twice the frequency of oscillations of
the density profile due to the phenomenon of quantum many-
body bounce. The thermal broadening effect in the higher-
temperature example in Fig. 8 is qualitatively the same as in
the example of unstable dynamics (Sec. VI A) and is more
clearly seen in the width of the momentum distribution of
the gas. Similarly, the comparison between the hydrodynamic
and exact theories is qualitatively the same as before, and we
restrict ourselves to showing the hydrodynamic results only
for the widths of the density and momentum distributions
[dashed lines in Figs. 8(b), 8(d), 8(f), and 8(h)].

VII. SUMMARY

In conclusion, we have characterized the out-of-
equilibrium dynamics of a finite-temperature harmonically
trapped TG gas in response to periodic modulation of the
trap frequency. The analysis was performed using exact
quantum many-body theory as well as a finite-temperature
hydrodynamic approach. Due to the scaling transformations,
which exist for the single-particle orbitals of the system as
well as in the hydrodynamic theory, this otherwise complex
many-body problem can be reduced to the solution of a single
differential equation, Eq. (11). For periodic modulations of
the form given by Eq. (21), we have shown that the solution
to Eq. (11) can be mapped to the solutions of Mathieu’s
differential equation.

We have provided a detailed analysis of how to construct
the solutions to Mathieu’s equation and identified the physical
and unphysical parameter spaces of these solutions when they
are mapped to describe the TG many-body problem. Using
the stability properties of Mathieu’s equation in terms of
Floquet theory, we have constructed the stability diagram of
the TG system as a function of the modulation frequency and
amplitude. The stability diagrams following from the exact
quantum theory and the hydrodynamic approach are identical.
We have also identified the structure of parametric resonances
within this stability diagram.

In order to explore the transient dynamics of the TG sys-
tem, we have provided examples of the modulation-induced
dynamics in both the unstable and stable regions of the pa-
rameter space. We find that the collective many-body bounce
effect reported in [26] persists in both of these dynamical
regimes. Furthermore, in each regime we include examples
at both low and high temperature so that we can comment on
thermal effects within this system. We note that higher tem-
peratures cause significant thermal broadening to the width
of the momentum distribution and also cause blurring of
the collective many-body bounce. In the unstable regime,
however, the overall thermal broadening of the momentum
distribution is eventually suppressed and drowned out by the
exponentially increasing nature of the dynamics.

Our results open the path to analyzing periodic modulation
protocols in the context of nonequilibrium thermodynamics of
interacting quantum many-body systems. As an example, they
provide the tools for calculating quantum work distributions
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FIG. 8. Same as in Figs. 5 and 6, except for modulation parameters from the stable region, (a, α) = (16, 0.8). The top and bottom rows
correspond, respectively, to an initial dimensionless temperature of θ0 = 0.01 and 0.5, and we no longer show the density and momentum
distributions from the hydrodynamic theory.

and designing periodic cycles suitable for quantum many-
body heat engines.

In view of applicability of our results to realistic physical
systems, we note that the TG model corresponds to the limit of
a trapped 1D Bose gas, or the Lieb-Liniger model [32], with
a two-body contact interaction potential, gδ(x − x′), in which
the 1D coupling strength g → ∞. The relevant dimensionless
interaction parameter in the Lieb-Liniger model is γ (x) =
mg/h̄2ρ(x), where ρ(x) is the local 1D density [42]. In the TG
limit, this local dimensionless interaction parameter must tend
to infinity at all x. Physically realizable strongly interacting
1D Bose gases are characterized, however, by a very large
(γ (x) � 1) but finite interaction strength [2–6]. Accordingly,
the results following from the strictly TG model serve only
as a good approximation for such strongly interacting gases.
Moreover, in the unstable regime of modulation, where the
peaks of the density ρ(x, t ) grow exponentially with time, the
dimensionless local interaction strength γ (x, t ) can become of
the order of, or much smaller than, unity. In this regime, the
TG model will become inapplicable altogether at sufficiently
long times.
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APPENDIX A: FINITE-TEMPERATURE
HYDRODYNAMICS

For specific dynamical calculations using the scaling solu-
tions to the hydrodynamic equations, the initial density profile
in Eq. (18) can be approximated by the Thomas-Fermi (TF)
semicircle [26],

ρ0(x) = ρ0(0)

√
1 − x2

R2
TF

, (A1)

which is valid when the thermal energy scale is much less than
the kinetic-energy scale, i.e., when kBT0 � h̄2ρ0(0)2/m. Here,
RTF = 2N/πρ0(0) = √

2NlHO is the TF size of the cloud, with
harmonic oscillator length lHO = √

h̄/mω0. Hence, Eq. (A1)

together with Eq. (18) provides the low-temperature solution
for the density profile of the TG gas within the hydrodynamic
theory.

The momentum distribution of the TG gas is somewhat
more involved to obtain. One first employs the local-density
approximation and defines n̄(k; ρ, T ) to be the equilibrium
momentum distribution of a uniform TG gas of density ρ

at temperature T , normalized to ρ [i.e.,
∫

dk n̄(k; ρ, T ) = ρ].
In this approach, the momentum distribution of each uniform
slice of gas can be added together to obtain the full momentum
distribution for the trapped TG gas:

n(k, t ) =
∫

dx n̄[k − mv(x, t )/h̄; ρ(x, t ), T (t )]. (A2)

Next, one models the momentum distribution of a uniform TG
gas using a Lorentzian n̄(k; ρ, T ) = (2ρlφ/π )/[1 + (2lφk)2]
[26,28], where lφ (x, t ) = h̄2ρ(x, t )/mkBT (t ) is the phase co-
herence length of the gas. Although this model is only valid
for small momenta and low temperatures (|k| � 1/lφ � ρ),
it captures well the bulk of n̄ and provides the dominant
contribution to the bulk of n(k, t ). Using this Lorentzian
approximation for n̄(k; ρ, T ), the full momentum distribution
of the TG gas is given by [28]

n(k, t ) = 1

π

∫
dx

2lφ (x, t )ρ(x, t )

1 + 4[lφ (x, t )]2[k − mv(x, t )/h̄]2
. (A3)

Defining the initial phase coherence length in the trap
center to be l (0)

φ = h̄2ρ0(0)/mkBT (0) and applying the trans-
formation u = x/λRTF allows the momentum distribution to
be written in dimensionless form as [28]

n(k, t )

Nl (0)
φ

= 4λ̃

π2

∫ 1

−1
du

(1 − u2)

1 + 4λ̃2(1 − u2)
(
k̃ − 2π

T̃0



ω0

˙̃λu
)2 ,

(A4)

where k̃ = kl (0)
φ and T̃0 = T0/Td , with Td = h̄2ρ0(0)2/2mkB

being the initial temperature of quantum degeneracy of a
uniform 1D gas at density ρ0(0). In addition, λ̃(τ ) ≡ λ(τ/
),
where τ = 
t is the dimensionless time so that ˙̃λ = dλ̃/dτ =
λ̇(t )/
 [26].

For the purpose of performing numerical calcula-
tions, one can use the relations l (0)

φ = h̄2ρ0(0)/mkBT (0) =
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lHO
√

2/N/πθ0 and T̃0 = π2θ0 (where θ0 = kBT0/Nh̄ω0 is
the initial dimensionless temperature of the gas) to rewrite
Eq. (A4) as

n(k, t )

lHO
= Cλ̃

∫ 1

−1
du

(1 − u2)

1 + Bλ̃2(1 − u2)
(
k̄ − √

2N 

ω0

˙̃λu
)2 .

(A5)

Here C = 4
√

2N/π3θ0, B = 8/π2θ2
0 N , and k̄ = klHO. Note

that, in order to construct the hydrodynamic momentum dis-
tribution given by Eq. (A5), only N, θ0, and the ratio 
/ω0

need to be specified.

APPENDIX B: EXACT EXPRESSION OF THE
FLOQUET EXPONENT

In this Appendix, we show how to obtain the exact ex-
pression for the Floquet exponent of Mathieu’s equation,
following the same line of derivation as in [24]. First, by
inserting the Fourier expanded form of the periodic function
f (τ ), Eq. (29), into Mathieu’s equation (22), one can find that
the expansion coefficients cn satisfy the following three-term
recurrence relation:

[(2n + ν)2 − a]cn + q(cn+1 + cn−1) = 0. (B1)

This system of linear equations can be written in a matrix
form:

(Mν − a1)c = 0, (B2)

where the elements of the tridiagonal matrix Mν are given by

(Mν )nm = (2n + ν)2δnm + q(δn+1,m + δn−1,m), (B3)

and the vector c = (. . . , c−n, . . . , c−1, c0, c1, . . . , cn, . . . )
contains the Fourier coefficients.

The system of equations (B2) has a nontrivial solution if

det(Mν − a1) = 0. (B4)

This condition actually constitutes an equation for the Floquet
exponent ν, and requires computation of the infinite deter-
minant. In practice, however, the infinite determinant must
be truncated, so in order to ensure the convergence of the
determinant let us divide (B1) by (2n + ν)2 − a and define

ζn(ν) = q/[(2n + ν)2 − a]. (B5)

The determinant which appears in Eq. (B4) then becomes

det[δnm + (δn+1,m + δn−1,m)ζn(ν)] ≡ �(ν), (B6)

and setting �(ν) = 0 will provide nontrivial solutions for the
Floquet exponent ν.

Even in this form, the equation for ν remains rather intri-
cate and difficult to solve. However, a closed-form expression
for the Floquet exponent can be obtained by making the
following observations. First, since the value of a determinant
does not change when rows are interchanged, it follows that
the function �(ν) is even [i.e., �(ν) = �(−ν)]. Next, the
transformation ν → ν ± 2 leaves the determinant unchanged
since rows of the matrix are just shifted by ±1 in that case.
Hence, the function �(ν) is periodic in ν with period 2.

The only singularities of � are simple poles located at νn =
±√

a − 2n, with n ∈ Z. The function

ξ (ν) = 1

cos(νπ ) − cos (
√

aπ )
(B7)

presents all the above-mentioned properties, and by Liou-
ville’s theorem there exists a constant β such that �(ν) −
βξ (ν) is also a constant [24,39]. A closed-form expression for
ν can now be obtained by determining this constant, as well as
β by extension. These two constants will provide an equation
for �(ν) which can be set equal to zero and rearranged to
obtain an expression for ν.

Since �(ν) − βξ (ν) is a constant, it can be evaluated at any
ν. Taking the limit iν → ∞, we see that �(iν → ∞) = 1, as
all the off-diagonal elements ζn of the matrix in (B6) tend to
zero in this limit, whereas the diagonal elements are equal to
1, and ξ (iν → ∞) = 0. Consequently,

�(ν) − βξ (ν) = 1 (B8)

and hence the constant β is given by β = (�(ν) − 1)/ξ (ν).
In particular, β can be evaluated at ν = 0, provided

that a �= 4 j2 ( j ∈ Z) as to avoid the matrix elements ζn(0)
becoming infinite for n = j, which results in β = [1 −
cos(

√
aπ )][�(0) − 1]. Substituting this into Eq. (B8) gives

an explicit expression for the determinant:

�(ν) = �(0) sin2(
√

aπ/2) − sin2(νπ/2)

sin2(
√

aπ/2) − sin2(νπ/2)
, a �= 4 j2.

(B9)
In this expression, �(0) is the determinant (B6) with the
off-diagonal elements given by ζn(0) = q/(4n2 − a). Setting
�(ν) = 0 (to obtain a nontrivial solution for the Floquet
exponent) and rearranging for ν results in the following closed
expression for the Floquet exponent:

ν = 2

π
arcsin

[√
�(0) sin2(

√
aπ/2)

]
, a �= 4 j2. (B10)

Similarly, by evaluating β at ν = 1, it can be shown that,
when a = 4 j2,

ν = 1

π
arccos[2�(1) − 1], a = 4 j2. (B11)

Here, �(1) is the determinant (B6) with the off-diagonal
elements given by ζn(1) = q/[(2n + 1)2 − a]. In practice, one
fixes the point in the parameter space (a, q) and then computes
the Floquet exponent ν using Eq. (B10) or Eq. (B11), which
are the same equations as Eqs. (30) and (31) of the main text.

APPENDIX C: SYMMETRY OF THE FOURIER
COEFFICIENTS AND FORM OF THE SOLUTIONS

IN THE DIFFERENT REGIONS

Once the Floquet exponent is obtained, the Fourier coef-
ficients can be computed from the eigenvector of the matrix
(Mν − a) which corresponds to the zero eigenvalue, where
Mν is given by Eq. (B3). From the exact expression of the
Floquet exponent, (30) or (31), and the periodicity property
of the determinant equation, Eq. (B4), the value of ν can
always be taken in the interval [0,1] when it is real. In
particular, the case ν = 0 and 1 corresponds to the integer
values of the Floquet exponent. The Floquet exponent can also
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be complex and it is easy to see that in that case the Fourier
coefficients (B1) are also complex and lead to complex fun-
damental solutions (28) and (33). In practice, it is easier to
work with real representations of the fundamental solutions.
From the properties of the Floquet exponent outlined in the
previous section, one can deduce symmetries for the Fourier
coefficients and simplify the expression for the fundamental
solutions in the different regions of the phase diagram (Fig. 1)
in order to get a real representation. In what follows, we derive
the exact expressions used in the numerical calculation of the
two fundamental solutions in the different regimes of stability.

1. Case when ν is complex (ν = 1 − iη)

When (a, q) lies in between b2n+1(q) and a2n+1(q), the
Floquet exponent has the form ν = 1 − iη, which ultimately
results in complex Fourier coefficients cn. Consequently, the
fundamental solution (28) is not necessarily a real function.
We can, however, use the properties of the Fourier coefficients
to get a real solution. For that purpose, let us insert the
form of the Floquet exponent ν = 1 − iη into the recurrence
relation (B1). Setting n → −(n + 1) and taking the complex
conjugate of the resulting recurrence equation shows that the
coefficients c∗

−n−1 satisfy the same recurrence relation as the
coefficients cn. This means that they must be proportional to
each other, i.e., c∗

−n−1 = (c∗
−1/c0) cn, where the proportional-

ity constant is found by taking n = 0, and that they must have
the same complex amplitude, i.e., |c∗

−n−1|2 = |cn|2. Hence,
the proportionality constant is a pure phase factor c∗

−1/c0 =
exp(−2iθ ), and we finally have

cn = e2iθ c∗
−n−1. (C1)

Using this result in the Fourier expansion (29), we thus find
that the fundamental solution (28) takes the form

z1(τ ) = 2eiθ+ητ

∞∑
n=0

ρn cos[(2n + 1)τ + φn − θ ], (C2)

where we have used the polar representation of the Fourier
coefficients cn = ρn exp(iφn) and where 2θ = φ0 + φ−1. The
solution is complex due to the presence of the phase factor
eiθ . For real τ , however, it is possible to absorb the phase
factor into the definition of the fundamental solution z1 →
z1e−iθ (which remains a solution) in order to get a real
solution:

z1(τ ) = 2eητ

∞∑
n=0

ρn cos[(2n + 1)τ + φn − θ ]. (C3)

The second fundamental solution in this region of the phase
diagram is given by

z2(τ ) = 2e−ητ

∞∑
n=0

ρn cos[(2n + 1)τ − φn + θ ]. (C4)

These two solutions are then combined according to (34)
and (35) to obtain the even and odd solutions, respectively, of
Mathieu’s equation.

2. Case when ν is pure imaginary (ν = iη)

When (a, q) lies between b2n(q) and a2n(q), the Floquet
exponent is a pure imaginary number ν = iη with η > 0 and
therefore the Fourier coefficients are complex in this case as
well. By inserting the Floquet exponent into the recurrence
relation (B1) and setting n → −n, along with the complex
conjugate transformation, we deduce that the coefficients
c∗
−n are proportional to cn. More precisely, we obtain cn =

(c0/c∗
0 )c∗

−n = exp(2iθ )c∗
−n with θ = φ0. This property of the

Fourier coefficients leads to the following form for the first
fundamental solution:

z1(τ ) = e−ητ

(
ρ0 + 2

∞∑
n=1

ρn cos(2nτ + φn − θ )

)
(C5)

where, as before, we have absorbed the extra phase coefficient
eiθ into the definition of the solution.

The second solution is obtained by making the substitution
τ → −τ :

z2(τ ) = eητ

(
ρ0 + 2

∞∑
n=1

ρn cos(2nτ − φn + θ )

)
. (C6)

3. Case when ν is real but not an integer (ν ∈]0, 1[)

When the pair (a, q) lies in the stable region between
an(q) and bn+1(q), the Fourier coefficients are real and do not
present any particular symmetry. The real valued even and odd
solutions take the following form:

C(a, q, τ ) =
∞∑

n=−∞
cn cos[(2n + ν)τ ], (C7)

S(a, q, τ ) =
∞∑

n=−∞
cn sin[(2n + ν)τ ], (C8)

with 0 < ν < 1. Notice that the second independent solution
is obtained by replacing the cosine function by a sine function
and that the normalization constant has been omitted in both
representations.

4. Case when ν is an integer (ν = 0, 1)

As discussed above, ν = 0 and 1 correspond to real integer
values of the Floquet exponent and in this case only one solu-
tion can be periodic, in accordance with Ince’s theorem [24].
The second independent solution is constructed following a
different scheme compared to the ones discussed previously.
When (a, q) lies exactly on a characteristic line (dashed
magenta line in Fig. 1), i.e., a = an(q) or bn(q), the Fourier
coefficients are all real. The fundamental π - or 2π -periodic
solution is even on an and odd on bn.

a. On the characteristic lines of type an(q)

When a = a2n(q), the π -periodic fundamental solution has
the form

C(a, q, τ ) = c0 + 2
∞∑

n=1

cn cos(2nτ ), (C9)
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which is proportional to the function commonly denoted
in the literature as ce2n(τ, q) [24]. The second fundamental
nonperiodic solution is given by

S(a, q, τ ) = c0 Im[J0(
√

qeiτ )Y0(
√

qe−iτ )]

+ 2
∞∑

n=1

(−1)ncnIm[Jn(
√

qeiτ )Yn(
√

qe−iτ )],

(C10)

where Jn and Yn are the Bessel functions of the first and
second kind, respectively. This function is commonly denoted
as f e2n(τ, q) in the literature [24].

When a = a2n+1(q), the first fundamental solution has
period 2π and can be written as

C(a, q, τ ) =
∞∑

n=0

cn cos[(2n + 1)τ ], (C11)

whereas the second solution takes the form

S(a, q, τ ) =
∞∑

n=0

(−1)ncnIm[Jn(
√

qeiτ )Yn+1(
√

qe−iτ )

+ Jn+1(
√

qeiτ )Yn(
√

qe−iτ )]. (C12)

In the literature, one can find the notation ce2n+1(τ, q) and
f e2n+1(τ, q) for these two solutions, respectively.

b. On the characteristic lines of type bn(q)

When a = b2n+1, the fundamental solution is odd and one
has

S(a, q, τ ) =
∞∑

n=0

cn sin[(2n + 1)τ ], (C13)

which is proportional to the commonly known function
se2n+1(τ, q) [24]. The second solution has the form

C(a, q, τ ) =
∞∑

n=0

(−1)ncnRe[Jn(
√

qeiτ )Yn+1(
√

qe−iτ )

− Jn+1(
√

qeiτ )Yn(
√

qe−iτ )]. (C14)

Finally, when a = b2n+2 the solutions have the form

S(a, q, τ ) =
∞∑

n=0

cn+1 sin[(2n + 2)τ ] (C15)

and

C(a, q, τ ) =
∞∑

n=0

(−1)ncn+1 Re[Jn(
√

qeiτ )Yn+2(
√

qe−iτ )

− Jn+2(
√

qeiτ )Yn(
√

qe−iτ )]. (C16)
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