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Two-body bound state of ultracold Fermi atoms with two-dimensional spin-orbit coupling

Shu Yang,1 Fan Wu,2,* Wei Yi,3,4,† and Peng Zhang1,5,6,‡

1Department of Physics, Renmin University of China, Beijing 100872, China
2Department of Physics, Tsinghua University, Beijing 100084, China

3CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei 230026, China
4CAS Center For Excellence in Quantum Information and Quantum Physics, Hefei 230026, China

5Beijing Computational Science Research Center, Beijing 100084, China
6Beijing Key Laboratory of Opto-Electronic Functional Materials & Micro-Nano Devices,

Renmin Univeristy of China, Beijing 100872, China

(Received 29 May 2019; published 2 October 2019)

In a recent experiment, a two-dimensional spin-orbit coupling (SOC) was realized for fermions in the
continuum [Nat. Phys. 12, 540 (2016)], which represents an important step forward in the study of synthetic
gauge fields using cold atoms. In the experiment it was shown that a Raman-induced two-dimensional SOC
exists in the dressed-state basis close to a Dirac point of the single-particle spectrum. By contrast, the short-range
interatomic interactions of the system are typically expressed in the hyperfine-spin basis. The interplay between
synthetic SOC and interactions can potentially lead to interesting few- and many-body phenomena but has so
far eluded theoretical attention. Here we study in detail properties of two-body bound states of such a system.
We find that, due to the competition between SOC and interaction, the stability region of the two-body bound
state is in general reduced. Particularly, the threshold of the lowest two-body bound state is shifted to a positive,
SOC-dependent scattering length. Furthermore, the center-of-mass momentum of the lowest two-body bound
state becomes nonzero, suggesting the emergence of Fulde-Ferrell pairing states in a many-body setting. Our
results reveal the critical difference between the experimentally realized two-dimensional SOC and the more
symmetric Rashba or Dresselhaus SOCs in an interacting system, paving the way for future characterizations of
topological superfluid states in the experimentally relevant systems.
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I. INTRODUCTION

Spin-orbit coupling (SOC) plays a crucial role in a wide
range of physical contexts, including atomic fine structures,
high-Tc superconductors, and topological matter [1–3]. The
implementation of synthetic SOCs in cold atomic systems
thus offers exciting possibilities of quantum simulation us-
ing cold atoms [4–49]. Specifically, the recent experimental
realizations of two-dimensional (2D) SOC [15–21] opens up
the avenue of simulating topological phenomena in higher
dimensions. For the 2D SOC realized using the Raman lattice
[19–23], the nontrivial topology of single-particle band struc-
tures gives rise to dynamic topological phenomena in quench
processes and can lead to topologically nontrivial phases
when the lowest band is filled with fermions. In contrast, for
fermions in the continuum under a Raman-induced 2D SOC
[15–18], a topological superfluid phase may be stabilized by
introducing a pairing gap at the Fermi surface. However, in
these latter systems, the 2D synthetic SOC emerges in the
dressed-state basis, whereas the short-range s-wave interac-
tion potentials are diagonal in the hyperfine-spin basis. The
interatomic interactions thus acquire a complicated form in
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the dressed-state basis, which makes it difficult to have a direct
understanding of pairing physics therein.

In this work, we study in detail properties of two-body
bound states in an ultracold Fermi gas of three-component
fermionic atoms with the Raman-induced 2D SOC imple-
mented in Refs. [15–17]. For simplicity, we assume the
s-wave interatomic interaction is non-negligible only when
the two atoms are in two specific hyperfine states, which
is naturally the case when the system is tuned close to an
s-wave Feshbach resonance between these two states. We then
exactly solve the two-body problem of this system for various
scattering lengths a, center-of-mass (CoM) momenta, as well
as with different frequencies and intensities of the Raman
beams. Our work is therefore a first step toward a systematic
understanding of the effects of interaction in these systems.

We focus on the impact of the SOC on the thresholds of
two-body bound states. For our system, the two-body bound
state of a given CoM momentum K appears only when 1/a
is larger than a threshold value Cth(K), i.e., 1/a > Cth(K).
In the absence of SOCs, it is well known that Cth = 0 for
the two-body ground state, which features a vanishing CoM
momentum K = 0. In the presence of an SOC, the threshold
Cth would be shifted, which signals the impact of SOC on
the stability of two-body bound states. For systems with a
highly symmetric synthetic SOC, such as a 2D Rashba- or
Dresselhaus-type SOC or a three-dimensional isotropic SOC,
it has been shown that [50,51] Cth = −∞ for the two-body
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ground state, which also has K = 0, i.e., the two-body bound
state can appear for an arbitrary scattering length. Thus, the
stability region of the two-body bound state is significantly
extended by symmetric SOCs. Nevertheless, for experimental
systems with Raman-induced one-dimensional SOC in the
continuum [4–14], previous theoretical [52,53] and experi-
mental [54] studies show that Cth > 0 for the two-body ground
state, which can acquire a finite K in the presence of a finite
two-photon detuning. Here, the stability region of the two-
body bound state is reduced by the SOC. All these studies
show that different types of SOC can induce qualitatively
different modifications of Cth. Therefore, it is necessary to
investigate the influence of the Raman-induced 2D SOC on
the threshold Cth of the two-body bound state. In this work,
we calculate Cth for various cases under the experimentally
implemented 2D SOC and show that in each case Cth is
always shifted to a positive value which depends on the CoM
momentum, i.e., Cth(K) > 0 for any K. This result shows that
the stability region of the two-body bound state is reduced by
the Raman-induced 2D SOC, similar to that under a Raman-
induced one-dimensional SOC.

In addition, we investigate properties of the “ground” two-
body bound state, which has the lowest energy under fixed
scattering length and Raman beam parameters. We show that
the binding energy of the ground bound state is smaller than
that without Raman beams. Namely, the Raman-induced SOC
makes the ground two-body bound state shallower. Further-
more, the CoM momentum of this ground two-body bound
state is nonzero and typically lies in the plane of the 2D SOC.
One would therefore expect the emergence of a Fulde-Ferrell
pairing state in a many-body system, which would compete
with the normal state.

Our results reveal that whereas the Raman-induced 2D
SOC can be symmetric in the dressed-state basis on the
single-particle level, interatomic interactions break both
the rotational and inversion symmetries, giving rise to less sta-
ble two-body bound states with finite CoM momenta. These
phenomena can be understood by projecting interatomic in-
teractions into the dressed-state basis, where scattering states
in the dressed states are momentum dependent. Our work
reveals the nontrivial interplay of SOC and interaction in an
experimentally relevant system, and provides the necessary
basis for future studies of the system on the many-body level.

Our paper is organized as follows. In Sec. II, we review
the coupling scheme for the Raman-induced two-dimensional
SOC and present our theoretical approach from which two-
body bound-state energies are calculated. We investigate the
effects of Raman-induced SOC on the threshold and stability
region of the two-body bound state in Sec. III. In Sec. IV we
study the lowest two-body bound state. Finally, we summarize
in Sec. V. Some details of our calculation and analysis are
given in the Appendices.

II. CALCULATION OF TWO-BODY BOUND STATE

We consider two identical ultracold Fermi atoms 1 and
2. As discussed in Refs. [15–17] and shown in Fig. 1, the
ground hyperfine states α, β, and γ of each atom are coupled
to electronic-orbital excited manifolds (2P1/2 and 2P3/2 man-
ifolds) via far-off-resonant Raman laser beams propagating

FIG. 1. (a) The schematic diagram of the Raman coupling be-
tween the hyperfine states α, β, and γ . In our system each atom
has three internal states α, β, and γ , and the two-body interaction
appears when one atom is in state α and another atom is in state β.
(b) The directions of the Raman laser beams.

along different directions and with wave vectors

kα = krey, kβ = −krey, kγ = krex, (1)

respectively. Here e j ( j = x, y, z) is the unit vector in the j
direction. Notice that in the experiment, the norms of wave
vectors of the three Raman beams are approximately the same.

The Raman lasers couple the three hyperfine (internal)
states in a pairwise fashion. As a result, in the rotated frame,
the free Hamiltonian H (i) for atom i (i = 1, 2) can be ex-
pressed as a function of its momentum p(i):

H (i) = H1b
(
p(i)) ≡

∑
ξ=α,β,γ

[(
p(i) − kξ

)2

2m
+ δξ

]
|ξ 〉ii〈ξ |

−
∑
ξ =

α, β, γ

∑
η =

α, β, γ

�ξη

2
|ξ 〉ii〈η|, (2)

where m is the single-atom mass, and |ξ 〉i (ξ = α, β, γ ) is
the internal state of atom i, δξ (ξ = α, β, γ ) is the effec-
tive energy of the state |ξ 〉i, determined by the detuning of
the laser beams. �ξη (ξ, η = α, β, γ ) is the effective Rabi
frequency for the Raman transition between states |ξ 〉i and
|η〉i, which satisfies �ξη = �∗

ηξ . Equation (2) shows that the
atomic momentum in the x-y plane is coupled to the internal
states via terms proportional to kα,β,γ , which amounts to the
Raman-induced 2D synthetic SOC.

To investigate two-body bound states under this configura-
tion, we write the total Hamiltonian as

H = HF + U, (3)

with HF = H1b(p(1) ) + H1b(p(2) ) being the two-body free
Hamiltonian and U being the interatomic interaction. In our
system, the CoM momentum K = p(1) + p(2) is conserved,
and thus can be treated as a classical parameter (c number).
Accordingly, the two-body free Hamiltonian can be expressed
as

HF = H1b

(
K
2

+ p
)

+ H1b

(
K
2

− p
)

, (4)
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where p = (p1 − p2)/2 is the relative-momentum operator of
the two atoms.

When K is fixed, we need to study only the quantum state
of the two-atom relative spatial motion, as well as the internal
states of the atoms. Thus, the Hilbert space H of our system
is given by H = Hr ⊗ Hs1 ⊗ Hs2, with Hr being the Hilbert
space for the two-atom spatial relative motion and Hsi (i =
1, 2) being that for the internal states of atom i. Similar to our
previous work [52], we use the symbol |〉〉 to denote states in
H, |) for states in Hmotion, |〉i (i = 1, 2) for states in Hsi, and
|〉 for states in Hs1 ⊗ Hs2.

Furthermore, we assume that when one atom is in the
internal state α and the other in β, the interatomic interaction
is strong and can be described by the s-wave scattering length
a; whereas for all other cases the interactions are negligible.
One can experimentally realize such a configuration by tuning
the magnetic field B close to a Feshbach resonance of the
hyperfine-spin channel corresponding to the singlet state:

|S〉 = 1√
2

(|α〉1|β〉2 − |β〉1|α〉2). (5)

For instance, for an ultracold gas of 40K atoms, one can
choose the internal states |α〉, |β〉, and |γ 〉 to be the hyperfine
states |F = 9/2, mF = −9/2〉, |F = 9/2, mF = −7/2〉, and
|F = 7/2, mF = −7/2〉, respectively. In this case, a wide
magnetic Feshbach resonance exists for the hyperfine channel
|S〉 at 202.1G [55,56]. When the magnetic field is close to this
resonance point, the interaction between two atoms in state
|S〉 is strong and tunable through the magnetic field, whereas
interactions in other channels should be negligibly small [57].

As we have proved in Ref. [52], regardless of the presence
of SOC, the interatomic interaction can always be described
by the widely used renormalized contact interaction, with

U = U0

(2π )3
|S〉〈S| ⊗

∫
k,k′<kc

|k)(k′|dkdk′. (6)

Here |k) is the eigenstate of the relative-momentum operator
p, and the momentum cutoff kc satisfies the renormalization
relation (h̄ = 1) [52,58,59]:

m

4πa
= 1

U0
+ m

(2π )3

∫
k′′<kc

1

k′′2 dk′′. (7)

Now we calculate the energy Eb of the two-body bound
state |
b〉〉. With straightforward calculations (Appendix A)
based on the Schrödinger equation,

H |
b〉〉 = Eb|
b〉〉, (8)

we find that
1

(2π )3

∫
dkJ[Eb, k; K] = 1

4πa
, (9)

where the function J[Eb, k; K] is defined as

J[Eb, k; K] =
9∑

�=1

[ |〈�, k, K|S〉|2
m(Eb − E�,k,K )

+ |〈�, k, K|S〉|2
k2

]
.

(10)

Here the two-body hyperfine-spin state |�, k, K〉 (� =
1, 2, . . . , 9) is the �th eigenstate of the operator h(k, K) ≡
H1b( K

2 + k) + H1b( K
2 − k) and E�,k,K is the corresponding

eigenenergy. Notice that in the definition of h(k, K), both
K and k are c numbers, and thus h(k, K) is an operator in
the nine-dimensional Hilbert space Hs1 ⊗ Hs2, and thus the
eigenstate |�, k, K〉 of h(k, K) is an element of Hs1 ⊗ Hs2

[60].
In addition, it is clear that the two-body bound-state energy

Eb should also satisfy

Eb � Eth(K), (11)

where the threshold energy Eth(K) is defined as the lowest
eigenenergy of the two-body free Hamiltonian HF for a fixed
K, i.e.,

Eth(K) = Min[E�,k,K]. (12)

We numerically solve Eq. (10) under condition (11) and
obtain the bound-state energy Eb for each case with given
values of scattering length a, Rabi frequencies �ξη (ξ, η =
α, β, γ ), effective energies δξ (ξ = α, β, γ ), and CoM
momentum K.

III. THRESHOLD OF TWO-BODY BOUND STATE

In our system, two-body bound states appear only when
1/a is larger than a threshold which we denote as Cth, i.e.,

1

a
� Cth. (13)

In the absence of SOCs, it is well known that Cth = 0 for s-
wave interactions in three dimensions. In the presence of the
SOC, the location of the threshold Cth depends on the form of
SOC, the dimensionality of the system, as well as the CoM
momentum of the bound state. Specifically, for the Raman-
induced 2D SOC considered here, the threshold depends on
the x and y components of the CoM momentum K, i.e., Cth =
Cth(K) = Cth(Kx, Ky).

We numerically calculate Cth via the approach shown in
Sec. II and illustrate our results for typical experimental
parameters with real [15] and complex [16] effective Rabi
frequencies, respectively. In Figs. 2(a)–2(c) and Figs. 3(a)–
3(c) we show Cth as a function of (Kx, Ky), while in Figs. 2(d)
and 3(d), Cth is plotted as a function of �αγ . In addition, we
systematically characterize the behavior of Cth with varying
Rabi frequencies and detunings, and show the results in Ap-
pendix B. All these results clearly show that, in the presence
of SOC, we always have

Cth(Kx, Ky ) > 0, (14)

which suggests that, on the “1/a axis,” the parameter regime
for the existence of two-body bound states is reduced by the
Raman-induced SOC. In other words, the two-body bound
state becomes more difficult to form under the Raman-
induced 2D SOC.

The result above is similar to those under Raman-induced
one-dimensional SOCs [52–54]. In comparison, previous
studies [50] on three-dimensional Fermi gases under the 2D
Rashba- and Dresselhaus-type SOCs show that for such sys-
tems Cth = −∞, i.e., the two-body bound state can always be
formed at an arbitrary scattering length. The stability region
for the two-body bound state is therefore significantly broad-
ened by the Rashba- or Dresselhaus-type SOCs. Thus, our
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FIG. 2. The two-body bound-state threshold Cth for systems
under the scheme of Ref. [15], with typical experimental pa-
rameters: �αβ = 3.58Er, �αγ = −3.94Er , �βγ = −4.66Er, δα =
0, δβ = −5.14Er , and δγ = −3.23Er . (a) Cth as a function of CoM
momentum (Kx, Ky ). (b) Cth as a function Ky for Kx = 10kr (red
solid line), Kx = 0kr (green dashed line), Kx = −10kr (blue dotted
line). (c) Cth as a function Kx for Ky = 2.5kr (red solid line), Ky =
0kr (green dashed line), Ky = −2.5kr (blue dotted line). (d) The
threshold Cth (Kx, Ky ) as a function of the effective Rabi frequency
�αγ for cases with CoM momentum (Kx, Ky ) = (0, 0) (red solid
line), (Kx, Ky ) = (10kr, 10kr ) (green dashed line), and (Kx, Ky ) =
(10kr, −10kr ) (blue dotted line).

result for the Raman-induced 2D SOC is in sharp contrast with
these results and highlights the critical difference between the
Raman-induced 2D SOC and the more symmetric Rashba or
Dresselhaus SOCs in interacting systems.

Furthermore, as illustrated in Figs. 2(a) and 2(b) and
Figs. 3(a) and 3(b), the bound-state threshold Cth increases
with the CoM momentum |Ky|, i.e., the two-body bound state
is more difficult to form when |Ky| is large. This can be
understood as the following. In the two-body free Hamiltonian
HF , the component Ky contributes a term

W ≡ Kykr

2m

∑
j=1,2

(|β〉 j j〈β| − |α〉 j j〈α|), (15)

which is proportional to the SOC intensity kr . Under the
influence of this term and for a large enough |Ky|, the thresh-
old energy Eth(K) would decrease with increasing |Ky|. As
a result, the stability region of the bound state Eb, shown in
Eq. (11), would be reduced by the increase of |Ky|, rendering
the two-body bound state more difficult to form. For a similar
reason, the critical value Cth also becomes very large when Kx

takes a positive large value and tends to a constant when Kx

takes a negative large value, as shown in Figs. 2(a), 2(c), 3(a),
and 3(c). In Appendix C, we show a more detailed explanation
for this physical picture.
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FIG. 3. The two-body bound-state threshold Cth for systems
under the scheme of Ref. [16] with typical experimental param-
eters: �αβ = −2.49(1 + i)Er, �αγ = 3.86Er , �βγ = 4.58Er, δα =
0, δβ = −0.5Er , and δγ = −1.8Er . (a) Cth as a function of CoM
momentum (Kx, Ky ). (b) Cth as a function Ky for Kx = 10kr (red
solid line), Kx = 0kr (green dashed line), and Kx = −10kr (blue
dotted line). (c) Cth as a function Kx for Ky = 10kr (red solid line),
Ky = 0.5kr (green dashed line), and Ky = −10kr (blue dotted line).
(d) The threshold Cth as a function of the effective Rabi frequency
�αγ for cases with CoM momentum (Kx, Ky ) = (0, 0) (red solid
line), (Kx, Ky ) = (10kr, 10kr ) (green dashed line), and (Kx, Ky ) =
(10kr, −10kr ) (blue dotted line).

IV. PROPERTIES OF TWO-BODY BOUND STATE

In this section we investigate the properties of the two-body
bound state. For the convenience of our discussion, we define
the two-body bound state with the lowest energy in the K
space as the ground bound state and denote the energy of this
bound state as Eground

b . Namely, for any given scattering length
a and the laser parameters, Eground

b is the minimum value of
the bound-state energy Eb(K) in the K space, i.e.,

Eground
b = Min[Eb(K)]. (16)

In addition, we introduce two parameters Cmin
th and Emin

th ,
which are defined as the minimum values of the threshold
Cth(Kx, Ky) and the threshold energy Eth(K) in the K space,
respectively. That is, we have

Cmin
th ≡ Min[Cth(Kx, Ky )] (17)

and

Emin
th ≡ Min[Eth(K)]. (18)

According to the above definitions, when the condition
1/a > Cmin

th is satisfied, two-body bound states can appear in
some region of the K space. However, as Eground

b and Emin
th

typically occur at different CoM momentum K, Eground
b can be

lower than Emin
th only when 1/a is larger than another critical

043601-4



TWO-BODY BOUND STATE OF ULTRACOLD FERMI ATOMS … PHYSICAL REVIEW A 100, 043601 (2019)

-4 -2 0 2 4
0

1

2

3(a)

1/
a
(u
ni
ts
of
k r
)

(units of Er)

Cminth
Dth

-4 -2 0 2 4
0

1

2

3(c)

1/
a
(u
ni
ts
of
k r
)

(units of Er)

Cminth
Dth

2.0 2.5 3.0 3.5 4.0
0

5

10(b)

Eg b
in
di
ng
(u
ni
ts
of
E r
)

1/a (units of kr)

/Er
10
-3.94
-10
No Raman

2.0 2.5 3.0 3.5 4.0
0

5

10(d)
Eg b
in
di
ng
(u
ni
ts
of
E r
)

1/a (units of kr)

/Er
10
3.86
-10
No Raman

FIG. 4. (a), (b) The properties of a two-body bound state for
systems with real effective Rabi frequencies, as in Ref. [15]. (a) The
thresholds Cmin

th and Dth as functions of �αγ . (b) Binding energy
Eg

binding as a function of 1/a for �αγ = −3.94Er, �αγ = −10Er , and
�αγ = 10Er , as well as the curve Eg

binding = −1/(ma2) for the case
without Raman beams (orange dashed-dotted line). All the other
parameters of (a), (b) are same as in Fig. 2(a). (c), (d) The properties
of a two-body bound state for the systems with complex effective
Rabi frequencies, as in Ref. [16]. (c) The thresholds Cmin

th and Dth

as functions of �αγ . (d) Binding energy Eg
binding as a function of

1/a for �αγ = 3.86Er, �αγ = −10Er , and �αγ = 10Er , as well as
the curve Eg

binding = −1/(ma2 ) for the case without Raman beams
(orange dashed-dotted line). All the other parameters of (c), (d) are
same as in Fig. 3(a).

value Dth, with Dth > Cmin
th , i.e., we have

Eground
b < Emin

th , for
1

a
> Dth. (19)

In Figs. 4(a) and 4(c), we illustrate Cmin
th and Dth as functions

of the Rabi frequencies under different experimental schemes.
Importantly, stable two-body bound states exist only for

1/a > Dth. On one hand, when

Cmin
th <

1

a
< Dth, (20)

the energies of all the two-body bound states are higher than
Emin

th , and Eb(K) crosses Eth(K) in the K space. It is clear
that Emin

th is the minimal eigenenergy of the two-body free
Hamiltonian HF , which is the lower bound of the energies
of the two-body scattering states. Thus, under the condition
(20), for any two-body bound state, there are always some
scattering states with lower energies, albeit at different CoM
momentum than the bound state. It follows that in a many-
body system, these two-body bound states are unstable and
can decay to the scattering-state continuum via three-atom or
four-atom collisions. On the other hand, when the condition

1

a
> Dth (21)

1.6 2.0 2.4 2.8 3.2 3.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15(a)

K
g xy
(u
ni
ts
of
k r
)

Kgx, = 10Er
Kgx, = -3.94Er
Kgx, = -10Er

Kgy, = 10Er
Kgy, = -3.94Er
Kgy, = -10Er

1/a (units of kr)

1.6 2.0 2.4 2.8 3.2 3.6
-0.15

-0.10

-0.05

0.00

0.05

0.10

0.15(b)

Kg x
y
(u
ni
ts
of
k r
)

Kgx, = 10Er
Kgx, = 3.86Er
Kgx, = -10Er

Kgy, = 10Er
Kgy, = 3.86Er
Kgy, = -10Er

1/a (units of kr)

FIG. 5. (a) The CoM momentum Kg
x (filled symbols) and Kg

y

(empty symbols) of the ground two-body bound state, as a function of
1/a, for �αγ = 10Er (red circles), �αγ = −3.94Er (green triangles),
and �αγ = −10Er (blue squares). All the other parameters of (a) are
the same as in Fig. 2(a). (b) The CoM momentum Kg

x (filled symbols)
and Kg

y (empty symbols) of the ground two-body bound state, as a
function of 1/a, �αγ = 10Er (red circles), �αγ = 3.86Er (green tri-
angles), and �αγ = −10Er (blue squares). All the other parameters
of (b) are the same as in Fig. 3(a).

is satisfied, Eground
b would be lower than the minimal energy

Emin
th of the scattering states, and the ground bound state is

stable.
In the following, we investigate the property of the ground

bound state under the condition (21). For convenience, we
denote the CoM momentum corresponding to the ground
bound state as Kg = (Kg

x , Kg
y , Kg

z ). We also define the binding
energy of the ground bound state as

Eg
binding ≡ Eth(Kg) − Eb(Kg). (22)

In the absence of SOC, we have Kg = 0 and Eg
binding =

1/(ma2). For our systems with Raman-induced 2D SOC,
as shown in Figs. 4(b) and 4(d), Eg

binding becomes smaller
than 1/(ma2), i.e., the bound state becomes shallower. Fur-
thermore, in the presence of SOC, we still have Kg

z = 0
whereas (Kg

x , Kg
y ) becomes nonzero, since the ground two-

body bound state has nonzero CoM momentum, as illustrated
in in Figs. 5(a) and 5(b).

The existence of a ground bound state with a finite CoM
momentum suggests the emergence of Fulde-Ferrell pairing
states in a many-body setting. Similar to the SOC-induced
Fulde-Ferrell states discussed previously [28], the appearance
of the finite CoM momentum pairing is due to the explicit
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breaking of rotational symmetry in the single-particle spec-
trum.

At the end of this section, we emphasis that since
the threshold Cth(K) tends to positive infinity in the limit
|Ky| → +∞ or Kx → +∞, for any given scattering length a,
the condition 1/a > Cth(Kx, Ky) can never be satisfied when
|Ky| or Kx is too large, and the two-body bound state appears
only for sufficiently small |Ky| and Kx.

V. SUMMARY

In summary, we have studied two-body bound states for
fermions under the Raman-induced two-dimensional SOC
and with s-wave interactions. While the presence of SOC
reduces the stability of two-body bound states, the ground
two-body bound state acquires a finite CoM momentum in the
x-y plane as SOC breaks rotational symmetry of the single-
particle spectrum. Based on these results, we expect that for
a many-body system on the mean-field level, competition
between Fulde-Ferrell pairing states and normal states should
give rise to a rich phase diagram. Such a competition is
induced by the interplay of the two-dimensional SOC in the
dressed-state basis and contact interaction in the hyperfine-
spin basis. In the future, it would be interesting to further
explore the stability of a possible topological Fulde-Ferrell
pairing state in the system.
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APPENDIX A: DERIVATION OF EQ. (9)

In this Appendix we show how to derive Eq. (9) in the
main text. Here our notations for various Hilbert spaces and
the quantum states in each space are the same as those in
Sec. II. Substituting Eq. (3) into the Schrödinger equation (8),
we obtain

|
b〉〉 = 1

Eb − HF
U |
b〉〉. (A1)

Furthermore, the interaction U defined in Eq. (6) can be
reexpressed as a separable form

U = U0|S〉〈S| ⊗ |φ)(φ|, (A2)

with the state |φ) being defined as

|φ) = 1

(2π )
3
2

∫
k<kc

dk|k). (A3)

Substituting Eq. (A2) into Eq. (A1), we further derive

χb = U0〈S|(φ| 1

Eb − HF
|φ)|S〉χb, (A4)

with χb = 〈S|(φ|
b〉〉. Equation (A4) yields

1

U0
= 〈S|(φ| 1

Eb − HF
|φ)|S〉. (A5)

On the other hand, as shown in Sec. II, we define the two-
body internal state |�, k, K〉 ∈ Hs1 ⊗ Hs2 (� = 1, 2, . . . , 9)
and the energy E�,k,K as the �th eigenstate of the operator
h(k, K) ≡ H1b( K

2 + k) + H1b( K
2 − k) and the corresponding

eigenenergy, respectively. Thus, the eigenstate of the operator
HF , which should be a vector in the complete Hilbert space
H, is the product state |�, k, K〉|k), and the corresponding
eigenenergy is just E�,k,K. Namely, we have

HF |�, k, K〉|k) = E�,k,K|�, k, K〉|k). (A6)

Using this result, we can reexpress the operator 1/(Eb − HF )
as

1

Eb − HF
=

∫
dk

9∑
�=1

|k)(k| ⊗ |�, k, K〉〈�, k, K|
Eb − E�,k,K

. (A7)

Substituting Eq. (A7) and the renormalization relation (7) into
Eq. (A5), we obtain

1

(2π )3

∫
k<kc

dkJ[Eb, k; K] = 1

4πa
, (A8)

with the function J[Eb, k; K] being defined in Eq. (10). Taking
kc → ∞ for Eq. (A8), we immediately derive Eq. (9).

APPENDIX B: Cth UNDER OTHER PARAMETERS

As mentioned in Sec. III, we numerically calculate the
threshold Cth of the two-body bound state, following exper-
imental systems with real [15] and complex [16] effective
Rabi frequencies. Some results are shown in Figs. 2 and 3
of the main text. Here we illustrate the results for more cases
with various Rabi frequencies �αβ(αγ ) and detunings δβ(γ ) in
Figs. 6 and 7. All our results support our conclusion in the
main text that Cth is shifted to the positive side of the 1/a
axis.

APPENDIX C: THRESHOLD OF BOUND STATE
FOR LARGE Ky AND Kx

As illustrated in Sec. III, the threshold Cth of the two-body
bound state becomes very large in the limit |Ky| → ∞ or
Kx → +∞. This is because, in such limits, the threshold
energy Eth becomes very low, which makes the bound state
difficult to form. In this Appendix, we show some detailed
analysis supporting this picture.

For the convenience of our discussion, here we denote the
Hilbert space where the atoms are in the two-body internal
states |i〉1| j〉2 (i, j = α, β) as Hαβ and denote the space with
the atoms being in |γ 〉1| j〉2 or | j〉1|γ 〉2 ( j = α, β) as Hγ . It is
clear that the total Hilbert space H is the direct sum of these
two spaces, i.e., H = Hαβ ⊕ Hγ .

Furthermore, we can reexpress the total Hamiltonian H as

H = H1 + H2 + H3, (C1)
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FIG. 6. (a)–(c) The two-body bound-state threshold Cth as a
function of CoM momentum (Kx, Ky ), with real effective Rabi
frequencies. For all subplots, we have δβ = 0Er, δγ = 3.23Er (a);
δβ = 0Er, δγ = 0Er (b); δβ = 0Er, δγ = −3.23Er (c); and the other
parameters are the same as those in Fig. 2. (d)–(f) The threshold
Cth as a function of the effective Rabi frequency �αβ , for cases
with CoM momentum (Kx, Ky ) = (0, 0) (red solid line), (Kx, Ky ) =
(10kr, 10kr ) (green dashed line), and (Kx, Ky ) = (10kr, −10kr ) (blue
dotted line). Other parameters of (d), (e), and (f) are the same as (a),
(b), and (c), respectively.

where

H2 = −
∑

ξ=α,β,γ

∑
η=α,β,γ

�ξη

2
(|ξ 〉11〈η| + |ξ 〉22〈η|), (C2)

H3 = −
∑

ξ=α,β,γ

(
p · kξ

m

)
(|ξ 〉11〈ξ | − |ξ 〉22〈ξ |), (C3)

and

H1 ≡ H − H2 − H3. (C4)

We first consider the Hamiltonian H1. It is clear that H1

does not include the coupling between the states in Hαβ nor
the states in Hγ . Thus, we have

H1 = Hαβ + Hγ , (C5)
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FIG. 7. (a)–(c) The two-body bound-state threshold Cth as a
function of CoM momentum (Kx, Ky ), with complex effective Rabi
frequencies. For all subplots, we have δβ = 0Er, δγ = 1.8Er (a);
δβ = 0Er, δγ = 0Er (b); δβ = 0Er, δγ = −1.8Er (c); and other pa-
rameters are the same as those in Fig. 3. (d)–(f) The threshold
Cth as a function of the effective Rabi frequency �αγ , for cases
with CoM momentum (Kx, Ky ) = (0, 0) (red solid line), (Kx, Ky ) =
(10kr, 10kr ) (green dashed line), and (Kx, Ky ) = (10kr, −10kr ) (blue
dotted line). Other parameters of (d), (e), and (f) are the same as (a),
(b), and (c), respectively.

with Hαβ and Hβ being the operators of the spaces Hαβ and
Hγ , respectively, and can be expressed as

Hαβ =
∑

ξ=α,β

∑
η=α,β

[
p2

m
+ δ̃ξ + δ̃η

]
⊗ |ξ 〉11〈ξ | ⊗ |η〉22〈η| + U

≡ H (F )
αβ + U ; (C6)

Hγ =
∑

η=α,β

[
p2

m
+ δ̃γ + δ̃η

]

⊗ (|γ 〉11〈γ | ⊗ |η〉22〈η| + |η〉11〈η| ⊗ |γ 〉22〈γ |), (C7)
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FIG. 8. (a) Some eigenlevels of H1. The black solid line indicates
the bound state contributed by Hαβ , while the blue solid line indicates
a continuous spectrum contributed by Hγ . In addition, Eαβ

th (black
dashed-dotted line) is the lower bound of other continuous eigen-
levels contributed by the projection of Hαβ in the subspace where
the two atoms are in different internal states [61]. If H2 and H3 were
zero, the bound state would always be stable, whether the energy Eb0

be higher (case A) or lower (case B) than the lower bound E γ

th of the
continuous spectrum of Hγ , since the bound state is not coupled to
states in the continuum. (b) In the presence of H2, the bound state is
coupled to the continuous spectrum of Hγ , with the coupling being
shown as a brown shadow. As a result, the bound state is stable only
if the energy is lower than the lower bound Eαβ

th of this spectrum.

where

δ̃α = δα − Kykr

2m
; δ̃β = δβ + Kykr

2m
; δ̃γ = δγ − Kxkr

2m
.

(C8)
Therefore, if both H2 and H3 were zero, the two atoms

could form a bound state only if 1/a > 0, which is supported
by Hαβ and can be denoted by |�b0〉〉. The energy of this
bound state is

Eb0 = Eαβ

th − 1

ma2
, (C9)

where

Eαβ

th = δα + δβ (C10)

is the minimum eigenenergy of the projection of H (F )
αβ (i.e., the

“free Hamiltonian in the space Hαβ”) in the subspace where
the two atoms are in different internal states [61]. On the other
hand, as shown in Fig. 8(a), the Hamiltonian H = H1 also
has many eigenstates with continuous eigenenergies, which
are eigenstates of Hγ . The lower bound of this continuous
spectrum is

Eγ

th ≡ Min[δ̃γ + δ̃β , δ̃γ + δ̃α]. (C11)

Here we emphasis that the bound-state energy Eb0 may be
either higher or lower than Eγ

th. Nevertheless, the bound state
|�b0〉〉 is always stable because it is not coupled to these
continuous states Hγ .

Now we consider the effect from H2. For simplicity, here
we also ignore H3. As shown in Fig. 8(b), the Hamiltonian
H2 can induce the coupling between the bound state |�b0〉〉
and the continuous eigenlevels of Hγ . In this case, the bound
state is no longer stable when energy Eb0 is higher than the
lower-bound Eγ

th of this continuous spectrum, while it is still
stable when Eb0 is lower than Eγ

th. Therefore, in the presence of
H2, the two atoms can form a bound state only when Eb0 < Eγ

th
or

1

ma2
> Eαβ

th − Eγ

th. (C12)

Furthermore, when |Ky| is very large, Eγ

th would be much
lower than Eαβ

th . That is due to the term W defined in Eq. (15),
which is now a part of Hγ . As a result, only the very deep
bound state could be stable. Explicitly, in this case the condi-
tion (C12) can be approximately expressed as

1

a
>

√
kr

|Ky|
2

, (C13)

and thus the threshold Cth is approximately
√

kr |Ky|/2, which
increases with |Ky|, as shown in Sec. III.

Similarly, when Kx takes a positive large value, due to the
term −Kxkr/(2m) in the expression (C8) of δ̃γ , Eγ

th would also
be much lower than Eαβ

th . As a result, the threshold Cth can
be approximately expressed as Cth ≈ √

krKx/2 and increases
with Kx. On the other hand, when Kx takes a negative large
value, Eγ

th becomes much higher than Eαβ

th . Namely, the energy
of the space Hγ is much higher than the bound state of Hαβ .
Thus, the threshold Cth of the two-body bound state is hardly
affected by the interspace coupling H2 but tends to a constant,
as shown in Figs. 2(a), 2(c), 3(a), and 3(c).

Finally, we consider the effect of H3. Since H3 is inde-
pendent of K and does not include the coupling between the
spaces Hαβ and Hγ , it induces a K-independent modification
only for the threshold energies Eαβ

th and Eγ

th, as well as the
expressions of the bound state Eb0. Therefore, in the presence
of H3, our above analysis is still qualitatively correct.
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[26] N. Goldman, G. Juzeliūnas, and P. Öhberg, I. B. Spielman, Rep.
Prog. Phys. 77, 126401 (2014).

[27] H. Zhai, Rep. Prog. Phys. 78, 026001 (2015).
[28] W. Yi, W. Zhang, and X. Cui, Sci. China: Phys. Mech. Astron.

58, 014201 (2015).
[29] J. Zhang, H. Hu, X. J. Liu, and H. Pu, Ann. Rev. Cold At. Mol.

2, 81 (2015).
[30] Q. Gu, Y. Xiong, and L. Yin, arXiv:1905.03979.
[31] Q. Gu and L. Yin, Phys. Rev. A 98, 013617 (2018).
[32] X. Cui, Phys. Rev. A 85, 022705 (2012).
[33] T. Ozawa and G. Baym, Phys. Rev. A 84, 043622 (2011).
[34] P. Zhang, L. Zhang, and W. Zhang, Phys. Rev. A 86, 042707

(2012).

[35] S. Takei, C.-H. Lin, B. M. Anderson, and V. Galitski, Phys. Rev.
A 85, 023626 (2012).

[36] L. Dong, L. Jiang, H. Hu, and H. Pu, Phys. Rev. A 87, 043616
(2013).

[37] V. B. Shenoy, Phys. Rev. A 88, 033609 (2013).
[38] Y. Wu and Z. Yu, Phys. Rev. A 87, 032703 (2013).
[39] V. B. Shenoy, Phys. Rev. A 89, 043618 (2014).
[40] H. Duan, L. You, and B. Gao, Phys. Rev. A 87, 052708 (2013).
[41] Q. Guan, X. Y. Yin, S. E. Gharashi, and D. Blume, J. Phys. B

47, 161001 (2014).
[42] Q. Guan and D. Blume, Phys. Rev. A 92, 023641 (2015).
[43] X. Y. Yin, S. Gopalakrishnan, and D. Blume, Phys. Rev. A 89,

033606 (2014).
[44] S. J. Wang and C. H. Greene, Phys. Rev. A 94, 053635 (2016).
[45] T. S. Deng, Z. C. Lu, Y. R. Shi, J. G. Chen, W. Zhang, and W. Yi,

Phys. Rev. A 97, 013635 (2018).
[46] S. J. Wang, Q. Guan, and D. Blume, Phys. Rev. A 98, 022708

(2018).
[47] Q. Guan and D. Blume, Phys. Rev. A 95, 020702 (2017).
[48] Q. Guan and D. Blume, Phys. Rev. A 94, 022706 (2016).
[49] X. Cui, Phys. Rev. A 95, 030701(R) (2017).
[50] J. P. Vyasanakere and V. B. Shenoy, Phys. Rev. B 83, 094515

(2011).
[51] L. Dong, L. Jiang, and H. Pu, New J. Phys. 15, 075014 (2013).
[52] L. Zhang, Y. Deng, and P. Zhang, Phys. Rev. A 87, 053626

(2013).
[53] D. M. Kurkcuoglu and C. A. R. Sá de Melo, Phys. Rev. A 93,

023611 (2016).
[54] R. A. Williams, M. C. Beeler, L. J. LeBlanc, K. Jimeńez-García,
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