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Many-body calculations of two-photon, two-color matrix elements for attosecond delays
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We present calculations for attosecond atomic delays in the photoionization of noble-gas atoms based on
the full two-color two-photon random-phase approximation with exchange in both the length and velocity
gauge. Gauge-invariant atomic delays are demonstrated for the complete set of diagrams. The results are used
to investigate the validity of the common assumption that the measured atomic delays can be interpreted as a
one-photon Wigner delay and a universal continuum-continuum contribution that depends only on the kinetic
energy of the photoelectron, the laser frequency, and the charge of the remaining ion, but not on the specific
atom or the orbital from which the electron is ionized. Here, we find that although effects beyond the universal
IR-photoelectron continuum-continuum transitions are rare, they do occur in special cases such as around the 3s
Cooper minimum in argon. We conclude also that in general the convergence in terms of many-body diagrams
is considerably faster in the length gauge than in the velocity gauge.
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I. INTRODUCTION

Techniques for probing ultrafast electronic dynamics, such
as the reconstruction of attosecond beating by interference of
two-photon transitions (RABBIT) [1] or the attosecond streak
camera [2], use delay-dependent modulations in photoelec-
tron spectra to quantify the time it takes for an electron to
escape an atomic potential [3–11]. These modulations arise
since the interaction with the ionizing attosecond pulse (or
pulse train) takes place in the presence of a laser field that
is phase locked to the attosecond light field(s). It has further
been established [12–14] that it is meaningful to separate
the measured atomic delay, τA ≈ τW + τCC, into a Wigner-
like delay associated with the one-photon extreme ultraviolet
(XUV) ionization process τW and a contribution from the
interaction with the infrared (IR) laser field in the presence
of the atomic potential, called the continuum-continuum (CC)
delay τCC (or Coulomb-laser coupling delay in the context of
streaking). In this context τCC denotes the contribution from a
single photoelectron in a Coulomb field that absorbs or emits
an IR photon, as detailed in Refs. [12,13]. While the Wigner
delay is known to be strongly dependent on the atomic origin
of the electron [15], the contribution from the IR photon has
been found to be more “universal” in the sense that it depends
only on the kinetic energy of the photoelectron, the photon
energy of the laser field, and the charge of the remaining ion
[13]. In the limit of weak fields, the physics can be described
as interference effects between various two-photon processes.
The validity of the τCC correction has been studied through
many-body calculations of the two-photon process both for
angular integrated measurements and for detection along the
polarization axis [16,17]. Although there are exceptions, in
particular, close to ionization thresholds and at resonances
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[7,8,17], the universality of the contribution from the laser
photon has hitherto proved to be a good approximation, with
the important practical consequence that Wigner delays τW

can be extracted from measured atomic delays τA. The many-
body calculations themselves have been benchmarked, for
example, against the difference between 2s and 2p time delays
in neon [10], over a wide energy range, and against time delay
differences between the outermost shells of rare-gas atoms
[6]. Still, the procedure used so far has employed significant
approximations. First, only the dominating time order with the
XUV photon being absorbed first, and the IR photon being
exchanged subsequently in a continuum-continuum transition,
has been studied in much detail [16–18]. Second, a more
careful account for many-body effects has only been done for
the XUV photoionization process, while the interaction with
the second photon has been calculated in the lowest-order
[16] and hybrid approaches [19]. Although these approxi-
mations are reasonable they have important consequences:
The results at this level of theory are expected to depend
on whether the light-matter interaction is expressed in the
length or velocity gauge. In addition, experimental results on
the difference between 3s and 3p time delays in argon [4,5]
show a marked disagreement with theory in the region around
the 3s Cooper minimum (at photon energies of ∼40 eV).
Therefore, it is important to push the study of atomic delays
one step further. Here, we have performed random-phase
approximation with exchange (RPAE)-type calculations for
the complete two-photon process. The RPAE approximation,
which is identical to time-dependent Hartree-Fock (TDHF),
is known to account for the dominating many-body effects
in one-photon ionization [20]. While the length and velocity
form of the electric dipole interaction gives the same result for
electrons in any local potential, the use of the Hartree-Fock
exchange potential destroys this invariance. As was shown
more than 40 years ago [21], RPAE, which accounts fully
for hole-particle excitations (including the effects usually
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called ground-state correlation—see below), is able to restore
the gauge invariance. For two-photon processes [22,23] and
beyond [24] pioneering studies of many-body effects on the
RPAE level were done already in the 1980’s and 1990’s. The
target at the time was absorption of equal energy photons
for below-threshold ionization (one photon alone could not
induce ionization). In contrast, our interest is in the interaction
with two photons of very different energies, where one photon
can initiate an above-threshold ionization process. We will
demonstrate that, just as for one-photon ionization, gauge
invariance is obtained when hole-particle excitations are fully
accounted for including all time orders, i.e., in a complete
two-photon RPAE calculation. We further show that the size
of individual contributions is vastly different in the two gauges
and that the common approximation to neglect the time order
where the IR photon is absorbed first leads to wrong results in
the velocity gauge.

In Sec. II we revisit the theory for atomic delays. The
method of calculation is outlined in Sec. III and the results
are presented in Sec. IV. In Sec. V we present a discussion of
our findings and in Sec. VI we present our conclusions.

II. THEORY

Here, we will briefly discuss the calculation of delays in
laser-assisted photoionization. A more detailed account can be
found in Ref. [17]. We consider first an N-electron atom that
absorbs one photon and subsequently ejects a photoelectron.
The radial photoelectron wave function will asymptotically be
described by an outgoing phase-shifted Coulomb wave,

u(1)
q,�,a(r) ≈ − πM (1)(q,�, a)

√
2m

πkh̄2

× ei(kr+ Z
ka0

ln 2kr−� π
2 +σZ,k,�+δk,� )

, (1)

where M (1) is the electric dipole transition matrix element
to the final continuum state q with momenta k, �, and ma.
When correlation effects are accounted for M (1) can contribute
to the phase shift, and σZ,k,� is the Coulomb phase for a
photoelectron with wave number k and angular momentum
quantum number � in the field from a charge of Ze,

σZ,k,� = arg

[
�

(
� + 1 − i

Z

ka0

)]
. (2)

The phase δk,� in Eq. (1) denotes the additional shift induced
by the atomic potential at short range. In the following,
we label the full perturbed wave function associated with
absorption of one photon with angular frequency � and a hole
in orbital a, by |ρ�,a〉, including both radial, angular, and spin
parts implicitly.

We will consider measurements that employ the RABBIT
technique [1], where an XUV comb of odd-order harmonics of
a fundamental laser field, � = (2n + 1)ω, is combined with
a synchronized, weak laser field with angular frequency ω.
In RABBIT, the one-photon ionization process is assisted by
an IR photon that is either absorbed or emitted. This gives
rise to the quantum beating of sidebands in the photoelectron
spectrum at energies corresponding to the absorption of an
even number of IR photons. The outgoing radial wave func-
tion after interaction with two photons (one XUV photon �

and one laser photon ω), will asymptotically have the form

u(2)
q,ω,�,a(r) ≈ − πM (2)(q, ω,�, a)

√
2m

πkh̄2

× ei(kr+ Z
ka0

ln 2kr−� π
2 +σZ,k,�+δk,� )

, (3)

where the important difference compared to the one-photon
case lies in the presence of the two-photon transition element
M (2), which connects the initial state |a〉 to the continuum state
|q〉 through all dipole-allowed intermediate states.

A. The form of the light-matter interaction

The standard expression for the light-matter interaction
comes from minimal coupling (p → p + eA), which gives the
Hamiltonian

h = 1

2m
p2 + V + e

m
p · A + e2

2m
· A2. (4)

If the spatial dependence of A can be neglected, the diamag-
netic term, ∼A2, can be removed through a unitary transfor-
mation of the wave function, � → U�, with

U = exp

[
i

h̄

(
e2

∫ t

dt ′A2(t ′)
)]

,

and the transformation of the time-dependent Schrödinger
equation,

UhU †U� = ih̄U
∂

∂t
U †U�. (5)

This gives one remaining interaction term,

hvelocity
I = e

m
p · A, (6)

which is usually referred to as the velocity gauge form. A
different unitary transformation

U = exp

[
i

h̄

(
er · A(t ) + e2

∫ t

dt ′A2(t ′)
)]

can be employed to find the alternative length gauge form

hlength
I = er · E (7)

(for details, see, e.g., Ref. [25]). Here, it is worth noting that
in order to arrive at Eq. (7) from Eq. (5) it is necessary to
assume that the potential term in the Hamiltonian in Eq. (4)
commutes with U . This is obviously true for the Coulomb
interaction with the nucleus, as well as between the electrons.
However, due to the nonlocal nature of the Hartree-Fock
exchange potential this is not the case within the Hartree-Fock
approximation. Only by adding the RPAE class of many-
body effects can the invariance between the two forms be
restored [21]. Close agreement between the two forms is often
considered a quality mark for more elaborate calculations.
Since the agreement is trivial for any local potential it is
considered a necessary, albeit not sufficient, property.

With linearly polarized light we may now write the transi-
tion matrix elements from Eq. (1) in the length gauge as

M (1)(q,�, a) = 〈q|ez|a〉E�, (8)
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or in the velocity gauge as

M (1)(q,�, a) = 〈q| e

m
pz|a〉A�. (9)

These noncorrelated transition matrix elements can be chosen
to be real in Eq. (8) and imaginary in Eq. (9) by use of real
radial wave functions.

Similarly the two-photon matrix element in Eq. (3) can be
written as

M (2)(q, ω,�, a) = lim
ξ→0+

∫∑
p

〈q|ez|p〉〈p|ez|a〉
εa + h̄� − εp + iξ

EωE� (10)

in the length gauge (and similarly with the epz/m operator
and vector potentials AωA� in the velocity gauge). An im-
portant difference compared to one-photon absorption is that
the two-photon matrix element is intrinsically complex for
above-threshold ionization, i.e., when the XUV photon energy
exceeds the atomic binding energy, h̄� > −εa > 0.

The atomic contribution to the quantum beating of the
sideband at energy, εq = 2nh̄ω + εa, in a RABBIT experiment
is the phase difference between the quantum path where the
XUV harmonic h̄�> = (2n + 1)h̄ω is absorbed and an IR
photon is emitted and that where both an XUV harmonic,
now of energy h̄�< = (2n − 1)h̄ω, and an IR photon are
absorbed. Equation (10) shows the most important path, but
contributions will also come from the reversed time order
where the IR photons are exchanged before absorption of
any XUV photon. For this latter path there is in the general
case no on-shell intermediate state that can contribute. It is
thus assumed to be of less importance and is consequently
often neglected. While this is a justified approximation for
calculations in the length gauge the situation is very different
in the velocity gauge, as we will see below.

B. The time delay

Following the usual RABBIT formalism [17], we con-
struct the phase shift of photoelectrons that take two different
quantum paths leading to the same final state. To represent a
photoelectron of a given energy emitted in a specific angle it is
necessary to sum coherently over all contributing angular mo-
menta. The phases of photoelectrons with momentum along
the common polarization axis of the fields ẑ are then given as

φa = arg

(∑
�

Ma(�)ei(−� π
2 +ηZ,k,� )Y�,0(ẑ)

)
,

φe = arg

(∑
�

Me(�)ei(−� π
2 +ηZ,k,� )Y�,0(ẑ)

)
. (11)

At this emission angle only the zero magnetic quantum
number contributes to the ionization process, ma = 0. We use
the following shorthand notation,

Ma(�) = M (2)(q, ω,�<, a),

Me(�) = M (2)(q,−ω,�>, a)

ηZ,k,� = σZ,k,� + δk,�,

where subscripts a and e stand for IR absorption and emission,
respectively (do not confuse the subscript a with the quantum

number label a for the initial atomic state), where Ma/e(�)
depend on angular momentum � of the final q state. The
atomic delay for emission along ẑ can be calculated for
sideband 2n as

τA = φe − φa

2ω
. (12)

Similarly, the one-photon phase shifts of the photoelectron in
the ẑ direction are

φ> = arg

(∑
�

M>(�)ei(−� π
2 +ηZ,k>,� )Y�,0(ẑ)

)
,

φ< = arg

(∑
�

M<(�)ei(−� π
2 +ηZ,k<,� )Y�,0(ẑ)

)
, (13)

where we use shorthand notation for the one-photon ma-
trix elements, M>/<(�) ≡ M (1)(q>/<,�>/<, a), with the final
photoelectron wave number k>/< and angular momentum �,
after absorption of a photon with angular frequency �>/<.
Equation (13) can be used to compute the Wigner-like delay
at sideband 2n along ẑ as

τW = φ> − φ<

2ω
. (14)

We point out that the definition of the Wigner delay using
Eq. (14) breaks down at resonances that typically have large
phase variations over the photon energy of the probe field [12].
In the following, we refer to the quantity τA − τW as the delay
difference induced by the laser field in RABBIT. We make
a distinction between this “exact” delay difference and the
approximate continuum-continuum delay that can be derived
using asymptotic continuum functions, τCC ≈ τA − τW [13].

III. METHOD

While the RPAE approximation has been used to include
electron correlation effects for the interaction with the ioniz-
ing XUV photon, the subsequent above-threshold interaction
with the IR field has been limited to a static atomic interaction
in our earlier studies [16–18]. Here, we discuss, in some de-
tail, how this approximation can be lifted. The calculations are
performed with a basis set obtained through diagonalization
of effective one-particle Hamiltonians in a radial primitive
basis of B splines [26], in a spherical box. For each angular
momentum � this one-particle Hamiltonian reads

h�
0(r) = − h̄2

2m

∂2

∂r2
+ h̄2

2m

�(� + 1)

r2

− e2

4πε0

Z

r
+ uHF + uproj. (15)

It includes the (nonlocal) Hartree-Fock potential (HF) uHF

for the closed shell with N electrons and a correction uproj

(also nonlocal). The latter is called a projected potential (for
the explicit form, see Sec. III A below) and it ensures that
any excited electron feels an approximate long-range potential
with N − 1 electrons remaining on the target. Since it is
projected on virtual states it does not affect the occupied HF
orbitals. The projected potential allows us to include some
effects already in the basis set, that would otherwise be treated
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perturbatively through the RPAE iterations. The eigenstates to
h�

0 form an orthonormal basis with eigenenergies εi that is used
for the description of the occupied orbitals, but it is also used
to span the virtual space of the photoelectron.

We start with writing the dipole interaction between one
electron and the electromagnetic fields as

hI = lim
ξ→0+

2
∑

j

d� j cos(� jt )eξ t

= lim
ξ→0+

∑
j

d� j

∑
σ=±1

exp[(−iσ� j + ξ )t], (16)

where d� j is a time-independent operator that describe the
coupling of the atom to the field with angular frequency � j

and ξ is used to set the outgoing boundary condition for the in-
teraction. We assume a cosine field for simplicity (this can be
done in both gauges without loss of generality). With linearly
polarized light the length gauge expression is d� j = ezE� j ,
where ez is the dipole operator component along the field
polarization. Consider now an electron in the occupied orbital
|a〉, i.e., in an eigenstate to the one-particle Hamiltonian in
Eq. (15). When it absorbs (σ = 1) or emits (σ = −1) photons
it will acquire correction terms to its wave function of the
type

|ψa(t )〉 = |a〉e−iεat/h̄ +
∑

j

∑
σ=±1

∣∣ρ (1:σ )
� j ,a

〉
e−i(σ� j+εa/h̄)t

+
∑
j, j′

∑
σ=±1

∑
σ ′=±1

∣∣ρ (2:σ ′,σ )
� j′ ,� j ,a

〉

× e−i(σ ′� j′+σ� j+εa/h̄)t + · · · , (17)

where the superscripts and subscripts label sequences of inter-
actions with photons (signs and angular frequencies) by joint
increasing primes. Expressions for the correction terms can be
found through the time-dependent Schrödinger equation(

ih̄
∂

∂t
− h�

0

)
|ψa(t )〉 = hI |ψa(t )〉, (18)

by collecting the contributions that scale linearly with the field
E� j and oscillate with exp[−i(σ� j + εa/h̄)t] as(

σ h̄� j + εa − h�
0

)∣∣ρ (1:σ )
� j ,a

〉 = d� j |a〉. (19)

For a single-electron case the desired one-photon correction
to the wave function is simply obtained from Eq. (19), which
we call the one-electron first-order perturbed wave function,

∣∣ρ (1:σ )
0,� j ,a

〉 =
∑

p

|p〉〈p|d� j |a〉
σ h̄� j + εa − εp

, (20)

where the sum over p runs over all states (including
also the continuum). For a many-electron system, however,
there are more effects to consider. The starting point is
then a Slater determinant |{ab . . . n}〉 [where curly brack-
ets denote antisymmetrization, |{ab . . . n}〉 ≡ (|ab . . . n〉 −
|ba . . . n〉 . . .)/

√
n!]. The field-corrected wave function will

also be a Slater determinant, but now the orbitals are as given
by Eq. (17), i.e.,

|�(t )〉 = |{ψa(t ), ψb(t ), ψc(t ), ψd (t ), . . .}〉. (21)

Since the interaction with the other electrons is accounted
for by the Hartree-Fock potential the possible changes in it
due to the interaction with the electromagnetic field have
to be considered. We will return to this question below, but
here we mark that the sum on p in Eq. (20) is restricted to
unoccupied states for the many-electron case (below the sums
will be marked “exc” to include only these “excited” states).
This is simply what is expected from the Pauli exclusion
principle. Alternatively, the restriction of p to excited states
can be understood from Eq. (21) where a σ = +1 excitation
of orbital a into b, as given in Eq. (20), will cancel the σ = −1
excitation of orbital b into a and vice versa.

We are interested in photoionization processes that happen
when σ h̄� + εa > 0. This implies that there is a pole in the
denominator of Eq. (20) that must be treated with the proper
boundary condition and continuum integration. An efficient
way to do this is to use exterior complex scaling (ECS) of the
radial coordinate,

r →
{

r, 0 � r � RC,

RC + (r − RC )eiϕ, r � RC,
(22)

which enforces the outgoing boundary condition for the un-
bound states. The eigenenergies of the orbitals are complex
in general using ECS, and it has the advantage that the
integration over the continuum is effectively performed by a
sum over a discretized representation of all excited states p as
written in Eq. (20).

The terms in Eq. (18) proportional to the product E�′
j
E� j

that oscillates with exp[−i(σ ′� j′ + σ� j + εa/h̄)t] are(
σ ′h̄� j′ + σ h̄� j + εa − h�

0

)∣∣ρ (2:σ ′,σ )
� j′ ,� j ,a

〉 = d� j′
∣∣ρ (1:σ )

� j ,a

〉
, (23)

for the case where the σ ′ interaction with frequency � j′ hap-
pens after the σ interaction with frequency � j . The second-
order correction for a single electron are

∣∣ρ (2:σ ′,σ )
0,� j′ ,� j ,a

〉 =
∑

p

|p〉〈p|d� j′
∣∣ρ (1:σ )

0,� j ,a

〉
σ ′h̄� j′ + σ h̄� j + εa − εp

, (24)

which simply builds on the first-order correction. Next, we
need to define a notation for the corrections that includes all
possible time orders by writing a square bracket around the
signs, [σ ′, σ ], and frequencies, [� j′ ,� j], to include all joint
permutations of primes on signs and frequencies. The second-
order correction for a single electron with summed time orders
is simply∣∣ρ (2:[σ ′,σ ])

[� j′ ,� j ],a

〉 =
∑

p

|p〉〈p|
σ ′h̄� j′ + σ h̄� j + εa − εp

× (
d� j′

∣∣ρ (1:σ )
0,� j ,a

〉 + d� j

∣∣ρ (1:σ ′ )
0,� j′ ,a

〉)
. (25)

A. One-photon RPAE

The many-body response to the interaction with the photon
is neglected in Eq. (20), but the bulk of these effects can
be added through the RPAE method [20], where certain sub-
classes of many-body effects are included through the iterative
solution of the equations for the coupled channels. Another
name for RPAE is time-dependent Hartree-Fock [27], and we
will here use that point of view to derive the expressions we
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(a) (b) (c) (d) (e) (f)

(g) (h) (i) (j) (k) (l)

FIG. 1. Goldstone diagrams illustrating RPAE for the many-body screening of the photon interaction. (a) and (g) are forward and backward
propagation, respectively, where the sphere indicates the correlated interaction to infinite order. The wavy line indicates the photon interaction
and the dashed line the Coulomb interaction. Down-going lines (labeled with a, b) stand for holes created when electrons are removed from
initially occupied orbitals, and up-going lines (labeled with o, p) for initially unoccupied orbitals.

need. With the HF approximation each orbital is described
as moving in an average potential from the other orbitals,
and its matrix element between any orbitals m, n (occupied
or unoccupied) is

〈m|uHF|n〉 =
core∑

b

〈{mb}|V12|{nb}〉, (26)

where the Coulomb interaction is given by

V12 = e2

4πε0

1

r12
= e2

4πε0

∞∑
K=0

rK
<

rK+1
>

CK (1) · CK (2), (27)

and CK denotes the tensor-operator form of spherical har-
monics, as introduced by Racah [28]. Our starting point is a
Slater determinant constructed from orbitals that are solutions
to Eq. (15), with the Hartree-Fock potential defined as in
Eq. (26). When the electrons interact with the field and acquire
perturbations according to Eq. (17) the potential itself will
change, uHF → uHF + δu. This gives rise to additional paths
for orbital a to absorb or emit one photon with phase factor
exp[−iσ� jt]. In Eq. (26) we replace b → b + ρ

(1:σ )
� j ,b

, let the
potential work on orbital a, and identify new terms to the
excited states p that are linear in the electric field and oscillate
with exp [−i(σ� j + εa/h̄)t] as

〈p|δu(1:σ )
� j

|a〉 =
core∑

b

[〈{pb}|V12

∣∣{aρ
(1:σ )
� j ,b

}〉
+ 〈{

pρ (1:−σ )
� j ,b

}∣∣V12|{ab}〉]. (28)

In the case of absorption of a photon, σ = 1, this implies that
the second term in Eq. (28) is generated using a perturbed
wave function that describes the virtual emission of a photon,
σ = −1. Adding Eq. (28) as an additional source term to the
right-hand side of Eq. (19) leads to coupled equations for
the correlated perturbed wave functions for absorption and

emission of a photon,

(σ h̄� j + εa − h)
∣∣ρ (1:σ )

� j ,a

〉 =
exc∑
p

|p〉〈p|(d� j + δu(1:σ )
� j

)|a〉.

(29)

Use of Eqs. (20) and (28) leads to the final expression

∣∣ρ (1:σ )
� j ,a

〉 =∣∣ρ (1:σ )
0,� j ,a

〉 − exc∑
p

|p〉
σ h̄� j + εa − εp

×
(

core∑
b

[〈bp|V12

∣∣a ρ
(1:σ )
� j ,b

〉 − 〈b p|V12

∣∣ρ (1:σ )
� j ,b

a
〉

+ 〈
ρ

(1:−σ )
� j ,b

p
∣∣V12|ab〉 − 〈

pρ
(1:−σ )
� j ,b

∣∣V12|ab〉]
−〈p|uproj

∣∣ρ (1:σ )
� j ,a

〉)
, (30)

where the exchange interactions are written out explicitly. The
upper part of Fig. 1 shows the Goldstone diagrams for |ρ (1:σ )

� j ,a
〉,

where Fig. 1(b) is the uncorrelated absorption of a photon
� j , corresponding to the first term on the right-hand side
of Eq. (30). Figures 1(c) and 1(d) account for the electron-
hole interaction in forward propagation, corresponding to the
second and third terms, while Figs. 1(e) and 1(f) account for
ground-state correlation effects, corresponding to the fourth
and fifth terms on the right-hand side of Eq. (30). The last
term in Eq. (30) removes the projected potential, introduced in
Eq. (15), which we take to be the monopole interaction with a
given hole c,

uproj = − e2

4πε0

exc∑
r,s

|r〉〈rc| 1

r>

|sc〉〈s|. (31)

It will cancel the corresponding part of δu of Figs. 1(c) and
1(i) with a = b = c and K = 0. When converged, the iterative
procedure gives the same results if the projected potential is
used or not, but the convergence is often much improved in
the latter case, especially close to ionization thresholds.
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FIG. 2. Goldstone diagrams illustrating the contributions to the forward propagating two-photon RPAE perturbed wave function |ρa/e〉 in
Eqs. (37) and (38). Only direct diagrams are shown. For (g)–(j) there are also contributions with the order of the two photons interchanged.
There is a similar equation for the backward propagating diagrams needed to evaluate the diagram in (l). The calculations use the full set of
diagrams including the exchange versions and the time orders omitted from the illustration. As in Fig. 1, the wavy lines indicate the photon
interactions and the dashed line the Coulomb interaction. Down-going lines (labeled with a, b, c) stand for holes created when electrons are
removed from initially occupied orbitals, and up-going lines (labeled with p, r, s) for initially unoccupied orbitals.

B. Two-photon RPAE

We now derive the interaction with two photons for the
multielectron case. The second interaction with the field can
stimulate either the excited electron or the remaining hole
from the first interaction. The latter effect arises when the
staring point is a Slater determinant and the corrected wave
function is of the form given in Eq. (21). The net result is
a coupling of the wave functions associated with different
holes in Eq. (17), by the hole-hole dipole interaction in the
source term of Eq. (18). Collecting the terms proportional
to E� j′ E� j from Eq. (18) that oscillate with exp[−i(σ ′� j′ +
σ� j + εa/h̄)t], we write

(
σ ′h̄� j′ + σ h̄� j + εa − h�

0

)∣∣ρ (2:[σ ′,σ ])
0,[� j′ ,� j ],a

〉
=

exc∑
p

|p〉〈p|(d� j′
∣∣ρ (1:σ )

� j ,a

〉 + d� j

∣∣ρ (1:σ ′ )
� j′ ,a

〉)

−
core∑

c

(〈c|d� j′ |a〉∣∣ρ (1:σ )
� j ,c

〉 + 〈c|d� j |a〉∣∣ρ (1:σ ′ )
� j′ ,c

〉)
, (32)

where the source terms on the right-hand side contain both
time orders. In Eq. (32) the second line accounts for the
interaction with the excited electron [Figs. 2(a) and 2(b)],
while the third line accounts for hole transfer from another
orbital [Figs. 2(c) and 2(d)]. The minus on the third line comes

from Wick’s theorem, which is evaluated using the Goldstone
rules associated with the diagrams in Fig. 2 [29].

The next step is to consider the many-body response.
Second-order corrections to the Hartree-Fock potential can
generate terms proportional to E� j′ E� j . By letting b → b +
ρ

(1:σ )
� j ,b

+ ρ
(2:[σ ′,σ ])
[� j′ ,� j ],b

· · · in Eq. (26), and collecting the terms that

oscillate with exp[−i(σ ′� j′ + σ� j + εa/h̄)t], we arrive at

〈p|δu(2:[σ ′,σ ])
[� j′ ,� j ]

|a〉

=
core∑

b

(〈{pb}|V12

∣∣{aρ
(2:[σ ′,σ ])
[� j′ ,� j ],b

}〉
+ 〈{

pρ (2:[−σ ′,−σ ])
[� j′ ,� j ],b

}∣∣V12|{ab}〉
+ 〈{

pρ (1:−σ ′ )
� j′ ,b

}∣∣V12

∣∣{aρ
(1:σ )
� j ,b

}〉
× 〈{

pρ (1:−σ )
� j ,b

}∣∣V12

∣∣{aρ
(1:σ ′ )
� j′ ,b

}〉)
. (33)

The forward propagating (σ = 1) direct contributions from
lines two and three are depicted in Figs. 2(k) and 2(l), and
those from lines four and five in Fig. 2(i) (only one of the two
time orders is shown). Another set of contributions that will
have the right oscillations are the first-order corrections from
the Hartree-Fock potential when they, just as the dipole oper-
ator in Eq. (32), work on the corrected wave functions. This
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gives corrections

〈p|δu(1:σ ′ )
� j′

∣∣ρ (1:σ )
� j ,a

〉 =
core∑

b

[〈{pb}|V12

∣∣{ρ (1:σ )
� j ,a

ρ
(1:σ ′ )
� j′ ,b

}〉
+ 〈{

pρ (1:−σ ′ )
� j′ ,b

}∣∣V12

∣∣{ρ (1:σ )
� j ,a

b
}〉]

, (34)

for which the direct contributions are depicted in Figs. 2(e)
and 2(g), and also

〈c|δu(1:σ ′ )
� j′

|a〉 ρ
(1:σ )
� j ,c

=
core∑

b

[〈{cb}|V12

∣∣{aρ
(1:σ ′ )
� j′ ,b

}〉
ρ

(1:σ )
� j ,c

+ 〈{
cρ (1:−σ ′ )

� j′ ,b

}∣∣V12|{ab}〉ρ (1:σ )
� j ,c

]
, (35)

where the direct contributions are depicted in Figs. 2(f) and
2(h). Note though that in both Eqs. (34) and (35) the case
when j′ and j are interchanged is to be added. Finally, there
are second-order corrections that stem from the fact that
the expression in Eq. (17) uses intermediate normalization,
which means that the occupied orbitals |a〉 are normalized and
orthogonal to the corrections |ρ (1:σ )

� j ,a
〉, . . ., while |ψa〉 is neither

normalized nor orthogonal to |ψb〉. These corrections for the
second-order interaction depend on the inner product of the
first-order corrections to the wave functions,

〈p|N (2:[σ ′,σ ])
[� j′ ,� j ]

|a〉 = −
core∑
b,c

〈{pb}|V12|{ac}〉

× (〈
ρ

(1:−σ ′ )
� j′ ,c

∣∣ρ (1:σ )
� j ,b

〉 + 〈
ρ

(1:−σ )
� j ,c

∣∣ρ (1:σ ′ )
� j′ ,b

〉)
.

(36)

Again the direct contribution is depicted in Fig. 2(j) for one of
the time orders. The contributions from Eqs. (33)–(36) should
now be added as source terms to Eq. (32) and we can write
down the equation for the second-order correction including
the many-body response,(

σ ′h̄� j′ + σ h̄� j + εa − h�
0

)∣∣ρ (2:[σ ′,σ ])
[� j′ ,� j ],a

〉
=

exc∑
p

|p〉〈p|[(δu(2:[σ ′,σ ])
[� j′ ,� j ]

+ N (2:[σ ′,σ ])
[� j′ ,� j ]

)|a〉

+ (
δu(1:σ ′ )

� j′
+ d� j′

)∣∣ρ (1:σ )
� j ,a

〉 + (
δu(1:σ )

� j
+ d� j

)∣∣ρ (1:σ ′ )
� j′ ,a

〉
− uproj

∣∣ρ (2:[σ ′,σ ])
[� j′ ,� j ],a

〉]
−

core∑
c

〈c|[(d� j′ + δu(1:σ ′ )
� j′

)|a〉∣∣ρ (1:σ )
� j ,c

〉
+ (

d� j + δu(1:σ )
� j

)|a〉∣∣ρ (1:σ ′ )
� j′ ,c

〉]
. (37)

The term with −uproj compensates for the projected potential,
which, as mentioned above, is important only for numerical
convergence.

C. Calculation of two-photon matrix elements

For a RABBIT calculation with photoelectron energy
2nh̄ω + εa, we need two specific second-order correlated
perturbed wave functions for orbital a from Eq. (37),∣∣ρ (2:[±,+])

[ω,(2n∓1)ω],a

〉 ≡ |ρa/e〉, (38)

that include absorption of a smaller XUV photon and absorp-
tion (a) of a laser photon, as well as absorption of a larger
XUV photon with emission (e) of a laser photon, denoted
|ρa/e〉 for brevity. Given |ρa/e〉 we may directly extract the
two-photon matrix elements needed for the calculation of the
atomic delay (cf. Sec. II B). However, due to the on-shell
above-threshold contributions to the diagram in Fig. 2(a), the
construction of |ρa/e〉 for the time order where the XUV pulse
is absorbed first involves an integration over a double pole and
is not trivial. To circumvent this problem we first calculate the
two-photon matrix element for the diagrams in Figs. 2(a)–2(d)
and treat the additional corrections to |ρa/e〉 separately. The
different steps are detailed below.

The contributions from Figs. 2(a)–2(d) are calculated di-
rectly from the first-order corrections |ρ (1:+)

(2n∓1)ω,a〉. In the
length gauge, the diagrams in Figs. 2(a) and 2(c) amount to

MTO:1
a/e = 〈q|d±ω

∣∣ρ (1:+)
(2n∓1)ω,a

〉 − core∑
c

〈
q
∣∣ρ (1:+)

(2n∓1)ω,c

〉〈c|d±ω|a〉,
(39)

where TO:1 stands for first time order, while the diagrams in
Figs. 2(b) and 2(d) amount to

MTO:2
a/e =〈q|d(2n∓1)ω

∣∣ρ (1:±)
ω,a

〉 − core∑
c

〈
q
∣∣ρ (1:±)

ω,c

〉〈c|d(2n∓1)ω|a〉,
(40)

where TO:2 stands for the second time order. The final state q
is here an eigenstate to the effective one-particle Hamiltonian
at the sideband kinetic energy ε = εa + 2nh̄ω. As described in
Refs. [17,18], the numerical representation of the radial part
of |q〉, denoted Pq(r), is a solution of

h�Pq(r) = εPq(r), (41)

which can be reformulated as a system of linear equations for
the unknown coefficients ci when expanded in B splines,

Pq(r) =
∑

i

ciBi(r). (42)

For the case in Fig. 2(a), where the first photon is of an
XUV-wavelength causing ionization, and the second integral
is between two continuum states, the integral in Eq. (39)
will not converge for any finite interval on the real axis. The
integration is instead performed numerically out to a distance
far outside the atomic core, but within the unscaled region
(a0 � r < RC), while the final part of the integral is carried
out using analytical Coulomb waves along the imaginary r
axis as described in Ref. [17]. The numerical stability is
monitored by comparison of different “break points” between
the numerical and analytical descriptions. The integrals in
Eq. (40), on the other hand, converge inside the numerical box
since the IR field can only induce a localized correction to the
wave function.

The diagrams in Figs. 2(e)–2(j), and their exchange as
well as switched time-order counterparts, can all be calculated
by connecting converged first-order corrections with a single
Coulomb interaction. Finally, the diagrams in Figs. 2(k) and
2(l) are found in an iterative procedure following that for the
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first-order correction [Eq. (30)]. With the use of the projected
potential [Eq. (31)], all monopole terms are removed from
the iterative procedure and the integral over the remaining
Coulomb interaction does indeed converge on a finite interval.
Therefore, it can be treated numerically inside the computa-
tional box. Separating the two-photon perturbed wave func-
tion in the lowest-order contributions [Figs. 2(a)–2(d)] and the
rest,

|ρa/e〉 = ∣∣ρ (0)
a/e

〉 + |δρa/e〉,
and the the remaining contribution to the two-photon matrix
element δMa/e can be deduced directly from |δρa/e〉, giving
the final result

Ma/e = MTO:1
a/e + MTO:2

a/e + δMa/e. (43)

Of the four contributions in Eqs. (39) and (40) it is natural
to assume that the first term in Eq. (39) [Fig. 2(a)] is by
far the dominating one because it suffers from a zero in
the denominator of the perturbed wave function. In con-
trast, Figs. 2(b)–2(d) are all connected with rather large
denominators and should be small in general. The concept
of continuum-continuum (CC) delays [12,13], where a pho-
toelectron interact with a laser field after photoionization,
derives from the assumption that the total two-photon process
is well described by Fig. 2(a) with use of a suitable long-range
potential, such as the projected potential in Eq. (31) [16,17].
Here, we will show that this assumption is close to the truth
for calculations in the length gauge, but wrong in the velocity
gauge.

D. Gauge invariance

As discussed above, the RPAE approximation can be
shown to produce gauge-invariant results [21] for the one-
photon processes. This holds when the approximation is used
consistently and without truncations. For example, the sum
over core orbitals in Eq. (30) cannot be truncated and the
orbital energies should be eigenvalues to the one-particle
Hamiltonian used and cannot be replaced with experimental
ionization energies. With these constraints we are here able to
demonstrate gauge invariance also for the two-photon RPAE
approximation as will be seen below.

IV. RESULTS

Here, we present calculations of atomic delays for pho-
toelectrons emitted along the polarization axis ẑ, as defined
in Eqs. (11)–(14). In Figs. 3–8 the horizontal axis labeled
photon energy means the total photon energy absorbed by the
photoelectron. In the case of atomic delays this implies the
XUV-photon energy plus or minus the laser photon energy
for laser photon absorption or emission, respectively. All the
presented results are for a laser frequency corresponding to
h̄ω = 1.55 eV, which is commonly used in experiments.

A. Neon 2p

The atomic delay results for photoionization from the
2p orbital of neon are presented in Fig. 3 (length gauge)
and Fig. 4 (velocity gauge). The RPAE iterations account
for correlation effects from all three orbitals (1s, 2s, 2p),

FIG. 3. The atomic delay for ionization from Ne 2p for electrons
emitted along the polarization axis. The delay is calculated in length
gauge. The thick solid blue line shows the result from Fig. 2(a). The
thin solid blue line includes also Fig. 2(b) and the dashed-dotted blue
line also Fig. 2(c) and 2(d). The red dashed line shows the final results
with the full set of diagrams illustrated in Fig. 2.

and the diagrams are evaluated using HF orbital energies.
The atomic delay is calculated from the two-photon matrix
elements as discussed in Sec. II B. The different contribu-
tions to these matrix elements are in both figures given with
reference to the diagrams in Fig. 2. It is striking that the
length gauge result is completely dominated by correlated
XUV absorption followed by uncorreleted photoelectron-IR
interaction, represented by the diagram in Fig. 2(a) [first
term in Eq. (39)], which is the contribution accounted for in
our previous studies [16–18]. Only very small corrections,
less than an attosecond (as), are found from the reversed

FIG. 4. The atomic delay for ionization from Ne 2p for electrons
emitted along the polarization axis. The delay is calculated in the
velocity gauge. The thick solid blue line shows the result from
Fig. 2(a). The thin solid blue line includes also Fig. 2(b) and the
dashed-dotted blue line also Figs. 2(c) and 2(d). The red dashed line
shows the final results with the full set of diagrams illustrated in
Fig. 2. It can be compared to the final result obtained in the length
gauge (gray dotted line).
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FIG. 5. The atomic delay for ionization from Ar 3p for electrons
emitted along the polarization axis. The delay is calculated in the
velocity gauge. The thick solid blue line shows the result from
Fig. 2(a). The thin solid blue line includes also Fig. 2(b) and the
dashed-dotted blue line also Figs. 2(c) and 2(d). The red dashed line
shows the final results with the full set of diagrams illustrated in
Fig. 2. It can be compared with the final result obtained in the length
gauge (gray dotted line).

time-order process Fig. 2(b) [first term in Eq. (40)], uncorre-
lated hole-field interactions Figs. 2(c) and 2(d) [second term in
Eqs. (39) and (40), respectively], and general correlated two-
photon processes Figs. 2(e)–2(l). This finding is supported
by the comparison with experiment in Ref. [10], where good
agreement was found over a large energy interval in the length
gauge using only the diagram in Fig. 2(a) with experimental
values substituted for the HF orbital energies. The results
are more subtle in the velocity gauge. The XUV first with
an uncorrelated photoelectron-IR interaction appears to be a
reasonable approximation that deviates by a few attoseconds
from the full calculation, but when the reversed time-order
process is added (IR first) the deviation from the full calcu-
lation increases. Similarly, adding the hole-field interactions
increases the deviation of the atomic delay further. Only the
full two-photon RPAE calculation gives identical results in the
velocity and length gauge as seen in Fig. 4. The agreement
between the gauges can be viewed as a validation test of the
implementation.

B. Argon 3p

The atomic delay for ionization from argon 3p is displayed
in Fig. 5. The RPAE iterations account for effects from all five
orbitals (1s, 2s, 2p, 3s, 3p), and the diagrams are evaluated
using HF orbital energies. The delay is larger and changes
more dramatically in argon as compared to neon. The velocity
gauge result from Fig. 2(a) alone underestimate the delay with
around 40 as below the Cooper minimum and overestimate it
by more than 50 as above. Including the full set of diagrams
illustrated in Figs. 2(a)–2(l) leads to agreement between the
length and velocity results within the numerical accuracy of
the calculation.

In a truncated calculation, where the RPAE iterations ac-
count only for effects from the two outer shells (3s, 3p), there
is a remaining difference between the two gauges, as shown in

FIG. 6. The atomic delay for ionization from Ar 3p for electrons
emitted along the polarization axis using the full set of diagrams
illustrated in Fig. 2. The dotted (blue) and dashed (red) lines show
the results in the length and velocity gauges when all five orbitals
are included in the two-photon RPAE iterations, while the solid lines
show the result with only the two outer orbitals included. The thick
solid blue line is the result within the length gauge and the thin solid
red within the velocity gauge.

Fig. 6. The deviation from the full result is of the same order of
magnitude for the two gauges, which implies that there is no
clearly preferable gauge for the truncated two-photon RPAE
calculation.

C. Argon 3s

The atomic delay for ionization from argon 3s with photo-
electrons emitted in the polarization direction is displayed in
Fig. 7. The RPAE iterations account for effects from all five
argon orbitals (1s, 2s, 2p, 3s, 3p). While Koopman’s theorem
states that the binding energy is equal to minus the HF orbital
energy, which for 3s is ∼34.8 eV, the true ionization energy
is only ∼29.2 eV. Therefore, we must substitute the HF
orbital energies with experimental values for a meaningful
comparison with experiments. This simple procedure can be
justified, since it corresponds to the inclusion of additional
classes of diagrams [30], but only at the price that the results
again become gauge dependent. It is known from one-photon
absorption experiments on argon that the cross section of 3s
is affected by the strong 3p photoionization channel through
electron correlation effects [20]. For two-photon processes
a coupling from 3p to 3s can be directly stimulated by the
second photon through the diagrams in Figs. 2(c) and 2(d).
The question now arises if such hole-field coupling effects can
influence the atomic delay in argon.

The Cooper minimum in the 3s ionization cross section
can be understood as a “replica” of the Cooper minimum in
the 3p ionization channel. In more detail, the 3s minimum
is caused by an interference effect between the direct path
(3s) and correlated path (3p → 3s), which results in very
different ionization delays. While the 3p delays show a large
negative peak (Fig. 5), the 3s delays show a large positive
peak shown in Fig. 7. This conclusion is consistent with
prior works based on RPAE [15–17,31] and time-dependent
local-density approximation (TDLDA) [32]. Oddly, the large
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FIG. 7. The atomic delay for ionization from Ar 3s for electrons
emitted along the polarization axis. The delay is calculated in the
length gauge and the Hartree-Fock orbital energies have been re-
placed with experimental ionization energies. The dashed blue line
shows the result from Fig. 2(a). The solid red line includes the full
set of diagrams illustrated in Fig. 2. The energy region shown is that
of the Cooper minimum in the 3s cross section. Very close to this
minimum, when the one-photon amplitude goes through zero, the
numerical uncertainty grows. The error bars indicate the spread in
the results for different “break points” (cf. Sec. III C).

positive peak has not been observed in experiments [4,5],
while the negative peak has been reproduced experimentally
using RABBIT [33,34]. In our earlier studies of atomic delays,
we have only accounted for Fig. 2(a) and we have found that
both the sign and position of the 3s delay peak is sensitive to
correlation effects [17]. Here, we find that the contributions
from the remaining diagrams in Fig. 2 are not insignificant for
3s in argon, as seen in Fig. 7, and that the main additional
contributions come from the hole-field coupling in Fig. 2(c).
However, the sum of all diagrams in our complete two-photon
RPAE calculation does not resolve the discrepancy with argon
3s experiments at the Cooper minimum because the sign of
our final delay peak remains positive and its position is not
significantly altered (much less than an electron volt).

Very close to the Cooper minimum, where the one-photon
matrix element goes through zero, it has been found to be
harder to achieve good numerical accuracy. The scatter of
break points (see Sec. III C) is indicated by error bars in Fig. 7.

D. Argon 3s-3p

Finally, we show the difference in atomic delay for pho-
toelectrons ionized from the two outer orbitals in argon,
τ

(3s)
A − τ

(3p)
A , in Fig. 8. Here, we display both the calculated

result for electrons emitted in the polarization direction ẑ, and
for angular integrated detection, which is the configuration
used in current RABBIT experiments [4,5,35]. We find that
the atomic delay difference is not affected by the choice of
detection in the region of the 3s Cooper minimum at ∼40 eV.
In contrast, the atomic delay difference is strongly altered
close to the 3p Cooper minimum at ∼50 eV due to the
choice of detection, and the delay peak is reduced due to
angular integration in agreement with the experimental angle-
integrated results for argon 3p [34] and calculations [36].

FIG. 8. The measurable difference between the atomic delays for
Ar 3s and 3p. The thin blue line shows the delay difference for
electrons emitted along the polarization axis of the laser field and
the thick red line, which is slightly below, the angle-integrated result.
The error bars indicate the spread in the results for different “break
points” (cf. Sec. III C).

V. DISCUSSION

A. Gauge dependence

In general, our calculations show that much larger con-
tributions arise from the reversed time order, where the less
energetic photon is absorbed first, in the velocity gauge than
in the length gauge. This can be understood using a simple an-
alytical calculation. For a Hamiltonian h with a local potential
the length and velocity form of the dipole operator satisfy

[h, er] = −ieh̄

m
p. (44)

By assuming the dipole approximation, the vector potential
for a given angular frequency and mode can be written as

A(t ) = 2iA� sin �t = A�(ei�t − e−i�t ), (45)

where the two complex exponents can be physically inter-
preted as the drivers for emission and absorption of the laser
photon by the atom, respectively. Using the relation E =
−dA/dt , the expression for the electric field amplitude along
the polarization axis ẑ is

E� = ∓i�A�, (46)

for emission and absorption, respectively. The gauge invari-
ance of on-shell matrix elements follows from

eh̄

m
〈s|pz|r〉A� = e

∓�
(εs − εr )〈s|z|r〉E�, (47)

provided that (εs − εr ) = −h̄� for emission (photon creation)
and (εs − εr ) = h̄� for absorption (photon annihilation).

Off-shell matrix elements are generally different. Consid-
ering the two-photon transition matrix element from initial
state |0〉 to a final state with ε f = ε0 + h̄�1 + h̄�2 via an
intermediate state |i〉,

〈 f |d�2 |i〉〈i|d�1 |0〉
ε0 + h̄�1 − εi

, (48)
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the velocity gauge result is then a factor

(εi − ε0)(ε0 + h̄�1 + h̄�2 − εi )/(h̄2�1�2) (49)

times the length gauge result. Equation (49) has a maxi-
mum at εi = ε0 + h̄(�1 + �2)/2, and at this maximum it
amounts to (

�1 + �2

2

)2 1

�1�2
≈ �>

4�<

, (50)

where the last relation is true when �>/�< 
 2. Therefore,
we expect to find large differences for individual diagrams
when, as in a typical RABBIT situation, the XUV photon
has an energy of 20–40 IR photons. We have indeed seen
that the second time order (TO2), which is always off shell,
is much more important in the velocity gauge than in the
length gauge. Contributions for intermediate excited states
and continuum states closely above the ionization threshold
are likely to dominate, and for those the enhancement factor
in Eq. (49) will be of quite some importance.

B. Universality of CC delays in argon

In Fig. 9 we show the difference between atomic delay and
Wigner delay, τA − τW , for argon from orbital 3p and 3s. Fig-
ure 9(a) shows the low-energy region with the 3s Cooper min-
imum, while Fig. 9(b) shows the high-energy region with the
3p Cooper minimum. The approximate continuum-continuum
delay τCC is shown for comparison and it is calculated us-
ing the analytical expression of Eq. (100) from Ref. [12].
The analytical CC delay takes into account both long-range
phase effects and long-range amplitude effects based on
the Wentzel-Kramers-Brillouin (WKB) approximation, which
gradually breaks down at low kinetic energies [12]. Recently,
excellent numerical agreement between τA − τW for argon 3p
and neon 2p was reported at very low kinetic energies using
the diagram in Fig. 2(a) [18]. This suggested that the concept
of “universality” goes beyond the analytical predictions of
Ref. [12], down to much lower energies close to the ionization
threshold, where the WKB approach is not applicable.

Surprisingly, the delay difference for argon 3s does not
follow the universal curve [indicated by the green dashed
curve with data for 3p in Fig. 9(a)], but instead shows ir-
regular deviations at low electron energies close to the 3s
Cooper minimum in Fig. 9(a). The one-photon amplitude goes
through zero at a photon energy of ∼40 eV, which results
in increased numerical uncertainty. The error bars in Fig. 9
reflect the scatter between the different “break points” (cf.
Sec. III C), and they signify that the observed deviations of 3s
from 3p are real and that the universal trend is indeed broken,
despite our limited numerical accuracy in this region. When
only laser-stimulated continuum transitions are included in the
calculation [Fig. 2(a)], the deviation from the universal curve
is not very large. The major part of the deviation comes from
the remaining diagrams [Figs. 2(b)–2(l)], which suggests the
importance of additional ways for the atom to interact with
the fields when the single-photon XUV ionization process
goes to zero. Because there are no resonances in the energy
region shown for argon with RPAE, the irregular behavior
must be associated with the argon 3s Cooper minimum.
Above and below the 3s Cooper minima, we find that the

(a)

(b)

FIG. 9. The difference between the atomic delay and the Wigner
delay for argon calculated in length gauge, and for electrons emitted
along the polarization axis. (a) The energy region around the Ar 3s
Cooper minimum. The thick solid gray line shows the continuum-
continuum delay [12]. The results for Ar 3p (dashed green line)
agree well with the continuum-continuum delay in the higher-energy
range. For Ar 3s, solid thin lines with error bars, there are clear de-
viations from the universal curve. Close to the 3s Cooper minimum,
where the one-photon amplitude goes through zero, the numerical
uncertainty grows, especially for the full two-photon RPAE results
from all the diagrams in Fig. 2 (red solid line with sizable error
bars), but is visible also for the result from Fig. 2(a) alone (blue
solid line with smaller error bars). The error bars reflect the scatter
between the different “break points.” (b) The energy region of the
3p Cooper minimum. Here, there is a small deviation from the
continuum-continuum delay for Ar 3p in the simplest approximation
[Fig. 2(a), given by the lower, blue, line with error bars], while the
result with full two-photon RPAE, the upper (red) curve with error
bars, reproduces the universal curve (thick grey line) nicely. The error
bars indicate the spread in the results for different “break points” (cf.
Sec. III C).

3s delay difference agrees with the universal curve of 3p,
which indicates that correlation effects beyond the diagram in
Fig. 2(a), are significant only close to the exact photon energy
region where the otherwise dominant one-photon correlated
XUV ionization process vanishes.

What about the 3p Cooper minimum? This minimum is a
“typical” Cooper minimum [37] that arises due to a zero in the
dipole transition p → d in XUV photoionization. The partial
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3p cross section does not, however, go to zero because the
p → s dipole transition remains finite at all XUV energies.
The deviation of 3p from the universal curve [indicated by
the thick gray solid curve in Fig. 9(b)] is found to be small
when laser stimulated continuum transitions are considered
[Fig. 2(a)] and very surprisingly even smaller when the full
set of diagrams are included [Figs. 2(a)–2(l)].

Similar small deviations from the universal curve can be
spotted in Fig. 5 of Ref. [16] for both argon 3s and 3p,
but because the effects are small compared to the associated
atomic delays, they were not given much attention. More
recently, irregular deviations from the “universal” curve of up
to 20 as close to the argon 3p Cooper minimum was reported
in Ref. [31]. Our calculations show that such deviations are
orders of magnitude too large and that they most likely arise
due to an inconsistent description of combined correlation and
field effects. The reduction of 3p deviation from the universal
curve down to subattosecond precision in Fig. 8(b) is most
likely due to our improved description of the final state, where
the effective spherical projected potential is substituted by
self-consistent final-state correlation effects [Fig. 2(k)].

VI. CONCLUSION

In this article we have shown that full two-photon RPAE
calculations of atomic delays give gauge-invariant results and
that effects beyond the universal IR-photoelectron continuum-
continuum transitions are rare, but do occur in special cases. In
particular, we have found that the argon 3s Cooper minimum
suffers from a nonuniversal delay because the correlated XUV
dipole moment for photoionization vanishes, so that other
processes, including the XUV-hole interaction, may play an
important role for the two-photon process. In contrast, we
find that there are no such deviations from the universal
delay curve for 3p in argon. Any 3p deviations that we
find are on a subattosecond timescale, which disproves the
strong 3p deviations recently proposed in Ref. [31] using a
hybrid RPAE+TDSE (time-dependent Schrödinger equation)
approach.

Despite our best efforts, we have not been able to explain
the discrepancy between theory and experiment for the argon
3s-3p atomic delays. This is because the full two-photon
RPAE calculation still shows a positive peak in the atomic
delay peak that is absent in experiments [4,5,35]. We note that
recent simulations using time-dependent density functional
theory (TDDFT) [38] have generated results for the argon
3s-3p delay, in better agreement with experiments in this
energy region. The authors of Ref. [38] attribute this success
to their consistent treatment of the interaction with both
light fields, as compared to the hybrid TDLDA+CC result

in Ref. [32]. However, the results of hybrid approaches, such
as RPAE+CC [15] and TDLDA+CC [32] where the effect
of the laser field is treated by a simple time shift given by
analytical formulas [12,14], are mostly consistent with our
results. We cannot support the conclusion that an inconsistent
description of the fields is the reason for the disagreement with
experiments, because our present study does imply a consis-
tent treatment of many-body effects for both fields. Still, it is
hard to compare the many-body effects included with TDDFT
(or TDLDA) with the present calculation and it is very well
possible that the difference between the calculations lies here.

We note finally that very recently an experiment on the
relative delay between Ar(3s) and Ar(3p) has been presented
[39]. The only clear difference compared to earlier stud-
ies is that this experiment was made with a different laser
wavelength (1030 nm), while Refs. [4,5,35] used ∼800 nm.
The results do show a positive peak more in line with the
calculations. Although there is a possibility that the different
wavelengths might affect the population of shake-up states,
the experiment in Ref. [39] makes the argon delay even more
puzzling.

In closing, we wish to stress that XUV photoionization of
argon is associated with strong satellite peaks that have not
been considered in the present work, but have been studied
in detail by Wijesundera and Kelly using many-body pertur-
bation theory for the one-photon ionization process [40]. A
direct comparison between the partial cross section for 3s−1

and the dominant satellite 3p−2(1D)3d from Ref. [40], shows
that the satellite process does dominate in the photoelectron
energy region of the 3s Cooper minimum with a cross section
of ∼0.02 Mb as compared to our present value for the 3s par-
tial cross section of ∼0.003 Mb located at a photon energy of
∼40 eV using RPAE with all atomic orbitals and experimental
energies in the length gauge. Therefore, in order to better
understand the discrepancy between experiments and theory,
it would be helpful to acquire atomic delays for larger energy
ranges, but also to study the one-photon and two-photon
partial cross sections for 3s to be able to locate the exact
position of the associated Cooper minima. Continued studies
of shake-up processes in attosecond science, that go beyond
the hybrid multiconfigurational HF (MCHF)+CC approach
of Ref. [19], is desirable and maybe the right path to solve
the long-standing argon delay puzzle.
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