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Polarizability assessments of ion-based optical clocks
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It is shown that the dynamic differential scalar polarizability of the S1/2 − D5/2 transition in 138Ba+ can be
determined to an inaccuracy below 0.5% across a wide wavelength range (λ > 700 nm). This can be achieved
using measurements for which accurate determination of laser intensity is not required, and most of the required
measurements are already in the literature. Measurement of a laser-induced ac-Stark shift of the clock transition
would then provide an in situ measurement of the laser’s intensity to the same 0.5% level of inaccuracy, which is
not easily achieved by other means. This would allow accurate polarizability measurements for clock transitions
in other ions, through comparison with 138Ba+. The approach would be equally applicable to Sr+ and Ca+, with
the latter being immediately applicable to Al+/Ca+ quantum logic clocks.
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The dynamic differential scalar polarizability �α0(ω) of a
clock transition is an important quantity to determine, with the
dc value �α0(0) quantifying the blackbody radiation (BBR)
shift. Uncertainty in �α0(0) is a significant component in the
error budget of the Al+ clock [1], and likely a limiting factor
in Yb+ [2] as well as upcoming multi-ion implementations
based on In+ [3] or Lu+ [4,5]. Although accurate assess-
ments of �α0(0) have been achieved for ions [6,7], these
determinations relied on having �α0(0) < 0. Other ion-based
clocks have needed to rely on some form of extrapolation
from measurements in the near-infrared (NIR) [2,8] and/or by
measurement at infrared (IR) wavelengths near to the center
of the blackbody spectrum [5,9,10].

The accuracy of polarizability measurements at NIR or IR
wavelengths is limited to the accuracy by which the intensity
of the laser at the ion can be determined. This is primarily
limited by detector calibration, which is limited to the 1%
level and not always readily available. Even if the detector
is accurately calibrated, the mode of the laser field at the
ion must be equally well calibrated, which is complicated
by beam aberration and etaloning effects [9]. Consequently,
the ability to accurately determine �α0(ω) through intensity-
independent measurements is an attractive alternative, which
would also allow subsequent in situ calibration of laser
intensities for measurements against other ions. Here it is
shown that the simple atomic structure of alkaline-earth ions
allows such an approach. Moreover, most of the required
measurements have already been reported in the literature.
Although the discussion is focused on 138Ba+, the idea is
equally applicable to 88Sr+ and 40Ca+.

For the S1/2 to D5/2 transition in 138Ba+, �α0(ω) is
predominately determined by three transitions at 614, 493,
and 455 nm, with all other contributing transitions having
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wavelengths below 240 nm. For wavelengths above 700 nm,
the ultraviolet (uv) contributions can be well represented by
a weak quadratic correction. Consequently, accurate deter-
mination of the matrix elements associated with the three
dominant poles, together with a characterization of an overall
dc offset, should provide a reasonably accurate representation
of �α0(ω) over a wide frequency range.

In Table I, contributions to �α0(ω) are tabulated using
matrix elements calculated by a linearized coupled-cluster
method described in Ref. [11] with the exception of the 6s −
6p transitions, which are taken from experiment [12]. The
contributions labeled other are obtained using the approach
from Refs. [13,14], after subtracting off leading contributions.
Not given in the table are the core polarizability terms as these
are the same for the two states and cancel for a differential
polarizability. However, valence-core correction terms, αvc,
which compensate for Pauli-principle-violating excitations
from the core to the valence shell [15], are included. Theoret-
ical calculations of matrix elements, polarizabilities, and their
accuracy are discussed in the Appendix.

The actual values of the matrix elements and correction
terms are not crucial. More important is that the dominant
contributions are determined by the three poles at 614, 493,
and 455 nm and the rest can be approximated by a weak
quadratic form. This is illustrated in Fig. 1, which shows the
polarizability curve calculated from the values given in Table I
and, for comparison, the contribution from the three dominant
poles only. For this purpose the “other” contributions for each
intermediate J have been treated as a single pole with the
largest possible wavelength of the contributing terms used as
the pole position. As is evident from the figure, in the region
ω � 0.065 a.u. (λ � 700 nm), the remaining contributions
provide an essentially constant offset.

For ω � 0.065 a.u., contributions from the uv transitions
and αvc terms can be well approximated by an even-order
quadratic polynomial, as can the positive sum of such terms.
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TABLE I. Contributions to the differential scalar polarizabilities
of the Ba+ clock transition. Dipole matrix elements and polarizabil-
ity contributions are given in atomic units.

State Contribution λ (nm) D α

6s 2S1/2 6p 2P1/2 493.5 3.3251 39.92
7p 2P1/2 202.5 0.061 0.006
8p 2P1/2 163.0 0.087 0.009
6p 2P3/2 455.5 4.7017 73.67
7p 2P3/2 200.0 0.087 0.011
8p 2P3/2 162.2 0.033 0.003
Other <147.8 0.035
αvc −0.51

Total 113.14

5d 2D5/2 6p 2P3/2 614.3 4.103 25.22
7p 2P3/2 225.5 0.451 0.11
8p 2P3/2 178.7 0.223 0.02
Other <161.3 0.04

Total (J = 3/2) 25.39

4 f 2F5/2 234.8 0.998 0.57
5 f 2F5/2 193.4 0.220 0.02
6 f 2F5/2 169.7 0.239 0.02
7 f 2F5/2 157.4 0.116 0.005
Other <150.5 0.10

Total (J = 5/2) 0.725

4 f 2F7/2 233.6 4.475 11.41
5 f 2F7/2 192.5 1.089 0.56
6 f 2F7/2 169.4 0.971 0.39
7 f 2F7/2 157.3 0.932 0.33
Other <150.4 2.02

Total (J = 7/2) 14.71

αvc −0.82
Total 40.00

From the parametrization c0 + c0(ω/ω0)2, it is readily seen
that the single pole

c0

1 − (ω/ω0)2
(1)

has the same quadratic expansion as a sum of poles. Thus
a single pole can well approximate the uv contributions and
αvc terms up to second order. Additionally, the single pole

FIG. 1. Plot of the differential scalar polarizability, �α0(ω).
Solid curve is calculated using matrix elements given in Table I.
Dashed curve is the contribution from the transitions at 455, 493,
and 614 nm. Both axes are given in atomic units. Accurate location
of the zero crossing at ω ≈ 0.07 a.u. (λ ≈ 653 nm) can facilitate
determination of the offset.

will partially capture contributions from higher-order terms.
Provided there is no significant cancellation of poles, this
argument also holds for a differential polarizability. This is
the case for Ba+, as the uv terms are dominated by the
D5/2 to 4 f 2F7/2 transition and there is only a few percent
contribution from transitions connected to the ground state
[16]. It therefore follows that, in the region ω � 0.065 a.u.,
�α0(ω) can be well approximated by a sum of four poles:

�α0(ω) = �αvis
0 (ω) + �αuv

0 (ω)

≈ �αvis
0 (ω) + c0

1 − (ω/ω0)2
, (2)

where �αvis
0 (ω) gives the contributions from the 455, 493, and

614 nm transitions, and �αuv
0 (ω) the rest.

Mathematically, the approximation given by Eq. (2) can
be exceptionally good. Taking �α0(ω) calculated using all
contributions given in Table I as a representative example, c0

and ω0 can be chosen such that the approximation matches
the zero crossing of �α0(ω) and minimizes the discrepancy
over the range ω0 < 0.065 a.u. This gives c0 = 15.23 a.u. and
ω0 = 0.20479 a.u. (λ0 = 222.49 nm), with a maximum frac-
tional discrepancy of ∼2 × 10−5 over the frequency range of
interest. The agreement only relies on the validity of the single
pole approximation to the uv and αvc terms, which is not de-
pendent on exact values of matrix elements. The practical lim-
itation is set by how well the approximation can be realized.

To experimentally characterize the approximation, the pro-
cedure would be to first fix the three main contributions, by
determining directly the matrix elements associated with the
transitions at 455, 493, and 614 nm, and then to locate the zero
crossing to determine the offset. Since the quadratic correction
is weak, the quality of the approximation is insensitive to ω0,
so it can be fixed to a value determined by theory. With ω0

fixed, c0 would then be chosen so that the zero crossing for
the approximation matches the measured position of the zero
crossing at ω ≈ 0.07 a.u. (λ ≈ 653 nm). It then remains to
determine how good the approximation is, taking into account
reasonable experimental measurements and theoretical esti-
mates of ω0.

High accuracy determination of individual matrix elements
has been achieved in a number of different ways. Precision
measurement of excited-state lifetimes [17–19] and branch-
ing fractions [20–22] give matrix elements with inaccuracies
�1%. For 40Ca+, comparison of off-resonant scattering rates
and Stark shifts enabled the determination of matrix elements
with inaccuracies at the 0.1% level [23]. For Ba+, resonant ex-
citation Stark ionization spectroscopy has been used to deter-
mine matrix elements for the 493 and 455 nm transitions with
reported inaccuracies of 0.05% [12]. The latter measurements,
combined with branching fractions given in [21], would de-
termine the matrix element 〈P3/2‖r‖D5/2〉 to an inaccuracy of
∼0.3%, although from [24] an independent assessment would
be of interest, in addition to an improved accuracy.

Improved accuracy of 〈P3/2‖r‖D5/2〉 with an independent
assessment should be readily achievable. Optical pumping
into D3/2 followed by depumping with 585 nm light, which
couples D3/2 to P3/2, would optically pump the atom into S1/2

and D5/2 with probability p ∼ 0.66 and 1 − p, respectively.
Measurement of p would then provide the desired matrix
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element via the relation

〈P3/2‖r‖D5/2〉
〈P3/2‖r‖S1/2〉 =

(
ω455

ω614

)3/2
√

1 − p

p
. (3)

The fractional inaccuracy in the determination of
〈P3/2‖r‖D5/2〉 due to projection noise in a measurement of
p is then ∼1/

√
N , where N is the number of measurements.

This method is insensitive to laser intensities, polarization,
and detunings. Since D5/2 has a lifetime of ∼30 s, state
detection errors can be negligibly small and accuracy would
be ultimately limited by the accuracy of 〈P3/2‖r‖S1/2〉. Thus
this contribution could also be determined to an inaccuracy at
the 0.1% level.

For a given value of ω0, c0 can be set by determining the
zero crossing near 653 nm. In this region there is a large
contribution from the tensor polarizability, but this can be
heavily suppressed by appropriate orientation of the magnetic
field with respect to the laser polarization, as done in recent
experiments with Lu+ [5], and by averaging over Zeeman
pairs, as done with Sr+ [25]. Also, determination of the zero
crossing does not require an accurate assessment of laser
intensity. At ±500 GHz from the zero crossing, �α0(ω) ≈
±3 a.u., which should enable a readily measurable Stark
shift. Linear interpolation of the two points would then give
an estimate of the zero point. Provided the intensity was
stabilized to a fixed value for both measurements, accuracy
of this approach would be limited by the curvature of α0(ω)
within this region, which would bias the result by an estimated
≈ −10 GHz. Based on this, 20 GHz should be an achievable
uncertainty for the zero crossing.

Determination of ω0 would rely on theoretical calculations.
From Eq. (2), the zero crossing �α0(ω′) = 0 gives

�αuv
0 (ω′) = −�αvis

0 (ω′) ≈ c0

1 − (ω′/ω0)2
. (4)

Since �αvis
0 (ω′) can be determined accurately by indepen-

dent measurements, locating the zero crossing constitutes a
constraint on �αuv

0 (ω′). A theoretical estimate for ω0 and its
uncertainty can be found by solving Eq. (4) using calculated
values of c0 = �αuv

0 (0) and �αuv
0 (ω′) with c0 allowed to vary

subject to a constraint on �αuv
0 (ω′). This is effectively an

extrapolation to dc based on a measurement at ω′.
To illustrate, �αuv

0 (ω) is first written in the vector form

�αuv
0 (ω) =

∑
k

ck

1 − (ω/ωk )2
= f (ω) · c, (5)

where the kth component of f (ω) is 1/[1 − (ω/ωk )2] and
the summation is over all contributing uv transitions, with
constant terms having ωk → ∞. The coefficients c have theo-
retical estimates c0, with uncertainties δc, and, since transition
frequencies are generally well-known, f (ω) is practically ex-
act. To find the allowable variation in �αuv

0 (0) consistent with
�αuv

0 (ω′), f (0) is written as a projection onto f (ω′) and an
orthogonal unit vector n̂, i.e., f (0) = a1 f (ω′) + a2 n̂, which
gives

�αuv
0 (0) = f (0) · c = a1�αuv

0 (ω′) + a2 n̂ · c. (6)

This expression has the same form as that used in the assess-
ment of the BBR shift in the Al+ clock [[1], Eq. S24]. Here,

FIG. 2. Plot of the percentage error contributions between a full
calculation of �α0(ω) and the approximate expression given in
Eq. (2) as a function of the angular frequency ω given in atomic units.
The solid curve is the error contribution if the pole strength for the
614 nm transition is decreased by 0.1%. The dashed curve is the error
contribution if the uv pole is shifted by 5 nm to 217.5 nm. The dotted
curve is the error contribution if the zero crossing is underestimated
by 20 GHz.

by construction, the two terms are independent as required for
uncertainties to be added in quadrature. Variations in �αuv

0 (0)
due to those in �αuv

0 (ω′) do not significantly influence an
estimation of ω0. Hence we allow c0 to vary by a2 n̂ · δc
in the application of Eq. (4) to determine an uncertainty
in ω0. As this is a theoretical determination, �αuv

0 (ω′) is
fixed to that estimated at the theoretically determined zero
crossing.

Using the above approach and the values in Table I, we
find ω0 = 0.2049(42) a.u. [222(5) nm], where we have used
a 4% uncertainty in the two 4 f contributions and a 100%
uncertainty in all others. As before, the contributions labeled
“other” have been treated as single poles. Consequently, the
errors in the contributions from these terms are assumed
correlated. Correlation is also assumed for the errors in the
nF5/2 and nF7/2 contributions as these are expected to be
related. The assumed frequency dependence of the other terms
does not significantly affect the uncertainty derived in ω0.
Therefore, ±5 nm is taken as a reasonable uncertainty for the
pole placement.

We stress that the value of c0 used in Eq. (2) would be
chosen so that, for the given estimated ω0, the expression
would give the same measured zero crossing. Location of the
zero crossing would need to be consistent with that estimated
from theory, which we calculate to be 653.0(1.3) nm. If
this were not the case, there would be no justification for
asserting the validity of the estimate of ω0. However, such an
inconsistency would be rather surprising, given the agreement
between theory and experiment for matrix elements [12,24],
branching ratios [21,22,24], and even �α0(0) [26], although
the latter has a large uncertainty.

To illustrate the sensitivity to the various error contribu-
tions, the fractional difference between �α0(ω) calculated
using all contributions and the approximation given in Eq. (2)
for various errors is plotted in Fig. 2. The solid curve is the
error introduced with a fractional decrease of 10−3 in the 614
nm contribution, the dashed curve is the error contribution if
the uv pole is shifted to 217.5 nm, and the dotted curve is
the error contribution if the zero crossing is underestimated
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by 20 GHz. Each curve scales almost linearly with the stated
error, such that the result of a change in sign of an error
can be approximated by a reflection of the associated curve
about the horizontal axis. Errors arising from the 455 and 493
transitions have been omitted as they are smaller by a factor
of ∼3 than that from the 614 nm transition. This is due to
the relative position of the transition with respect to the zero
crossing. Adding errors in quadrature, including those from
the 455 and 493 poles, gives a maximum error of 0.32% over
the entire region from dc to ω = 0.065 a.u. (∼700 nm).

As already noted, the reduced matrix elements
〈P3/2‖r‖S1/2〉 and 〈P1/2‖r‖S1/2〉 have already been reported
in the literature with inaccuracies of ∼0.05% [12]. Hence all
that remains is an improved measurement of the branching
fraction p and location of the zero crossing near 653 nm. In
addition, �α0(0) < 0, which should allow a high accuracy
measurement of �α0(0) as done with Sr+ and Ca+ [6,7].
This would provide a rigorous consistency check among
multiple precision measurements and an experimental
assessment of ω0.

In summary, we have shown that the dynamic differential
scalar polarizability, �α0(ω), of the S1/2 − D5/2 transition
in 138Ba+ can be determined to an inaccuracy below 0.5%
across a wide wavelength range (λ > 700 nm). Moreover, the
determination can be obtained using measurements that do not
require accurate determination of laser intensities and some of
the required measurements have already been reported in the
literature. Although the method relies on a theoretical estimate
of an effective pole position ω0, the resulting approximation
to �α0(ω) is relatively insensitive to this value such that this
is unlikely to be a significant limitation.

The methodology proposed here would also be applicable
to Sr+ and Ca+. For these cases, uv transitions are deeper
in the uv making the approximation less sensitive to the
choice of ω0. In the case of Ca+, an accurate measurement of
the 〈P1/2‖r‖S1/2〉 matrix element has been reported [23] and
〈P3/2‖r‖S1/2〉 can be well approximated by 〈P1/2‖r‖S1/2〉

√
2

[27]. Together with the branching fractions reported in [28],
and the recent high accuracy determination of �α0(0) [7], a

calibration of the polarizability curve to �1% could be done.
Determination of the zero crossing, which we estimate to be
at 297.5(2) THz, would provide a consistency check of the
methodology.

The case of Ca+ is of particular relevance to the Al+ clock,
for which the uncertainty in �α0(0) is now a significant con-
tribution to the error budget [1]. Measurement of this quantity
has only been carried out twice and both rely on extrapolation
from a single measurement point [1,8]. It is therefore desirable
to provide an independent assessment. Clock implementations
utilizing Ca+ as the logic ion would allow accurate calibration
of a laser intensity at multiple wavelengths and improved
measurements of �α0(ω) for Al+. For wavelengths above
780 nm, the differential scalar polarizability of the Al+ clock
transition is well approximated by a quadratic form and even
two measurements of �α0(ω) in the NIR would allow a more
accurate extrapolation to dc.

Measurements proposed in this work will also provide
benchmarks for matrix elements involving 4 f states, as
needed in calculations for highly charged ions. In addition,
they will provide a precision test of methods to compute polar-
izability contributions from highly excited states, which will
be useful in establishing theoretical uncertainties of predicted
polarizabilities in other systems.
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of Education, Singapore under the Research Centres of Ex-
cellence programme, and by A*STAR SERC 2015 Public
Sector Research Funding (PSF) Grant (SERC Project No.
1521200080). This research was performed in part under the
sponsorship of the Office of Naval Research, USA, Grant No.
N00014-17-1-2252.

APPENDIX: MATRIX ELEMENT CALCULATIONS

The valence parts of the scalar, α0, and tensor, α2, polariz-
abilities of Ba+ levels may be calculated using the sum-over-

TABLE II. Absolute values of the reduced matrix elements contributing to the 5d5/2 polarizability calculated in different approximations
(in a.u.). DHF: Dirac Hartree-Fock lowest order; RPA: Random phase approximation; RPA + �

(2,all)
1 include correlation potential in second

and all-order approximations, respectively. The all-order single-double (SD) and single-double + partial triple (SDpT) results are listed in SD
and SDpT columns; corresponding scaled vales are listed in the SDsc and SDpTsc columns. Uncertainties are given in parentheses. *See text
for a discussion of uncertainties.

Transition DHF RPA RPA + �
(2)
1 RPA + �

(all)
1 SD SDpT SDsc SDpTsc Final

5d5/2 − 6p3/2 4.993 4.592 4.015 4.090 4.103 4.163 4.137 4.122 4.103(50)
5d5/2 − 7p3/2 0.546 0.368 0.424 0.422 0.451 0.450 0.446 0.457 0.451(9)
5d5/2 − 8p3/2 0.299 0.187 0.207 0.205 0.223 0.224 0.221 0.225 0.223(4)

5d5/2 − 4 f5/2 1.145 1.040 0.955 0.986 0.998 1.012 1.011 1.009 0.998(20)
5d5/2 − 5 f5/2 0.629 0.537 0.159 0.102 0.016 0.210 0.027 0.220 0.220*
5d5/2 − 6 f5/2 0.406 0.330 0.239 0.262 0.236 0.018 0.239 0.024 0.239*
5d5/2 − 7 f5/2 0.286 0.223 0.195 0.221 0.113 0.116 0.116 0.108 0.12(6)

5d5/2 − 4 f7/2 5.128 4.655 4.335 4.464 4.475 4.540 4.521 4.523 4.475(90)
5d5/2 − 5 f7/2 2.812 2.402 0.520 0.236 0.130 1.049 0.085 1.089 1.089*
5d5/2 − 6 f7/2 1.815 1.475 0.999 1.086 0.961 0.170 0.971 0.186 0.971*
5d5/2 − 7 f7/2 1.278 0.996 0.838 0.952 0.922 0.429 0.932 0.388 0.93(54)
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states expressions [29]:

αv
0 (ω) = 2

3(2 jv + 1)

∑
k

〈k‖D‖v〉2�E

�E2 − ω2
,

αv
2 (ω) = −4C

∑
k

(−1) jv+ jk+1

{
jv 1 jk
1 jv 2

}

×〈k‖D‖v〉2�E

�E2 − ω2
, (A1)

where C is given by

C =
(

5 jv (2 jv − 1)

6( jv + 1)(2 jv + 1)(2 jv + 3)

)1/2

.

Here, δE = Ek − Ev , 〈i‖D‖ j〉 are reduced electric-dipole ma-
trix elements, and the sum over intermediate k states includes
contributions from all transitions allowed by the electric-
dipole selection rules. We use a finite B-spline basis set
which make this sum finite. The first few terms give dominant
contributions and respective matrix elements have to be calcu-
lated with the highest possible accuracy. We use a linearized
coupled-cluster (LCC) method [11] that includes dominant
classes of correlation corrections to all orders of perturbation
theory. This method was used for the prediction of the Ca+

[30] and Sr+ [31] differential clock state scalar polarizabilities
and subsequent measurements confirmed the accuracy of this
approach.

Four different LCC calculations were carried out: Two ab
initio calculations that include single-double excitations (SD)
and additional partial triple contributions (SDpT), and two
other calculations, labeled SDsc and SDpTsc, where higher
excitations are estimated using a scaling procedure. Details
of the method and a description of the scaling procedures are
given in [11]. The all-order results are given in Table II. We
also list lowest-order Dirac Hartree-Fock (DHF) and random
phase approximation (RPA) values to demonstrate the size of
the correlation corrections. In addition, the matrix elements
that include RPA and corrections to the one-body part of the
Hamiltonian (�1) are included. Two (�1) calculations were

TABLE III. Contributions to the static scalar 6s polarizability
α0(0) and dynamic polarizability at λ = 653.0 nm. The absolute
values of the 6s − np reduced matrix elements (in a.u.) are also listed
in the column labeled ME. Uncertainties are given in parentheses.

Contribution ME α0(0) α0(ω)

6p1/2 3.3251(21)a 39.921(48) 93.11(11)
7p1/2 0.061 0.006 0.006
8p1/2 0.087 0.009 0.010
(n > 8)p1/2 0.030(20) 0.030(20)
6p3/2 4.7017(27)a 73.670(88) 143.51(17)
7p3/2 0.087 0.011 0.012
8p3/2 0.033 0.003 0.001
(n > 8)p3/2 0.0057 0.005(20) 0.005(20)
αvc −0.51(13) −0.51(13)
Sum 113.14(17) 236.17(25)
Core 10.6(5) 10.6(5)
Final 123.7(5) 246.8(6)

aReference [12].

TABLE IV. Tail contribution to the static scalar polarizability
of the 5d5/2 state calculated in different approximations (in a.u.).
The contributions from (n > 8)p3/2 and (n > 7) f j higher states are
included. The same designations are used as in Table II.

Approximation Tail

DHF 2.498
RPA 1.817
RPA + �

(2)
1 2.249

RPA + �all
1 2.156

Final 2.16(34)

carried out: One to second order of perturbation theory and
the other to all orders. These calculations follow the methods
described in [13], with the valence-valence part of the calcu-
lations omitted, as Ba+ has a single valence electron. We use
these methods to evaluate polarizability contributions from the
higher states and it is important to compare these results to the
final LCC values. The uncertainties of the 5d5/2 − np3/2 and
5d5/2 − 4 f j matrix elements are determined as the maximum
difference of the final and three other LCC values.

Correlation corrections are very large for the n f Ba+ states,
which causes convergence issues in the LCC calculations that
cannot be fixed with usual stabilizer methods [32]. We use
additional fitting for the n f states to resolve this issue ensuring
correct energies after the termination of the LCC calculations.
We still find very large differences between the SD and SDpT
5d5/2 − 5 f j and 5d5/2 − 6 f j values. As a result, we assign a
100% uncertainty to the corresponding 5d5/2 polarizability
contributions based on the spread of LCC matrix element
values.

The contributions to the 6s static and dynamic polariz-
abilities at λ = 653 nm are given in Table III. Experimental

TABLE V. Contributions to the static scalar 5d5/2 polarizability
α0(0) and dynamic polarizability at λ = 653.0 nm. Uncertainties are
given in parentheses.

Contribution α0(0) α0(ω)

6p3/2 25.22(61) 219.5(5.3)
7p3/2 0.112(5) 0.127(5)
8p3/2 0.022(1) 0.023(1)
(n > 8)p3/2 0.037 0.038

4 f5/2 0.570(23) 0.655(26)
5 f5/2 0.023(23) 0.025(25)
6 f5/2 0.024(24) 0.025(25)
7 f5/2 0.005(5) 0.006(6)
(n > 7) f5/2 0.103 0.106

4 f7/2 11.41(46) 13.08(52)
5 f7/2 0.56(56) 0.61(61)
6 f7/2 0.39(39) 0.42(42)
7 f7/2 0.33(33) 0.35(35)
(n > 7) f7/2 2.02 2.09
Total tail 2.16(34) 2.23(34)

αvc −0.82(3) −0.82(3)
Total 40.0(1.1) 236.2(5.4)
Core 10.6(5) 10.6(5)
Final 50.6(1.2) 246.8(5.4)
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values from [12] obtained using the resonant excitation Stark
ionization spectroscopy technique are used for the 6s − 6p
matrix elements. Experimental energies are used in the calcu-
lation of main contributions for all polarizability calculations.
The contribution of states with n > 8 is very small and is
calculated in the RPA. A maximum difference of the DHF
and RPA tail values for the np1/2 and np3/2 cases is taken to
be the tail uncertainty. The ionic core polarizabilty and small
correction accounting for the occupied valence orbital (αvc)
are also calculated in the RPA.

Because of significant contributions from the higher n f7/2

states to the 5d5/2 polarizability, we use a more accurate
method to evaluate the tail for the 5d5/2 polarizability. The
tail includes the contribution of the (n > 8)p3/2 and (n > 7) f j

states. Instead of using the sum-over-states approach we solve
the inhomogeneous equation of perturbation theory in the
valence space, which is approximated as

(Ev − Heff )|�(v, M ′)〉 = Deff,q|�0(v, J, M )〉 (A2)

for a state v with the total angular momentum J and projection
M [14] and then use resulting wave functions for the polar-
izability calculations. The Heff term includes either second-
order (�(2)

1 ) or the all-order (�(all )
1 ) corrections as described in

[13]; the effective dipole operator Deff includes random phase
approximation (RPA) corrections. Tail results, calculated in
various approximations, are listed in Table IV. We find results
to be very stable with the approximation and assign the spread
of the values as the uncertainty.

The crossing of the 6s and 5d5/2 static polarizabilities is
found to be 653.0(1.3) nm, where the uncertainty is predom-
inately due to the uncertainty of the 5d5/2 contributions. As
seen in Table V, the uncertainty is almost entirely from the
5d5/2 − 6p3/2 contribution. Thus we can expect this to be
improved once a more accurate determination of the 5d5/2 −
6p3/2 matrix element is made. For completeness we note
that the static tensor polarizability and the dynamic tensor
polarizability at 653 nm are calculated to be −29.8(7) a.u.

and −225(5) a.u., respectively.
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