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Robust and highly efficient discrimination of chiral molecules through three-mode parallel paths
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We propose to discriminate chiral molecules by combining one- and two-photon processes in a closed-loop
configuration. The one-photon-coupling intrinsic π -phase difference between two enantiomers leads to their
different superposition states, which is then followed by a two-photon process through three-mode parallel paths
(3MPPs), enabling the discrimination of enantiomers by inducing their entirely different population distributions.
The 3MPPs are constructed by “chosen paths,” a method of shortcuts to adiabaticity, exhibiting a fast two-photon
process. As an example, we propose to perform the scheme in 1,2-propanediol molecules, which show relatively
robust and highly efficient results under considering the experimental issues concerning unwanted transitions,
imperfect initial state, pulse shaping, control errors, and the effect of energy relaxations. The present work may
provide help for laboratory researchers in a robust separation of chiral molecules.
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I. INTRODUCTION

Chiral molecules [1,2], involving two enantiomers (a pair
of a chiral molecule and its mirror image) that share most
physical and chemical properties, own divergent functionality
or activity for living matter dependent on the environment
where they are present, so the discrimination and purification
of (racemic) mixtures of enantiomers are of a strong necessity.
Chiral discrimination and purification are among the most
difficult tasks in chemistry [3–8]. Owing to the property of
broken symmetry, one-photon and two-photon processes can
coexist in a three-state configuration of chiral molecules,
based on which physical (especially optical) methods [9] have
been becoming a promising alternative instead of chemical
techniques, providing time-saving, convenient, and econom-
ical enantiomer separation. Methods based on a closed-loop
three-state (�-type) system with microwave-driven rotational
transitions is important and interesting [10–25]. All above
theoretical [10–15] and experimental [16–25] schemes are
based on the fact that the combined quantity defined by
the triple product of three dipole-moment components is of
opposite sign between enantiomers.

Theoretically, for example, Král et al. [10,11,26] pro-
posed a method of coherently controlled adiabatic passage
for achieving chiral separation, termed “cyclic population
transfer” (CPT). In CPT schemes, the interference of two-
path stimulated Raman adiabatic passages (STIRAP) [27,28]
with zero [10] or nonzero [11] detuning results in disparate
population distributions between two enantiomers, depending
on the total (intrinsic and optical) phase of the three coupling.
In 2008, Li and Bruder [13] proposed a fast nonadiabatic
resonant pulse scheme. This is a three-stage scheme including
sequential one-, two-, and one-photon processes, based on
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which left- and right-handed chiral molecules starting in the
same initial state can evolve into different final states. Very
recently, Vitanov and Drewsen [15] reported a scheme of
the detection and separation of chiral molecules. This work
applies the shortcuts to adiabaticity (STA) [29–32] with a
“counterdiabatic field” [33] that plays a double-face role
counteracting the nonadiabatic coupling for one enantiomer
but strengthening the nonadiabatic coupling for another one,
and therefore enables the 100% enantiomer contrast in a
particular state population. Experimentally, in samples of cold
gas-phase molecules, Patterson et al. first verified enantiomer
differentiation by mapping the enantiomer-dependent sign of
an electric dipole Rabi frequency onto the phase of free-
induced decay signals in a dc field-assisted scheme [16] and
first demonstrated the technique of microwave three-wave
mixing (M3WM) for the sensitive chiral analysis includ-
ing the probe of enantiomeric excess in a double-resonance
scheme [17]. Then Shubert et al. [19], combining M3WM
and broadband microwave spectroscopy, determined not only
the enantiomeric excess but also the absolute configurations
(species) in a supersonic jet experiment. Recently, Eiben-
berger et al. [22,23] realized a phase-dependent state-specific
enantiomeric enrichment in cryogenic buffer gas by using four
pulses, the first three for CPT and the last one for population
detection. Whereafter, Pérez et al. [23] reported a supersonic
jet experiment of phase-dependent enantiomer-selective pop-
ulation enrichment in a microwave five-pulse scheme.

Fast, accurate, and robust manipulations always play a
center role for all kinds of physical (quantum) tasks, so
analytical and numerical methods of sorts have been proposed
to design control fields within recent decades, such as adi-
abatic passages [27,28], composite pulse sequences [34,35],
and quantum optimal control [36,37]. As a control technique,
STA provides another insight of pulse engineering, faster
than adiabatic passages, requiring less pulses than composite
pulse sequences, and holding analytical pulse shapes. Here
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FIG. 1. Comparison of the coupling scheme between three dis-
crete energy states in molecules with L (on the left) and R (on the
right) handedness.

we propose a scheme of discriminating chiral molecules by
combining one- and two-photon processes in a closed-loop
configuration. A π/2 pulse first used for the one-photon
process and STA subsequently in the two-photon process en-
ables three-mode parallel paths (3MPPs) and induces entirely
different population distributions between enantiomers. The
scheme is faster than the adiabatic CPT schemes [10,11].
Different from the fast nonadiabatic resonant pulse scheme
[13,22,23], the fast two-photon coherent population transfer is
performed by speeding up a STIRAP with shaped pulses, not
only fast but also robust against control errors. In contrast with
the recent STA scheme [15] that performs simultaneously one-
and two-photon processes with three pulses holding the strict
match relation of time and amplitude, the present one carries
out stepwise one- and two-photon processes, which loosens
the match relation among the pulses and thus strengthens the
robustness against control errors.

As an example, we propose to perform the scheme pro-
posed here for the discrimination between the enantiomeric
pair of a conformer of 1,2-propanediol molecules, and con-
sider the experimental issues including unwanted transitions,
imperfect initial state, pulse shaping, control errors, and the
effect of energy relaxations. Relatively robust and highly
efficient results can be obtained.

The remainder of the paper is structured as follows. In
Sec. II, we give a STIRAP scheme of a population contrast
between enantiomers and illustrate the adiabatic construction
of 3MPPs. In Sec. III, we propose a fast STA scheme for
accelerating the STIRAP scheme by constructing alternative
3MPPs, containing analytical description and pulse engineer-
ing. In Sec. IV, the pulse overlap between the one- and
two-photon processes and the phase sensitivity of the scheme
are discussed. As an example, we propose to perform the
scheme in 1,2-propanediol molecules in Sec. V. Finally, the
conclusion appears in Sec. VI.

II. POPULATION CONTRAST VIA STIRAP

As shown in Fig. 1, the enantiomers, L- and R-handed
molecules (L and R refer to left and right, respectively), are
with a closed-loop configuration among three discrete energy
states |1〉, |2〉, and |3〉. The electric-dipole-allowed j ( j =
P, S, Q) transition with dipole moment −→μ j is driven by a

field
−→
Ej = −→e j ε j cos(ω jt + φ j ), where −→e j , ε j , ω j , and φ j are

the unit vector, amplitude, frequency, and phase, respectively.

Then the Hamiltonian of such a closed-loop configuration can
be represented in a matrix with basis vectors {|1〉, |2〉, |3〉}
(using the natural unit h̄ = 1 and |1〉 being the zero-energy
point)

H0 =

⎛
⎜⎝

0 −→μP · −→
E P

−→μQ · −→
E Q

−→μP · −→
E P ω1,2

−→μS · −→
E S

−→μQ · −→
E Q

−→μS · −→
E S ω1,3

⎞
⎟⎠, (1)

in which ω1,n (n = 2, 3) is the |1〉 ↔ |n〉 transition frequency.
The Rabi frequency of j transition is defined as � j = −→μ j ·−→e j ε j , and we specify our model by choosing two enantiomers
possessing identical �P and �S , while opposite sign �Q.
Hereinafter the rotating-wave approximation condition ω j �
|� j | is taken into account.

A. Fast one-photon process

The state evolutions of the enantiomers are illustrated in
Fig. 2. The enantiomers are both prepared initially in |1〉.
The scheme of the enantio-discrimination can be divided into
two stages. In the first stage, only Q pulse works for the
one-photon transition |1〉 ↔ |3〉, which can be described by
the Hamiltonian in the interaction picture

HL,R
1 = ± 1

2�Qeiφq |1〉〈3| + H.c., (2)

for which we have considered the resonant condition
ω1,3 = ωQ.

After adopting a π/2 Q pulse (i.e.,
∫

�Qdt = π/2) with
φq = π/2, the states of the L- and R-handed molecules
are driven from |1〉 to, respectively, 1√

2
(|1〉L − |3〉L ) and

1√
2
(|1〉R + |3〉R). It is a fast nonadiabatic process and can be

achieved by using a constant-amplitude rectangular pulse or a
time-dependent shaped pulse. For example, we can choose a
Gaussian pulse

�Q = �
q
0e−(t−t f 1/2)2/T 2

q , (3)

where �
q
0 and Tq are the maximum amplitude and width of the

Gaussian pulse, respectively. Here we set that the first stage
starts at the time t = 0 and ends at the time t f 1 = 6Tq so as to
cover the (almost) full pulse area

∫ t f 1

0 �Qdt = √
π�

q
0Tq and

�
q
0Tq = √

π/2.

B. Two-photon process of STIRAP

In the second stage, the interaction-picture Hamiltonian
reads

H = 1
2 (�Peiφp |1〉〈2| + �Seiφs |2〉〈3|) + H.c., (4)

where the resonant conditions ω1,2 = ωP and ω2,3 ≡
ω1,3 − ω1,2 = ωS are considered. The Hamiltonian (4) is
common for the L- and R-handed molecules, and its three
instantaneous eigenstates with corresponding eigenenergies
±�/2 and 0, respectively, are

|λ±(t )〉 = 1√
2

[ei(φp+φs ) sin θ |1〉 ± eiφs |2〉 + cos θ |3〉],

|λ0(t )〉 = ei(φp+φs ) cos θ |1〉 − sin θ |3〉, (5)
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FIG. 2. Schematic diagram for the state evolutions of the enantiomers.

with � ≡
√

�2
P + �2

S and θ (t ) ≡ arctan [�P(t )/�S (t )]. For
simplicity, we adopt φp = φs = 0. Under the adiabatic crite-
rion θ̇ 	 � [27,28], which requires that �P and �S vary very
slowly, the nonadiabatic coupling among |λ±,0(t )〉 can be ne-
glected. Then the couplings among {|λ±,0〉} are avoided, and
the 3MPPs are formed (as shown in the green box in Fig. 2).

In order to achieve the discrimination of chiral
molecules with the states |
〉L = 1√

2
(|1〉L − |3〉L ) and

|
〉R = 1√
2
(|1〉R + |3〉R), we can follow the concept of the

fractional STIRAP [38,39]. Assuming the second stage
starts at the time ti and ends at the time t f and considering
θ (ti ) = π/4 (corresponding to �P = �S), the L-handed
molecules will evolve along the dark state |λ0(t )〉, while the
R-handed molecules along the equal-weighted superposition
of exp( i

2

∫
� dt )|λ+(t )〉 and exp(− i

2

∫
� dt )|λ−(t )〉 (here the

geometric phase [40] is zero). Then we choose θ (t f ) = π/2
(corresponding to �P � �S), and the final states of the L-
and R-handed molecules, respectively, are

|
〉L = −|3〉L,

|
〉R = cosA|1〉R + i sinA|2〉R, (6)

with A ≡ 1
2

∫ t f

ti
� dt . That is, L- and R-handed molecules

finally hold entirely different population distributions of |3〉,
P3L ≡ |〈3|
〉L|2 = 1 but P3R ≡ |〈3|
〉R|2 = 0.

The shapes of P and S pulses used in the STIRAP process
can be chosen without limitation, as long as the boundary
conditions �P(ti ) = �S (ti ) and �P(t f ) � �S (t f ) are satisfied
within the adiabatic criterion. Here we choose, for example,
a double-Gaussian P pulse and a single-Gaussian S pulse,
respectively,

�P = �0e−[(t−ti )−(t f −ti−τ )/2]2/T 2

+�0e−[(t−ti )−(t f −ti+τ )/2]2/T 2
,

�S = �0e−[(t−ti )−(t f −ti−τ )/2]2/T 2
, (7)

where �0 and T are the maximum amplitude and width of
a single Gaussian pulse, respectively. τ is the delay between
the two single Gaussian pulses of �P. Here t f = ti + 6T + τ

can be set so as to guarantee that all pulse areas are almost
covered.

As is well known, however, the STIRAP-based scheme is
pretty slow because of the limitation of the adiabatic criterion.
Such a slow enantio-discrimination is of low efficiency, and

may be ineffective due to the relaxations of higher-energy
states and the accumulation of control errors.

III. ENANTIO-DISCRIMINATION VIA CHOSEN PATHS

A. Analytical description

The slow enantio-discrimination in the STIRAP scheme
can be speeded up by “chosen paths” (CP), a method of STA,
proposed by the first author and his co-workers [32]. The CP
scheme, choosing three appropriate dressed states as 3MPPs
instead of |λ±,0(t )〉, has two key points: (i) the evolution in the
second stage is based on the two-photon process |1〉 ↔ |2〉 ↔
|3〉 in which each one-photon transition is resonant; (ii) there
is no coupling among the chosen paths.

We use the Hamiltonian that satisfies the point (i), as

Hc = 1
2 (�c

P|1〉〈2| + �c
S|2〉〈3|) + H.c., (8)

with the modified Rabi frequencies �c
P = �P + �1 and �c

S =
�S + �2, where �P,S are the STIRAP pulses in Eq. (4), and
�1,2 can be considered the counterdiabatic fields. The 3MPPs
satisfying the orthogonality and completeness can be chosen
as

|ψ0(t )〉 = cos β cos θ |1〉 − i sin β|2〉 − cos β sin θ |3〉,
|ψ±(t )〉 = 1√

2
[(sin θ ∓ i sin β cos θ )|1〉 ± cos β(t )|2〉

+ (cos θ ± i sin β sin θ )|3〉]. (9)

With |ψ±,0(t )〉 being the evolution paths, the conditions of the
enantio-discrimination are

θ (ti ) = π/4, θ (t f ) = π/2, β(ti ) = β(t f ) = 0, (10)

in which the last one ensures the coincidence between
|ψ±,0(t )〉 and |λ±,0(t )〉 at the time ti and t f . It is conve-
nient to move Hc to the frame with the time-independent
chosen paths being the basis by the unitary operator U0 =∑

n=±,0 |ψn〉〈ψn(t )| [41], and thus Hc becomes

H ′
c = U0HU †

0 − iU0U̇
†
0

= 1
2 [ξ (|ψ+〉〈ψ+| − |ψ−〉〈ψ−|)
+(ξ+|ψ0〉〈ψ+| + ξ−|ψ0〉〈ψ−| + H.c.)/

√
2], (11)
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with

ξ = cos β(�1 sin θ + �2 cos θ + �) + θ̇ sin β,

ξ± = i[sin β(�1 sin θ + �2 cos θ + �) − 2θ̇ cos β]

±(�1 cos θ − �2 sin θ − 2β̇ ). (12)

According to the point (ii), ξ± must be zero, which can be
solved by the modified Rabi frequencies with the expressions

�c
P = 2(β̇ cos θ + θ̇ cot β sin θ ),

�c
S = −2(β̇ sin θ − θ̇ cot β cos θ ). (13)

By using the Rabi frequencies in Eq. (13), the evolution
will follow the 3MPPs |ψ±,0(t )〉 (as shown in the shadow in
Fig. 2). With the states |
〉L = 1√

2
(|1〉L − |3〉L ) and |
〉R =

1√
2
(|1〉R + |3〉R) and the conditions in Eq. (10), through

3MPPs |ψ±,0(t )〉 the final states of the L- and R-handed
molecules, respectively, are

|
〉L = −|3〉L,

|
〉R = cosAc|1〉R + i sinAc|2〉R, (14)

where we define Ac ≡ 1
2

∫ t f

ti
ξ dt . Equation (14) has the

same form as Eq. (6), indicating that L- and R-handed
molecules finally possess entirely different population dis-
tributions of |3〉. Different from the STIRAP scheme, the
enantio-discrimination in the CP scheme can be fast, not
limited by the adiabatic criterion.

B. Pulse engineering

There are diverse pulse schemes of satisfying the condi-
tions in Eq. (10). For instance, based on the definition of θ

in Eq. (5) and the STIRAP pulses in Eq. (7), θ (ti ) = π/4
and θ (t f ) = π/2 can be obtained. β(ti ) = β(t f ) = 0 can be
ensured with a Gaussian function

β = βme−[(t−ti )−(t f −ti )/2]2/T 2
β , (15)

where Tβ = (t f − ti )/6 is set. Therewith, the enantio-
discrimination of the second stage in the CP scheme will
depend on the values of τ/T and βm.

We define a quantity,

D = |P3L − P3R| (16)

to measure the discrimination of chiral molecules with D ∈
[0, 1], serving as the fidelity of performing discrimination of
chiral molecules. With the second-stage initial states |
〉L =

1√
2
(|1〉L − |3〉L ) and |
〉R = 1√

2
(|1〉R + |3〉R), the dependence

of D on τ/T and βm can be illustrated, as Fig. 3, by means
of solving numerically the Schrödinger equation with respect
to the CP-scheme Hamiltonian Eq. (8). As shown clearly
in Fig. 3, D will remain unchanged with varying τ/T and
βm and maintain in unity if the ratio τ/T is over about 0.5
within βm ∈ (0, π ), which means that the scheme possesses
great flexibility in parameter selections. The parameter τ that
affects the initial value of �P cannot be too small, because a
small delay between the two single Gaussian pulses of �P

will lead to �P(ti ) > �S (ti ) and then deviate the condition
θ (ti ) = π/4.

With τ = 2T and βm = 0.25π , the shapes of �c
P and �c

S
are shown in Fig. 4(a), based on which then the second-stage

0.5
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0.2

0.8

0.9

1.0

0.4 32.520.6 1.510.8 0.50

FIG. 3. Dependence of D on τ/T and βm. Parameters: t f = ti +
6T + τ and Tβ = (t f − ti )/6.

evolutions of enantiomers can be obtained, and the population
evolutions of |3〉 are plotted in Fig. 4(b) showing the full
enantio-discrimination. Figure 4(a) just shows an example
of pulse shapes and durations, while in fact pulse shapes
and durations have great versatility of selection according to
different values of τ/T and βm. Furthermore, the form of θ

can also be designed directly, instead of originating from the
STIRAP pulses. For instance, θ can be chosen as

θ = π

4
+ 1

2

[
π (t − ti )

2(t f − ti )
− 1

3
sin

2π (t − ti )

t f − ti

+ 1

24
sin

4π (t − ti )

t f − ti

]
, (17)

based on which and using β in Eq. (15) the shapes of �c
P and

�c
S and the population evolutions of |3〉 can be depicted and

shown in Figs. 4(c) and 4(d), respectively. Alternatively, β in
Eq. (15) can be replaced by another function, for example, a
single-period cos-like function as

β =
{

βm

2

[
1 − cos 2π (t−ti )

t f −ti

]
+ ε, t ∈ [ti, t f ],

0, otherwise,
(18)

where a small-value ε (e.g., ε = 0.001) is introduced to avoid
infinite �c

P,S . Using θ in Eq. (17) and β in Eq. (18), the shapes
of �c

P and �c
S and the population evolutions of |3〉 are shown

in Figs. 4(e) and 4(f), and the enantio-discrimination is still
fully obtained.

The pulses designed in Figs. 4(a), 4(c) and 4(e) are smooth
without any singularity and turned on (off) at zero, all of
which can be generated with an arbitrary waveform generator
in experiment. The absolute values and signs of the pulses can
be controlled by modulating amplitudes ε j and phases φ j of
the corresponding fields, respectively. Beyond the pulse forms
above, one can find abundant alternative forms eligible for the
CP scheme by means of many pulse engineering scenarios
[42–46] or optimal control techniques [36,37,47–51].
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FIG. 4. Panels (a), (c), and (e): shapes of �c
P and �c

S; (b), (d), and (f): second-stage population evolutions of |3〉. Parameters for (a) and (b):
τ = 2T , βm = 0.25π , t f = ti + 6T + τ , and Tβ = (t f − ti )/6 in Eqs. (7) and (15); parameters for (c) and (d): βm = 0.25π and Tβ = (t f − ti )/6
in Eq. (15); parameters for (e) and (f): βm = 0.25π and ε = 0.001 in Eq. (18).

IV. PULSE OVERLAP AND PHASE SENSITIVITY

On one hand, the present enantio-discrimination scheme is
based on the combination of one- and two-photon processes.
Such a discrimination of chiral molecules can make the one-
photon process (Q pulse) free from the real-time interference
with the two-photon process (P and S pulses), which therefore
holds greater robustness against pulse match errors in contrast
with the simultaneous-three-pulse scheme [15]. On the other
hand, phase sensitivity is a common property for the existing
schemes of optical chiral discrimination [10–25]. The present
one is also a phase-sensitive scheme, for which we use a Q
pulse with π/2 phase and P and Q pulses with zero phase
(not including the sign of the amplitude). In this section we
investigate the pulse overlap between the two stages and the
phase sensitivity of the present scheme.

A. Pulse overlap between two stages

In an ideal case, P and S pulses are supposed to be executed
after the ending of Q pulse, i.e., ti � t f 1. In fact, however, a
moderate pulse overlap between the two stages is acceptable
for the full discrimination of chiral molecules owing to the use
of the shaped pulses, and can besides shorten the operation
time to some extent. Since the Gaussian Q pulse decreases to
(P and S pulses increase from), gradually, a zero amplitude
with a zero slope, there are two periods, one before t f 1 when
the desired one-photon process has been completed and the
other when the two-photon process has almost not started after
ti. Therefore, a pulse overlap between the two stages covering
such two periods has little effect on the entirely different
population distributions of two enantiomers, which is different
from the stepwise schemes [13,22,23] that are sensitive to the
interstage pulse overlap.

If ti is much earlier than t f 1 or even ti � 0, which induces
the real-time interference between the one- and two-photon
processes, will the full enantio-discrimination be achieved
finally? In the following, we investigate the acceptable max-
imum overlap time, using Q pulse in Eq. (3) and P and S

pulses shown in Fig. 4(a). The maximum amplitude of P
and S pulses is max{�c

P, �c
S} = 11.85/(t f − ti ) = 1.481/T ,

and we suppose that the two stages hold the equal maxi-
mum amplitude �

q
0 = 1.481/T that gives Tq = 0.5983T and

then t f 1 = 3.590T . The interstage overlap time is defined
as tov = t f 1 − ti, and then the effect of tov on the enantio-
discrimination can be depicted by means of the Schrödinger
equation with respect to HL,R

1 in Eq. (2) plus H in Eq. (4)
and the initial state |1〉, as shown in Fig. 5(a). Figure 5(a)
shows an apparent critical value around tov = 4T that divides
the full enantio-discrimination into a valid region (tov � 4T )
and an invalid region (tov > 4T ). Then we pick up differ-
ent tov in the valid region and plot the population evolu-
tions of |3〉 of two enantiomers in Figs. 5(b1)–5(b4) and
the corresponding shapes of the three Rabi frequencies in
Figs. 5(c1)–5(c4).

We can learn that, for tov = T or 2T , there is little pulse
area overlap between the two stages, so no real-time inter-
ference between the one- and two-photon processes occurs
during the enantio-discrimination. Nevertheless, for tov � 3T ,
there is a finite pulse area overlap between the two stages and
thus a little bit of real-time interference between the one- and
two-photon processes occurs. Even for tov > t f 1 = 3.590T ,
which means that P and S pulses are applied earlier than
the Q pulse, the full enantio-discrimination can be obtained
as shown in Fig. 5(b4). For tov � 3.590T , the scheme is
in fact a simultaneous-three-pulse scheme but is still more
robust against the pulse delay errors than the simultaneous-
three-pulse scheme [15] and the stepwise schemes [13,22,23]
because there exists a wide valid range from tov = 3.590T
to the critical value. In a word, the present scheme is very
robust against the pulse delay error, and can still perform
the full enantio-discrimination even if there is the real-time
interference between the one- and two-photon processes,
which is mainly because the interstage pulse area overlap is
so insignificant that the real-time interference is very slight
and hardly destroys the individual functions of the one- and
two-photon processes.
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FIG. 5. (a) Effect of the interstage overlap time tov on the enantio-discrimination. (b1)–(b4) Population evolutions of |3〉 of two enantiomers
with different tov. (c1)–(c4) Shapes of the three Rabi frequencies with different tov. Parameters: τ = 2T , βm = 0.25π , t f = ti + 6T + τ , Tβ =
(t f − ti )/6, �

q
0 = 1.481/T , Tq = 0.5983T , and t f 1 = 3.590T .

B. Phase sensitivity

The enantio-discrimination in the present scheme depends
on the intrinsic and optical phase of the three coupling in the
closed-loop figuration, and the discussion above is established
on the parameter setting for the phases of three pulses as φq =
π/2 and φp = φs = 0 so far. As a matter of fact, the parameter
setting for these phases is not monotonous. If all these phases
are not assigned, the states of two enantiomers at the ending
of the first stage are

|
〉L,R = 1√
2

[
ei(φq∓ π

2 )|1〉L − |3〉L
]
. (19)

Then through 3MPPs in the STIRAP scheme, the
enantio-discrimination requires that one of two enantiomers
evolves in the second stage along the dark state |λ0(t )〉
but the other along the equal-weighted superposition of
exp( i

2

∫
� dt )|λ+(t )〉 and exp(− i

2

∫
� dt )|λ−(t )〉. According

to the forms of |λ0,±(t )〉 in Eq. (5), the condition of this
requirement is

φp + φs − φq =
(

n + 1

2

)
π, (20)

with an integer number n, which shows a general three-pulse
phase relation for a full enantio-discrimination. Likewise, this
relation is also applicative in the CP scheme. To this end, by
using the pulse shapes plotted in Fig. 5(c2), Fig. 6 shows
the phase sensitivity of the enantio-discrimination through
considering the phase-dependent final population of |3〉 of
two enantiomers. Figure 6 demonstrates that one can make
the entirely different population distributions between L- and
R-handed molecules by setting any two pulses with zero
phase, but the third one with a relative phase of ±π/2, and
the relative phase sign determines the excited enantiomer.

V. EXPERIMENTAL CONSIDERATION

The present enantio-discrimination scheme can be applied
to diverse samples of chiral molecules, and several species

have been adopted in recent enantio-discrimination experi-
ments, such as 1,2-propanediol [16,17,22], carvone [19,23],
solketal [20], 4-carvomenthenol [52], menthone [21,23], and
cyclohexylmethanol [24], etc.

A. Molecule candidate and master equation

We here take 1,2-propanediol as an example to verify
the scheme and discuss experimental issues. A closed-loop
configuration [|000〉 ↔ |111〉 ↔ |110〉 ↔ |000〉, as shown in
Fig. 7(a)] within a 0.8–13 GHz microwave regime comprises
three rotational energy states of an enantiomeric pair of a
conformer of 1,2-propanediol molecules whose microwave
spectrum can be found in Ref. [53], which was already used
in experiment [16]. The mirror-reflection molecular structure
diagram of two enantiomers is plotted in Fig. 7(b). The energy
levels are designated with |JKa,Kc〉, where J is the rotational
quantum number and Ka and Kc are the projections of J
onto the principal axes of the molecule. The adopted enan-
tiomers of 1,2-propanediol are of the conformer constants A =
5872.06 MHz, B = 3640.11 MHz, and C = 2790.97 MHz,
and have three types of rotational transitions, a-type, b-type,
and c-type, with dipole moments μa = 1.201 Debye, μb =
1.916 Debye, and μc = 0.365 Debye, respectively.

-1 -0.5 0 0.5 1

0.0
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0.4

0.6

0.8

1.0

-1 -0.5 0 0.5 1

0.0

0.2

0.4

0.6

0.8

1.0)b( )a(

FIG. 6. Phase-dependent final population of |3〉 of two enan-
tiomers with one pulse phase varying but the other two being zero.
Parameters are the same as Fig. 5(c2).
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(a) 1,2-propanediol(b)

FIG. 7. (a) Closed-loop configuration in an enantiomeric pair
of a conformer of 1,2-propanediol molecules (solid thick double-
headed arrows) and unwanted transitions (dashed thin double-headed
arrows). (b) Mirror-reflection molecular structure diagram of two
enantiomers of 1,2-propanediol.

The coincidence between Figs. 1 and 7(a) can be made by
defining the states |1〉 ≡ |000〉, |2〉 ≡ |111〉, and |3〉 ≡ |110〉,
and the transition frequencies ω1,2 = 11363 MHz, ω1,3 =
12212 MHz, and ω2,3 = 849 MHz. The a-type, b-type, and
c-type transitions are driven resonantly by orthogonal S pulse
at frequency ωS = 849 MHz, P pulse at frequency ωP =
11363 MHz, and Q pulses at frequency ωQ = 12212 MHz,
respectively. We can choose appropriate axes such that −→μ j

and
−→
E P have the same orientation, and two enantiomers

have identical �P and �S but opposite sign �Q. For such
a specific experimental model, there may be unwanted cou-
plings among possible (off-resonant) rotational transitions and
driving fields, and we consider the most likely two unwanted
transitions |110〉 ↔ |202〉 of frequency 6980 MHz (c type)
and |111〉 ↔ |202〉 of frequency 7829 MHz (b type). Then
the evolutions of the two enantiomers are dominated by the
Hamiltonian

HL,R = H0 + ω4|4〉〈4| + [�P cos(ωPt + φp)|2〉〈4|
±�Q cos(ωQt + φq)|3〉〈4| + H.c.], (21)

where H0 is given in Eq. (1), |4〉 ≡ |202〉, and ω4 =
19192 MHz. For the Rabi frequencies of megahertz order, the
probabilities of the two unwanted off-resonant transitions are
negligible indeed, because the detuning is so large even over
3.5 GHz.

There are usually two kinds of valid tools for cooling
the molecular samples: buffer gas cooling and supersonic
expansions. According to recent experiments, the molecular
samples can be cooled to a temperature of around 5–10 K
by using a cryogenic buffer gas cell [16,17,22], and the
supersonic expansion can cool the molecules to rotational
temperatures of about 1–2 K [19,23,24,52]. In order to obtain
the molecular sample of 1,2-propanediol prepared initially in
|1〉, the sample should be cooled as sufficiently as possible.
Here we assume that the scheme is performed at relatively
low temperature and all molecules in the sample of 1,2-
propanediol are prepared initially in a lowly mixed state of
the pure states |1〉, |2〉, and |3〉, with the density operator
ρ0 = 0.998|1〉〈1| + 0.001|2〉〈2| + 0.001|3〉〈3|, which means
|2〉 and |3〉 are mixed into the desired initial state |1〉 with
the same probability 0.001. Then the density operator ρ at

arbitrary time obeys the Markovian master equation

∂ρ

∂t
= −i[HL,R, ρ]

−
∑
j=2,3

γ1, j

2
(σ+

1, jσ
−
1, jρ − 2σ−

1, jρσ+
1, j + ρσ+

1, jσ
−
1, j )

− γ2,3

2
(σ+

2,3σ
−
2,3ρ − 2σ−

2,3ρσ+
2,3 + ρσ+

2,3σ
−
2,3), (22)

where γm,n (m, n = 1, 2, 3; m < n) is the relaxation rate from
|n〉 to |m〉, and (σ+

m,n)† = σ−
m,n ≡ |m〉〈n|.

B. Pulse shaping

The amplitudes of the Rabi frequencies can be controlled
by modulating the corresponding field amplitudes (voltages
applied to the electro-optic modulators), and the sign change
of S pulse can be implemented by performing an instanta-
neous π -phase flip. The required respective phases of the
three pulses can be determined by setting the phases of
the corresponding fields. Recently, many microwave-regime
experiments of the pulse shaping including the modulations
of amplitudes, frequencies, and phases (flip) by means of
arbitrary waveform generators have been reported [54–60].
The electric dipole moments of the considered transitions are
of 1 Debye order, and it is securable to control the Rabi
frequencies within 0–10 MHz by using the maximum field
strength around ∼2 V/cm. Here we pick up max{�c

P,�c
S} =

10 MHz and �
Q
0 = 2.5 MHz to conduct the present enantio-

discrimination scheme.
The used waveforms of the three pulses are varied continu-

ously, which requires the infinite time resolution in theory. Al-
though it is unrealistic to obtain an infinite time resolution in
practice, a relatively long time resolution is still applicative for
the high-D enantio-discrimination. For example, in Fig. 8(a),
we use a time resolution dt = 10 ns, and suppose that each
waveform consists of a series of (10 ns duration) rectangular
pulses. Based on these rectangular pulse sequences and the
master equation (22) with the initial (mixed) state ρ0, the
population evolutions of |3〉 of two enantiomers are plotted
in Fig. 8(b) that shows a nearly full enantio-discrimination
with D = 0.9946 (the energy relaxations of |2〉 and |3〉 are
not considered for the moment). The recent microwave-based
experiments reported that arbitrary waveform generators can
provide the minimal possible time resolution ∼0.25 ns [54]
and even ∼0.1 ns [55]. In the following, we set safely the time
resolution of the three pulses as dt = 1 ns.

C. Control errors

Perfect control of experimental operations is desired for
a full enantio-discrimination but almost impossible, so it is
essential to investigate the effect of control errors in the three
pulses on the execution of the enantio-discrimination task. In
this subsection, we mainly pay attention to two error sources:
(1) systematic errors, including frequency drifts and ampli-
tude drifts; (2) random amplitude noises, including additive
white Gaussian noises (AWGN) and random fluctuations.
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FIG. 8. (a) Waveforms of the three pulses with a time resolu-
tion dt = 10 ns. The inner plot denotes local zoom. (b) Population
evolutions of |3〉 of two enantiomers by using the pulse waveforms
in (a). Parameters: �

q
0 = 2.5 MHz, Tq = 0.3545 μs, t f 1 = 1.418 μs,

T = 0.15 μs, τ = 0.30 μs, ti = 0.618 μs, t f = 2.5 μs, and γ1,2 =
γ1,3 = γ2,3 = 0.

1. Systematic errors

We take into account the parameter deviations induced by
frequency drifts and amplitude drifts that originate usually
from the imprecise apparatus and imperfect operations, and
define the deviation of an ideal parameter x as δx = X − x,
with X being the actual value and the relative deviation as
δx/x. Without losing generality, here we consider the relative
deviation range [−0.1, 0.1] of the pulse amplitudes and the
deviation range [−500, 500] kHz of the pulse frequencies.
The effect of the relative deviation of each pulse amplitude
on the final enantio-discrimination is plotted in Fig. 9(a),
and the values of D keep always over 0.98 within δx/x ∈
[−0.1, 0.1] for all three pulses. The differences among three
lines (especially between �c

P and �c
S) are quite slight. If the

relative deviations of the pulse amplitudes can be restrained
in δx/x ∈ [−0.05, 0.05], the enantio-discrimination involving

only one pulse amplitude deviation can be obtained finally
with D > 0.99. So the present scheme is robust against pulse
amplitude deviations.

The effect of the deviation of each pulse frequency on the
final enantio-discrimination is plotted in Fig. 9(b). The pulse
frequency deviations affect the final enantio-discrimination
significantly, as the present scheme relies on the reso-
nant regime strongly. And the frequency deviations should
be restrained in δx ∈ (−100, 100) kHz to enable D � 0.98.
The pulse frequency deviation of a pulse (i.e., detuning of
the corresponding transition) will spoil the resonant regime
of the scheme. Usually, the damage extent of the resonant
regime heightens with the increase of the ratio of detuning
to Rabi frequency, but in Fig. 9(b) the line for the frequency
deviation of Q pulse with the lowest maximum amplitude
holds the highest D. The underlying physics located at the
P and Q pulses are related to not only the one-photon res-
onant processes but also the two-photon resonant process
that determines the construction of 3MPPs. Even though the
one-photon processes driven by P and Q pulses, respectively,
are off resonant, the high-D enantio-discrimination may also
be achieved and the condition is δωP = −δωS , i.e., the two-
photon resonant process, which is identified in Fig. 9(d). The
δωP = −δωS does not always ensure the high-D enantio-
discrimination yet, and it works only when |δωP| (|δωS|) is
not too large, about |δωP| < 200 kHz, ensuring D > 0.99.

2. Random amplitude noises

As for the pulse amplitudes, in addition to the systematic
errors, there may exist noisy components in each pulse that
disturb the intended dynamics. Different from systematic
errors, these random noises are more unpredictable, and here
we mainly consider two typical amplitude noises, AWGN and
random fluctuations. An AWGN-mixed Rabi frequency can
be expressed by

�AWGN(t ) = �ori(t ) + awgn[�ori(t ), RSN], (23)

where awgn is a function that generates AWGN of the original
pulse �ori(t ) (i.e., �Q, �c

P, or �c
S) with a signal-to-noise ratio

RSN. A randomly fluctuated Rabi frequency is written as

�rand(t ) = �ori(t )[1 + rand(t, �)], (24)
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FIG. 9. (a) Effect of the relative deviation of each pulse amplitude on the final enantio-discrimination. (b) Effect of the deviation of each
pulse frequency on the final enantio-discrimination. (c) Joint effect of the frequency deviations of the P and S pulses on the final enantio-
discrimination. Each line in (a) and (b) involves only one parameter deviation. δωQ = 0 for (c). dt = 1 ns and other parameters are the same
as Fig. 8.
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FIG. 10. (a) Waveforms of three AWGN-mixed Rabi frequencies
with RSN = 10. (b) Population evolutions of |3〉 of two enantiomers
with RSN = 10. (c) Waveforms of three fluctuated-randomly Rabi
frequencies with � = 0.5. (d) Population evolutions of |3〉 of two
enantiomers with � = 0.5. Parameters are the same as Fig. 9.

where rand denotes a function that generates a random num-
ber within [−�,�] at arbitrary time. The waveforms of three
AWGN-mixed Rabi frequencies with RSN = 10 are shown
in Fig. 10(a), based on which the population evolutions of
|3〉 of two enantiomers are plotted in Fig. 10(b). We can
clearly see from Fig. 10(b) that the enantio-discrimination
is influenced little by the AWGN with the signal-to-noise
ratio RSN = 10. When the random fluctuations of the pulse
amplitudes are taken into account, even with � = 0.5, the
waveforms are shown in Fig. 10(c), and a high-D (0.9956)
enantio-discrimination is still reached, as shown in Fig. 10(d).
Generally, the scale of noise is much smaller than the scale
of the original pulses. These results indicate that the in-
fluences of the random amplitude noises including AWGN
and random fluctuations can be neglected for the enantio-
discrimination, for which the reason is due to the fact that
the time average effect of these random noises is zero.
AWGN and random fluctuations possess random absolute
values and random plus-minus signs, so the collective effect
on the pulse areas is little and the intended dynamics is
distortionless.

D. Energy relaxation

For convenience of the discussion above, we neglect the
energy relaxations of higher states by setting γ1,2 = γ1,3 =
γ2,3 = 0. Although the considered closed-loop configura-
tion consists of the relatively lower rotational energy states
that have relatively longer lifetime, there is the probability
yet that two higher states |2〉 and |3〉 may relax to the
states lower than them. We suppose the lifetimes of |2〉
and |3〉 as τ2 and τ3, respectively, and then γ1,2 = 1/τ2 and
γ1,3 = γ2,3 = 0.5/τ3 for simplicity. Then, with varying τ2 and
τ3, the final enantio-discrimination is depicted in Fig. 11.

FIG. 11. Final enantio-discrimination with varying τ2 and τ3.
Parameters are the same as Fig. 9.

Figure 11 exhibits that the shorter the lifetime of τ2 or τ3

is, the more significantly the final enantio-discrimination is
spoiled, but the near-full (D > 0.99) enantio-discrimination
can be always acquired as long as τ2 > 200 μs and τ3 >

300 μs, which are accessible for the states |2〉 ≡ |111〉
and |3〉 ≡ |110〉 in cold 1,2-propanediol molecules. There-
fore, the effect of decoherence induced by energy re-
laxations on the present enantio-discrimination scheme is
insignificant.

VI. CONCLUSION

Based on the combination of a one-photon process and
a two-photon process in a closed-loop configuration, we
have proposed to realize the robust and highly efficient
discrimination of chiral molecules. The one-photon process
is responsible for the coherence between |1〉 and |3〉, and then
the two-photon process through three-mode parallel paths
constructed by the method of “chosen paths” enables two
enantiomers evolving to entirely different states, i.e., a full
enantio-discrimination. By means of the pulse engineering,
many kinds of pulse shapes can be used in implementing
the scheme. The one- and two-photon processes can overlap
partly with each other, which shows the robustness against
unfaithful pulse delays and can further shorten operation
time. The phase sensitivity of the scheme indicates the
enantio-discrimination can be obtained by setting the phase
of any one pulse. Besides, we propose to apply the present
scheme in 1,2-propanediol molecules, and the experimental
issues are considered including unwanted transitions,
imperfect initial state, pulse shaping, control errors, and the
effect of energy relaxations. With the unwanted transitions
and imperfect initial state, in a closed-loop configuration
involving three lower rotational states of 1,2-propanediol
molecules, the robustness of the scheme against the long
time resolution, amplitude drifts, frequency drifts, and
random noises of pulses is illustrated. The scheme is also
hardly influenced by energy relaxations since the used lower
rotational states are of long coherence time.
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Further, the present scheme may be optimized by means
of the state-of-the-art quantum optimal control techniques
[36,37,47–51], which can give optimal plans for one or more
particular purposes, and the combination [61–64] of quantum
optimal control with STA or STIRAP may provide more
excellent results in efficiency, robustness, and accuracy of
carrying out enantio-discrimination tasks. Finally, we hope
that our work could provide substantial help for laboratory
researchers in the separation of chiral molecules.
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