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Photoionization microscopy (PM) is an electron imaging method designed for the measurement of the
outgoing flux of slow electrons produced by photoionization of atoms in the presence of an external uniform
static electric field. The high resolution of PM allows the observation of spatial quantum interference structures
which are directly related to the squared modulus of the excited electron’s wave function. The PM’s range
of interest lies above the saddle-point energy, where continuum Stark states are degenerate with quasibound
ones (resonances). A principal aim of PM is to provide access to the wave functions of the latter, which
in hydrogen atoms ionize exclusively via tunneling (in contrast to the continuum states where the electron
escapes freely above the potential barrier). In nonhydrogenic atoms, however, quasibound states are coupled with
the continuum ones. Among other consequences, this leads to comparable resonant and continuum excitation
strengths and the weakening or disappearance of the resonant manifestations from the recorded PM images.
Here we examine theoretically the possibility of bypassing these difficulties by applying two-excitation-pathway
interference techniques. For this first case-study we employ the hydrogen atom but we, nevertheless, simulate
a nonhydrogenic situation by selecting hydrogenic Stark resonances whose excitation strengths are comparable
to or even smaller than the continuum ones. Specifically, we consider the interaction of ground-state atoms with
an ω/2ω bichromatic laser field inducing one- and two-photon transitions to the final Stark states. It is shown
that, under certain conditions and by appropriately adjusting the intensities of the two laser fields and their
relative phase, the uncovering of resonant manifestations from PM images may indeed be achieved. Further work
concerning theoretical extensions to complex atoms and possible experimental realizations are also discussed.
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I. INTRODUCTION

Photoionization microscopy (PM) is an experimental tech-
nique designed for the measurement of the two-dimensional
flux of slow (meV) electrons ejected during the photoion-
ization of neutral atoms in the presence of a uniform static
electric field. The electron current probability density is im-
aged by a position sensitive detector and the low energy of
the liberated electrons allows for the observation of quantum
interferences on the recorded images. In turn, as showed
already by the first theoretical formulation of PM during the
1980s [1–3], these interference structures are directly related
to the squared modulus of the electronic wave function.

The PM’s theoretical framework is built upon the hy-
drogenic Stark effect and involves the so-called parabolic
wave functions. The energy range of interest for PM studies
lies just above the field-induced ionization threshold and it
is characterized by coexisting (degenerate) continuum and
quasibound Stark states (resonances). A primary aim of PM
is to provide access to wave functions and interferences
stemming from the resonances, the latter reflecting intrinsic
properties of the atomic system under study. Experimental PM
images unambiguously attributed to hydrogenic Stark reso-
nances were recorded fairly recently [4] and fully verified the
first age-old [2,3] as well as more recent [5–7] calculations.

*scohen@uoi.gr

The resonant character imprinted on these images mainly
consists of a significant size increase, along with the appear-
ance of additional wave-function nodes with respect to the
continuum images below and just above the resonance. For
the experimentally employed single-photon excitation scheme
out of an excited n = 2 hydrogenic state [4], the excitation
strength of the resonances was found to be much stronger than
that of the continua, leading to a comfortable identification of
the aforementioned resonant manifestations. These manifes-
tations, however, proved to be difficult to record in nonhydro-
genic atoms. The latter are characterized by the emergence
of short-range interactions induced by the penetration of the
excited electron’s wave function into the residual ionic core.
As a consequence, each Stark state wave function outside the
core is expressed as a mixture of regular and irregular wave
functions of the corresponding hydrogenic parabolic state.
Alternatively, nonhydrogenic Stark wave functions can be de-
scribed as linear combinations of quasibound and continuum
hydrogenic parabolic wave functions [8–10]. Then, a signifi-
cant portion of an initially prepared resonant state population
spreads out over several degenerate continua (autoionization),
while resonant and continuum excitation amplitudes out of
a given initial state become comparable. Thus, the image
resonant features may be rather weak and hard to observe, and
these difficulties grow with increasing ionic core size. This
may explain why PM images of the heavy (atomic number
Z = 54) Xe atom did not show resonant effects at all [11],
despite the existence of theoretical predictions suggesting
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that this would be possible under certain conditions in either
Xe [12] or the alkali-metal atoms [8–10]. In fact, although
somewhat less intense than in the hydrogenic data, resonant
effects were indeed clearly observed in the PM images of the
light nonhydrogenic atoms Li (Z = 3) [13,14] and He (Z = 2)
[15]. In addition, they were apparent, albeit rather faint, even
in the images of the medium-side Mg atom (Z = 12) [16].

Obviously, to efficiently overcome the difficulties encoun-
tered with nonhydrogenic atoms and thus extend the useful-
ness of PM, further efforts need to rely upon special exci-
tation strategies and profit from the experience accumulated
so far. For example, it is by now well known that for the
resonant character to be visible the number of degenerate
continua needs to be low. It is therefore advantageous to
work immediately above the classical saddle-point energy
[13,14]. Another example concerns the He PM experiment
[15] where the resonant character was recorded near avoided
crossings between pairs of interacting resonances [17], with
the resonance of interest being effectively decoupled from the
continua. Following the above reasoning, the purpose of the
present work is to theoretically explore the efficiency of yet
another approach that makes use of the interference between
two excitation amplitudes. The latter amplitudes, describing
the transfer of ground-state atoms to the final Stark states,
are induced by means of a bichromatic laser field consisting
of a fundamental frequency beam and one of its mutually
coherent harmonics. Then, the manipulation of given “target”
observables can be achieved by appropriately adjusting the
intensities of the two beams and the relative phase between
them.

Two-pathway interference and especially phase-sensitive
coherent-control (PSCC) [18] techniques are successfully
applied for about 20 years now (for extensive reviews, see
Refs. [19–27]). The fundamental (ω) plus second harmonic
(2ω) bichromatic laser field selected for the present study
is the easiest to implement from the experimental point of
view. Furthermore, this ω/2ω frequency ratio is combined
here with the most convenient one- and two-photon excitation
schemes. The latter combination was employed in the past
for the manipulation of photoelectron angular distributions
(PADs) in atomic [28] or molecular [29] ionization, as well as
photofragment angular distributions [30], photodissociation
[31], and forward-backward asymmetries [32] in molecular
systems. It was also found to be fruitful in controlling pho-
tocurrents in semiconductors [33]. More recently, PAD cal-
culations were devoted to the interaction of hydrogen atoms
with femtosecond VUV pulses in the region of an inter-
mediate resonance and for either linearly [34] or circularly
[35] polarized ω/2ω laser fields. Even more recently, these
calculations were extended to the Neon atom [36]. The only
“weakness” of the scheme is that it does not allow control of
total yields in free atoms and systems possessing inversion
symmetry. It is therefore important to mention those one- and
two-photon excitation PSCC variants that tackled the problem
through the presence of a static electric field that mixes states
of opposite parity. Indeed, total excitation/ionization yields
was so far the observable of interest in either theoretical
[37–39] or experimental [40,41] work along this direction.
Instead, our present aim is to employ this PSCC scheme in an
attempt to manipulate the electron current probability density

(i.e., the PM images) and the observables related to it. This
first application of the method is devoted to the relatively
simpler case of the hydrogen atom and particularly to those
hydrogenic Stark resonances whose excitation strengths are
generally comparable to or smaller than the continuum ones.
Contrary to conventional wisdom this is a situation that can
be frequently met in hydrogen atom [7] and, in addition, it
is typically encountered in nonhydrogenic atoms. We then
apply suitable manipulation procedures that allow efficient
uncovering of otherwise obscured resonant signatures from
the PM images under this unfavourable circumstance.

The rest of the paper is organized as follows: In Sec. II
we briefly describe the theory of the hydrogenic Stark effect
in the continuum and we incorporate the ω/2ω, one-, and
two-photon PSCC scheme into the PM framework. In Sec. III
the optimum PSCC conditions are obtained for all relevant
observables and then applied to a characteristic test-PM image
which is analyzed in detail. Finally, in the conclusion Sec. IV
possible directions of further work are discussed.

II. THEORY

A. The quantum mechanical Coulomb-Stark problem

Let us begin by briefly exposing the quantum mechanical
treatment of a hydrogen atom in the presence of a
homogeneous and static electric field F = Fz. The
corresponding Schrödinger equation is separable in
semiparabolic coordinates [7,42,43], χ = [r + z]1/2 � 0,
υ = [r–z]1/2 � 0, and ϕ = tan−1(y/x), where r =
[x2 + y2 + z2]1/2. The electron wave function is written as
ψ (r) = [2πχυ]−1/2X (χ )Y (υ )eimφ (with m = 0,±1,±2, . . .

being the magnetic quantum number) and separability leads
to two differential equations which are written as (in a.u.
h̄ = e = me = 1),[

−1

2

d2

dχ2
+ UX,eff (χ ) − 2Z1

]
X (χ ) = 0,

UX,eff (χ ) = 4m2 − 1

8χ2
+ Fχ4

2
− Eχ2, (1a)

[
−1

2

d2

dυ2
+ UY,eff (υ ) − 2Z2

]
Y (υ ) = 0,

UY,eff (υ ) = 4m2 − 1

8υ2
− Fυ4

2
− Eυ2, (1b)

with E denoting the energy and Z1 and Z2 = Z–Z1 are sep-
aration constants linked via the nuclear charge Z (for hy-
drogen atom Z = 1). In the present work we are interested
for the energy range above the classical saddle-point energy
E cl

sp = –2[ZF ]1/2 a.u. [44] and in what follows we employ,
alternatively to E, the convenient reduced energy variable:

ε ≡ E∣∣E cl
sp

∣∣ . (2)

The ε � –1(E � E cl
sp) range includes the field-free ioniza-

tion limit ε = E = 0 and it is generally characterized by the
electron escape to infinity. Therefore, the (scattering) problem
is solved for given sets of fixed E, m, and F values. The
form of the effective potential UX,eff forces the bound electron
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motion along the χ coordinate and the solution of Eq. (1a)
leads to the quantization of Z1 (and consequently of Z2). The
obtained Zn1,|m|

1 set is characterized by the quantum num-
ber n1 = 0, 1, 2 . . ., counting the nodes of the corresponding
(real) wave functions Xn1,|m| in the interval (0, �).

Along the υ coordinate where the electron may escape to
infinity the large-υ asymptotic form of wave function Y is
[5,45]

Y
υ→∞

= CY M(υ ) sin [θ (υ ) + φ], (3)

with CY = [2/π]1/2 stemming from its energy normalization
[5,44,46]. In Eq. (3) the function M > 0 is the Milne function,
obeying the Milne equation [47],[

d2

dυ2
+ k2

]
M − 1

M 3 = 0, (4)

obtained by appropriately transforming Eq. (1b) [5,45]. In
Eq. (4), k2(υ ) = 2[2Zn1,|m|

2 –UY,eff (υ )] is the squared wave-
number function and it turns out that M ≈ k–1/2 in the υ → ∞
limit. Finally, in Eq. (3),

θ (υ ) =
∫ υ

υm

1

M 2(υ ′)
dυ ′, (5)

and φ is a constant phase which depends on the lower integra-
tion limit υm.

Note that for –1 � ε < 0 the effective potential UY,eff

exhibits a barrier and each n1 channel is associated to a
threshold En1,|m|

thr , given by the root of the equation E +
2[Zn1,|m|

2 (F, E )F ]1/2 = 0 [8,14,39,48]. For E > En1,|m|
thr the

electron escapes over the barrier and its continuum state is
characterized by the quantum number pair (n1, m). When,
however, E < En1,|m|

thr the electron may escape solely via tun-
neling through the barrier of UY,eff . In this case there are spe-
cific resonant values of Zn1,|m|

2 for which the amplitude of the
wave function Y within the inner well of UY,eff acquires large
values. This fact reflects the entrapment of the electron at short
distances and these, so-called, quasibound states (resonances)
are characterized by an enlarged set of three quantum numbers
(n1, n2, m), with n2 being the number of nodes of Y within this
inner well.

B. Phase-sensitive coherent control over the current probability
density and related observables

Let us now consider the photo-excitation of the Stark
states ψE ,F

n1,m (E � E cl
sp) out of a given initial state.

The resulting outgoing flux of ionized electrons is de-
scribed by the current probability density, Jυ (χ, φ) ∝
i[χ2 + υ2]−1/2[ψout (∂ψ∗

out /∂υ ) − ψ∗
out (∂ψout/∂υ )], along a

paraboloid of constant υ. The calculation of Jυ (χ, φ) requires
the knowledge of the υ-outgoing wave ψout, which is related
to the ψE ,F

n1,m’s [3,5–7]. The relevant differential equation for
ψout is derived from the time-dependent Schrödinger equa-
tion (TDSE), i∂�/∂t = [H (r) + U (r, t )]�, where H is the
Coulomb-Stark Hamiltonian and U the laser-atom interaction
term. For the ω/2ω PSCC scheme depicted in Fig. 1, the
atoms interact with a fundamental frequency laser beam (ω)
and its mutually coherent second harmonic (2ω). The two
beams are assumed to be perfectly spatially overlapping. The

FIG. 1. Schematic energy-level diagram (not to scale) showing
the presently examined ω/2ω, single-, and two-photon excitation
PSCC scheme in the presence of a static homogeneous electric field
of strength F. The two mutually coherent fields transfer ground-state
hydrogen atoms (wave function ψg, energy Eg) to the final Stark
states ψE ,F

n1,m, the latter located above the classical saddle-point energy
E cl

sp = –2[ZF ]1/2 a.u. and below the zero-field limit, E = 0. The
two-photon transition proceeds via the virtual state ψv. For linear
polarizations parallel to the direction of the static field, it holds that
m = 0 for both the virtual and final states. The manipulation of given
observables is achieved by adjusting the intensities of the two light
beams and their relative phase.

total field is written as Etot (t ) = εωEω(exp[i(ωt + 
ω )] +
c.c.) + ε2ωE2ω(exp[i(2ωt + 
2ω )] + c.c.), where εω and ε2ω

are linear polarization vectors, Eω and E2ω are real and
time-independent amplitudes and 
ω and 
2ω are fixed but
controllable phases.

Working along the lines described in Ref. [49], we adopt
an effective two-level model and � is decomposed in two
terms, one referring to the (initial) ground state ψg of energy
Eg (and mg = 0) and one to ψout of energy E. Thus, we write
�(r, t ) = ψg(r)e–iEgt + ψout (r)e–iEt , this form implying that
the ground-state population is practically unaltered by either
of the sufficiently weak laser fields and that ψout depends on
the field amplitudes Eω,2ω. Further, the resonant condition
is 2ω = E − Eg and up to the lowest perturbative order the
transition ψg → ψout is realized via either the absorption of a
single photon from the E2ω field or by the absorption of two
photons from the Eω field. Hence, the electric dipole interac-
tion term may be written as U (r, t ) = U (1)

2ω (r, t ) + U (2)
ω (r, t ),

where

U (1)
2ω (r, t ) = E2ωe−i(2ωt+
2ω )ε2ω · r = T̂ (1)

2ω e−i2ωt (6)

is responsible for single-photon transitions. Note that in
Eq. (6) only the resonant absorption term (exp[–i2ωt]) is
retained after the introduction of the rotating wave approxi-
mation [50], while the last equality defines the operator T̂ (1)

2ω .
The resonant U (2)

ω term may be put to the form [22,23,51,52],

U (2)
ω (r, t ) = E2

ωe−i2(ωt+
ω )D̂(2) = T̂ (2)
ω e−i2ωt , (7)

where D̂(2) is an effective two-photon electric dipole operator.
There are no exactly- or near-resonant intermediate states in
the vicinity of the first photon.
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Strictly speaking, second-order ac Stark shifts induced by
the Eω field should be also considered for the levels involved.
These shifts, however, as estimated by ignoring the static field,
turn out to be quite small. For example, the ground-state shift
is given by δEg = –αd (ω)E2

ω/2, where the dynamic dipole
polarizability αd (ω) for ω ≈ |Eg|/2 is only slightly larger than
its static value [53]. As for the near-threshold Rydberg levels,
the so-called weak-field, high-frequency limit [54] implies
that δE = Iω/4ω2 [55], where Iω (∝E2

ω) is the fundamental
beam intensity. By selecting Iω to be sufficiently below the
saturation intensity (say, Iω ∼ 109 W/cm2) we estimate an
overall energy shift of the order of 10−7 a.u., i.e., smaller
or comparable to the line-widths of long-pulse laser beams
employed for such studies [4,15].

For the low field strengths of interest here the static elec-
tric field may indeed be neglected for the ground state. We
nevertheless assume that ψg is an approximate eigenstate of
H (Hψg ≈ Egψg). By inserting � and U to TDSE and keeping
terms linear in E2ω and quadratic in Eω (that is, by dropping
the higher order U (r, t )ψout term [49]) one finally arrives
at the so-called “Schrödinger equation with a source” [5,56]
for ψout which is written as (E − H )ψout = (T̂ (1)

2ω + T̂ (2)
ω )ψg.

Using the large-υ asymptotic, outgoing wave solution of this
equation, the current probability density in the υ→� limit is
written as [5,7,9]

Jυ
υ→∞

(ϕ, χ ) ∝ 1

χυ[χ2 + υ2]1/2

×
∣∣∣∣∣
∑
n1,m

ei[θn1 ,|m|(υ )+φn1 ,|m|]dn1,meimϕXn1,|m|(χ )

∣∣∣∣∣
2

,

(8)

where

dn1,m = 〈
ψE ,F

n1,m

∣∣T̂ (1)
2ω + T̂ (2)

ω |ψg〉 (9)

are transition matrix elements between ψg and the states
ψE ,F

n1,m. The current probability density is imaged on an electron
detector placed at zdet = –υ2

det/2 and whose plane is perpen-
dicular to z axis. The radius ρ of electron impacts on the
constant υ = υdet paraboloid is given by ρ = [x2 + y2]1/2 =
χυdet. For υdet → ∞ Eq. (8) is somewhat simplified since
[χ2 + υ2

det]
1/2 ≈ υdet.

The two-photon transitions may be described by single-
photon ones, ψv → ψE ,F

n1,m, between the final states ψE ,F
n1,m

and a virtual state ψv [52,57,58,39,7] computed via the
Dalgarno-Lewis method [59]. In other words, we may replace
〈ψE ,F

n1,m |T̂ (2)
ω |ψg〉 by 〈ψE ,F

n1,m |T̂ (1)
ω |ψv〉, where, similar to Eq. (6),

T̂ (1)
ω = Eωe−i
ωεω · r is the single-photon dipole transition

operator for the fundamental laser field. The static electric
field is neglected also for the virtual state. Therefore, the
relevant Dalgarno-Lewis equation is written as

[
−1

2
∇2 − Z

r
− Ev

]
ψv = −T̂ (1)

ω ψg, (10)

with Ev = Eg + ω = (E + Eg)/2 [51,57,58].

For either the one- or two-photon excitation alone, if the
magnitude of the matrix element of a resonance is much
stronger than the matrix elements of the continuum channels,
then the on-resonance current probability density will be
dominated by this resonant state. This dominance is rather
common in hydrogen atom [4,7], but as it will be shown
shortly it cannot be generalized. It is interesting to note that
the form of Eq. (8) remains apparently unchanged when deal-
ing with nonhydrogenic atoms [8–10]. There, however, the
aforementioned mixing between quasibound and continuum
hydrogenic Stark states results in matrix elements differing
significantly in modulus and phase with respect to the hy-
drogenic ones. Particularly, the modulus of resonant matrix
elements usually becomes comparable to those of the continua
while the resonant character may spread out over several n1

channels [8–10,13,14,16].
For achieving PSCC over the population transferred to the

final states the one-photon and two-photon transitions should
necessarily excite the same m value [39]. Therefore, to elim-
inate any parasitic excitation we examine here the simplest
possible case where the linear polarization vectors of both
fields are parallel to the static electric field (π polarizations).
Hence, ε2ω · r = εω · r = z = (χ2–υ2)/2 and because of the
dipole selection rule �m = 0/per-photon, only m = 0 final
states are populated. Then, by writing the virtual state in the
form

ψv = Eωe−i
ωψ̃v (11)

(where ψ̃v is also an m = 0 state), Eq. (9) is written as

dn1,m = dn1,0 ∝ E2ωDπ (1)
n1,0

+ E2
ωe−i�
Dπ (2)

n1,0
, (12)

where

Dπ (1)
n1,0

= 〈
ψE ,F

n1,0

∣∣z|ψg〉, (13a)

Dπ (2)
n1,0

= 〈
ψE ,F

n1,0

∣∣z|ψ̃v〉 (13b)

are (real and independent of laser field amplitudes and phases)
single- and two-photon transition matrix elements and

�
 ≡ 2
ω − 
2ω. (14)

By angularly integrating Eq. (8), we may obtain the radial
distribution

P(ρ) ∝ ρ

∫ 2π

0
Jυdet dφ, (15)

which is proportional to the number of electron impacts within
the [ρ, ρ + dρ] interval. For the present case where only
m = 0 states are included and Jυdet is independent of ϕ the
integration is trivial and gives P(ρ) ∝ ρJυdet (ρ). Finally, by
integrating the current probability density over the whole
surface of the υdet paraboloid we obtain the total electron
signal, i.e., the total ionization rate wtot, which is written as [7]

wtot =
∫

Jυdet dS ∝
∑

n1

∣∣dn1,0

∣∣2
, (16)

with dS the surface element of this paraboloid.
The calculation of initial, virtual and final state wave

functions, as well as of the phases θn1,0 + φn1,0 and the matrix
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elements Dπ (1)
n1,0

and Dπ (2)
n1,0

was presented in detail elsewhere
[7]. These computational procedures are followed here for
obtaining the results concerning the manipulation and control
of wtot, P(ρ), and Jυdet .

III. RESULTS AND DISCUSSION

A. General remarks

The application of PSCC under the presence of a static
electric field offers a number of distinctive features and pe-
culiarities. It is to be restated first that control over the total
ionization rate wtot via the simultaneous one- and two-photon
atomic excitation necessitates the presence of the static field
[34,37–39], which breaks the inversion symmetry characteriz-
ing field-free atoms. On the contrary, the field presence is not
absolutely necessary for controlling observables related to the
differential cross section, namely in our case the images Jυdet

and radial distributions P.
Further, the PSCC efficiency for a given observable � is

customarily assessed by the achieved contrast,

V � = �+ − �−
1
2 (�+ + �−)

, (17)

where �+ and �– are the values of this observable for
�
 = 0 and �
 = π , respectively. Note that the definition of
Eq. (17) implies a maximum value of |V �| equal to two. The
optimum (maximum) absolute contrast value, |V �

opt|, may be

obtained as follows: By defining η ≡ E2
ω/E2ω the matrix ele-

ments entering to �± are written as dn1,0(�
 = 0) ∝ Dπ (1)
n1,0

+
ηDπ (2)

n1,0
and dn1,0(�
 = π ) ∝ Dπ (1)

n1,0
− ηDπ (2)

n1,0
[see Eq. (12)].

Then, the condition dV �/dη = 0 delivers a value of η for
the given observable that leads to V �

opt when inserted to
Eq. (17). It turns out that this optimum value of η implies
always that �(1) = �(2), the latter condition suggesting that
contrast optimization is to be achieved when the individual
single-photon and two-photon excitation recordings of that
observable are equal [19,20,39]. However, obviously if either

�(1) or �(2) is zero, then the observable cannot be controlled
at all.

Let us apply the above considerations to the total excitation
rate (� = wtot). According to the above formulation the con-
dition w(1) = w(2) (emerging from the condition dV wtot/dη =
0) translates to E2

2ω

∑
n1

(Dπ (1)
n1,0

)
2 = E4

ω

∑
n1

(Dπ (2)
n1,0

)
2

and can
be realized by appropriate choices of the amplitudes Eω and
E2ω of the two laser fields (or, equivalently, of their intensi-
ties). This leads to

V wtot
opt = 2

∑
n1

(
Dπ (1)

n1,0
Dπ (2)

n1,0

)
[(∑

n1

(
Dπ (1)

n1,0

)2)(∑
n1

(
Dπ (2)

n1,0

)2)]1/2 . (18)

Inspection of Eq. (18) reveals that, while the equality
w(1) = w(2) appears to be the only useful guideline for achiev-
ing the highest possible contrast, it does not guarantee that
|V wtot

opt | would be necessarily equal to the aforementioned
maximum value of 2 [39]. This is due to the “collective”
character of Eq. (18), which is expressed in terms of sums
over all available n1 channels. In fact, Eq. (12) suggests that it
is possible to efficiently control each given individual channel
(provided Dπ (1)

n1,0

= 0 and Dπ (2)

n1,0

= 0), but this, of course, does

not imply that under the same conditions wtot would be
controlled with the same high efficiency (and vice versa).
In accord to the above reasoning, for individual resonances
below E cl

sp the presence of a single n1 channel results indeed
in |V wtot

opt | = 2. This is also approximately true just above
E cl

sp, where the number of n1 channels and particularly the
number of continua remains low. As energy increases further
the number of channels grows and |V wtot

opt | gradually drops
to very low values [39]. Note finally that the variation of
V wtot

opt may also involve sign changes as a function of energy
caused by changes of the relative sign of the one-photon and
two-photon matrix elements which generally exhibit a drastic
energy-dependence of magnitude and sign.

The relevant equalities J (1)
υdet

= J (2)
υdet

and P(1) = P(2) lead to
a common optimum contrast expression,

V P
opt (ρ) = 2

Re
[(∑

n1
Dπ (1)

n1,0
ei[θn1 ,0(υdet )+φn1 ,0]Xn1,0

)(∑
n1

Dπ (2)
n1,0

e−i[θn1 ,0(υdet )+φn1 ,0]Xn1,0
)]

∣∣(∑
n1

Dπ (1)
n1,0

ei[θn1 ,0(υdet )+φn1 ,0]Xn1,0
)(∑

n1
Dπ (2)

n1,0
ei[θn1 ,0(υdet )+φn1 ,0]Xn1,0

)∣∣ , (19)

which shares the same “collective” character with Eq. (18)
for wtot, but clearly proposes a different optimization criterion
with respect to it. Furthermore, Eq. (19) suggests that for fixed
energy and F the magnitude and sign of the optimum contrast
may vary with the radius ρ through the ρ-dependent wave
functions Xn1,0 (since ρ ∝ χ ). In other words, each radial
point of the image Jυdet or the radial distribution P(ρ) may
exhibit different V P

opt values and, therefore, the uniform control
of the full image or the full distribution cannot be guaranteed.
These expectations are investigated below in some detail.

B. Uncovering the resonant character of photoionization
microscopy images

The ability of PSCC to isolate the resonant characteristics
of a given image will now be explored under conditions simu-
lating a nonhydrogenic situation. To that purpose, we employ

the example presented in Figs. 2 and 3. These graphs refer
to a field strength of F = 680 V/cm which falls within the
typical range of strengths employed for PM studies and it was
recently reported for either experimental (for the Mg atom) or
theoretical (for the H atom) work [7,16]. Further, the selection
of the energy range near ε ≈ –0.9 serves two purposes. First,
it ensures the presence of a fairly small but nonnegligible
number of continua. Second, it includes the (n1, n2, m) =
(5, 26, 0) hydrogenic resonance for whom the ratio between
resonant and continuum excitation strengths generally favors
the continua. Specifically, consider the single-photon excita-
tion rate w(1) given in Fig. 2(a) along with its individual, single
n1 channel, contributions for 0 � n1 � 5. All n1 > 5 excita-
tions are found to be negligibly small. The resonant (n1 = 5)
rate is stronger than any of the n1 = 0–4 nonresonant ones.
Nevertheless, at the spectral maximum of the resonance at
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FIG. 2. (a) Calculated single-photon excitation/ionization of hy-
drogen atom out of its ground state with π -polarization (m = 0
final Stark states) in the presence of an electric field of strength
F = 680 V/cm and in the neighborhood of the (n1, n2, m) =
(5, 26, 0) Stark resonance (spectral maximum at reduced energy
εres = –0.8939). The bold solid line denotes the ionization rate w(1)

and the dashed lines its individual n1-contributions [see Eq. (16)].
(b) Same as in panel (a) but for the two-photon ionization rate w(2).
The rate units are arbitrary but common in panels (a) and (b) and
the equality w(1) = w(2) holds for the reduced energy ε = –0.8943 <

εres, marked by the solid black points and the vertical dash-dotted
line. This energy is employed for the calculations of Fig. 3. (c) The
optimum contrast V wtot

opt [Eq. (18)] as a function of ε. Note that |V wtot
opt |

is less than the maximum value of 2 over the whole range shown,
while the negative value of V wtot

opt implies an opposite relative sign

between the one-photon and two-photon matrix elements Dπ (1)
n1,0 and

Dπ (2)
n1,0 , respectively.

εres = –0.8939 the nonresonant channels amount collectively
to about half of the full magnitude of w(1) and their relative
contribution grows significantly in the neighboring, slightly
out of resonance, energy locations. As for the two-photon
excitation given in Fig. 2(b), it favors the continua even more.
The resonant contribution is about two orders of magnitude
smaller than the stronger nonresonant ones. Consequently, the
resonance is hardly visible in w(2). The essential differences
between the single- and two-photon excitation spectra should
not be surprising and they have already been pointed out in
earlier work [7]. To verify former predictions [39] for PSCC

FIG. 3. (a) Calculated radial distribution P(1)(ρ) for single-
photon ionization of hydrogen atom out of its ground state for
F = 680 V/cm, ε = –0.8943, and π -polarized light (m = 0 final
Stark states). (b) Same as in (a) but for the distribution P(2)(ρ )
corresponding to two-photon ionization with π -polarized light. (c)
Optimum contrast V P

opt [Eq. (19)] as a function of ρ (solid line). (d)
Ratio P(1)/P(2) as a function of ρ (solid line). The horizontal dashed
line shows the radii where the two distributions are chosen to be equal
(as described in the text), so that they allow for the achievement
of V P

opt. Under this P(1)/P(2) setting, the actually obtained contrast
V P(ρ ) is shown in panel (c) with a dashed line, the distribution P+(ρ)
(multiplied by a factor of 10) for �
 = 0 is shown in panel (e)
and the distribution P–(ρ ) for �
 = π is shown in (f). The insets
of panels (a), (b), (e), and (f) show the corresponding images J (1)

υdet
,

J (2)
υdet

, J+
υdet

, and J−
υdet

, respectively, where the gray scale is stretched
from zero (white) to 100% (black) for each image except for (e)
where the central maximum is cut at its 10% level (hatched area)
for better visibility of the faint outer fringe. Additionally, in panel
(e) also drawn with a dashed line is the squared wave function X 2

5,0,
matched in magnitude with P+ at the maximum of the third bright
fringe at ρ ≈ 8 arb. units.

over wtot, Fig. 2(c) gives the optimum contrast V wtot
opt as a

function of ε, as emerged from the computed matrix elements
Dπ (1)

n1,0
and Dπ (2)

n1,0
. As a consequence of the existence of five

nonnegligible channels, |V wtot
opt | is not equal to 2 over the whole

range around the resonance. In fact, for this specific resonance
|V wtot

opt | is found to be lower on-resonance than off-resonance.
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Additionally, the negative sign of V wtot
opt implies an opposite

relative sign between single and two-photon matrix elements
(which is indeed found to be the case for every n1 value).

To mimic even more closely the nonhydrogenic case,
calculations concerning PSCC over Jυdet

and P(ρ) are not
performed at εres but at ε = –0.8943 < εres, i.e., at the red
side of the resonance [see Figs. 2(a) and 2(b)]. The observed
behavior to be discussed below is visible in either the on-
resonant or the off-resonant computations. For the latter,
however, the uncovering of the resonant character is some-
what more spectacular. Figures 3(a) and 3(b) show the one-
and two-photon distributions P(1) and P(2) and corresponding
images J (1)

υdet
and J (2)

υdet
, respectively. As it becomes obvious

from Fig. 3(b), the aforementioned dominance of two-photon
continuum excitation over the corresponding resonant one
results to the complete absence of resonant features in P(2)

and J (2)
υdet

. The situation is not so dramatic for P(1) and J (1)
υdet

in Fig. 3(a). However, the comparable resonant and (col-
lective) nonresonant contributions lead to important beating
phenomena between them and, as a consequence, the resonant
character of the image and radial distribution is partially
lost. In particular, some of the dark fringes characterizing
the (n1, n2, m) = (5, 26, 0) resonance are obscured and the
relative magnitudes of the maxima of P(1) do not correlate
well with those of the squared wave function X 2

5,0. Further, the
V P

opt (ρ) curve emerging from Eq. (19) is given in Fig. 3(c).
As it can be observed its sign is ρ-dependent. This reflects
the combined effect of the opposite relative sign between
the matrix elements Dπ (1)

n1,0
and Dπ (2)

n1,0
, on the one hand, and

of the ρ-dependence of the wave functions Xn1,0 (changing
sign between nodes), on the other. Specifically, V P

opt (ρ) is
positive as ρ→0 and within the 20.8 � ρ � 25.4 arb. units
radial interval, while negative everywhere else. This behavior
implies that it is impossible to control the whole P(ρ) dis-
tribution with the same efficiency, since, as is evident from
Eq. (12), “subtraction” of (collective or individual n1 channel)
single- and two-photon contributions of opposite sign requires
�
 = 0, while their “addition” requires �
 = π . The re-
verse conditions hold, of course, for contributions of the same
sign. The above thinking guides the gross choice of the radial
range where the optimum contrast condition P(1) = P(2) will
be imposed. For example, as Fig. 3(c) shows efficient control
of the outer bright fringe of Fig. 3(a) whose maximum is
located at ρ ≈ 23 arb. units (and for which V P

opt > 0) is of little
interest, because in practice it lies beyond the radial extend of
P(2) [see Fig. 3(b)]. Furthermore, the largest part of the image
around 2 � ρ � 20 arb. units (for which V P

opt < 0) will then
be totally uncontrolled. In fact, this last radial range appears
to be the most interesting one because it includes the majority
of nodes of the resonant contribution X5,0. Clearly, then, under
this choice the most efficient uncovering of resonant image
features is to be achieved by P+ (�
 = 0 leading to “sub-
traction”). The next step toward this goal is the fine selection
of the radius (or radii) where the condition P(1) = P(2) will
be applied. By denoting this radius as ρo, its fine choice is
based in the present work on the maximization of the overlap
integral,

Ov(ρo) ≡
∫ ∞

0
P̃+(ρo, ρ )X 2

5,0(ρ)dρ, (20)

where the wave function X5,0 is normalized according to∫ ∞

0
X 2

5,0(ρ)dρ = 1, (21)

and similarly the “normalization condition”∫ ∞

0
P̃+(ρo, ρ)dρ = 1. (22)

is applied to the distribution P̃+(ρo, ρ ) = c(ρo)P+(ρo, ρ),
effectively determining the “normalization constant” c(ρo).

The above optimization procedure led to the value ρo ≈ 10
arb. units, i.e., close to the third node of X5,0. This result
is drawn by a dashed horizontal line in Fig. 3(d) showing
the selected ratio P(1)/P(2) (equal to 1 at ρo as well as at
≈1,≈3,≈6, 14 arb. units etc., i.e., always near the nodes of
X5,0). It is also interesting to compare the optimum V P

opt (ρ)
curve with the actually achieved V P(ρo, ρ ), the latter given in
Fig. 3(c) with a dashed line. However, the PSCC efficiency
can be fully appreciated by inspecting Figs. 3(e) and 3(f). In
fact, the comparison given in Fig. 3(e) between the optimized
distribution P+ and the “target” squared wave function X 2

5,0
reveals a fairly close resemblance between them over all radii
but the last two lobes and especially the more distant one
within the 20 � ρ � 27 arb. units radial interval. Considering
the discussion above and the specificities of the examined
case, this is an expected result. Finally, the distribution P–,
computed under the same conditions but for �
 = π , is
clearly dominated by the continuum contributions, albeit with
different relative n1-weights with respect to those of the
distribution P(2) of Fig. 3(b).

IV. OUTLOOK AND CONCLUDING REMARKS

We have presented a theoretical study devoted to an ex-
citation strategy aiming to unmask the resonant signatures
from photoionization microscopy images when the excitation
strength of the Stark resonant state of interest is dominated
by the corresponding continuum ones. The strategy involves
an ω/2ω, one-, and two-photon excitation phase-sensitive
coherent-control scheme and has been applied to images of
near-saddle-point hydrogenic resonances satisfying the above
unfavorable excitation criterion and thus probing a nonhydro-
genic situation. Using a typical example, it has been shown
that, by following an appropriately adapted protocol for the
choice of the two laser-field amplitudes and relative phase,
the dominance of the resonant characteristics over the image
can indeed be achieved.

In general, a low number of contributing n1 channels has
been found to be quite beneficial and to allow for manipulation
and efficient control of individual channels. Depending on the
specificities of the given static-field strength, energy range and
target resonance, further favourable conditions and protocol
refinements may apply, concerning, for example, the (possibly
reversed) relative sign between the resonant and continuum
excitation matrix elements. Furthermore, control and phase
manipulation is generally possible even when the number of
n1 channels is high, despite the fact that, as earlier work [39]
and present tests have shown, it is rather unlikely to obtain
high overall modulation contrasts in those cases. The scope
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of phase manipulation, however, is not necessarily exhausted
to the achievement of high contrasts. Therefore, the method
might also be useful in other, presently unthought-of, appli-
cations making use of the introduction of an experimentally
controllable phase to the current probability density (differ-
ential ionization cross section) which, in our case, is already
dominated by intense quantum interference effects.

Evidently, the quite promising results of the present work
call for its extension to nonhydrogenic atoms. Notably, this
extension will bring n1 channel mixing into play. As already
mentioned, of particular importance is the detrimental role of
the mixing between closed and open channels (resonances
and continua, respectively) and the resulting spread of the
resonant state population over several continua. Neither the
present nor any other two-excitation-pathway control scheme
can affect the n1 channel coupling. Qualitatively, however,
one may expect that it would be feasible to recover the
resonant signatures as long as they are clearly manifested in at
least one channel, despite the fact that this channel may per-
haps be rather weakly excited. Moreover, another, apparently
even more interesting, possibility would be to additionally

exploit the mixing among closed channels, namely to examine
the application of phase control in the vicinity of avoided
crossings between interacting resonances. Then, even more
fruitful results are to be expected from the combination of
the facts that (i) for an appropriate static-field strength one
of these resonances frequently decouples from the continua
thus making the recording of resonant images easier [15]
and (ii) the application of the proposed phase control scheme
was predicted to significantly reduce the continuum excitation
under appropriate selection of the parameters of the two laser
beams [39]. We are currently working toward these directions,
theoretically as well as experimentally.
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