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Molecules probed with a slow chirped-pulse excitation:
Analytical model of the free-induction-decay signal
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Most chirped-pulse experiments refer to a theoretical study from McGurk, Schmalz, and Flygare
[J. Chem. Phys. 60, 4181 (1974)] which is well tailored to interpret the signals obtained with very fast chirped
pulses, but is not sufficient to account for the signals in the case of slower chirped pulses used in spectroscopy
to increase the signal-to-noise ratio. A theoretical study of the polarization of molecules subjected to a chirped
pulse in a cell, uniform supersonic flow, or molecular beam is presented. Three degrees of approximation for
the polarization are introduced and are compared with the numerical solution of the optical Bloch equations.
These expressions enter the analytic expression of the free-induction-decay signal which is validated against
experimental data on the rotational emission spectra of OCS molecules. A relation among the pulse duration, the
line position in the chirped pulse, and the signal amplitude is proposed in the thermalized case. It assists in the
optimization of the chirped-pulse parameters and in the estimation of the error associated with the line intensity.
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I. INTRODUCTION

Chirped-pulse (CP) spectrometers are now widely em-
ployed at microwave and millimeter frequencies to perform
high-resolution spectroscopic studies [1–5]. A small number
of instruments have also been set up in the submillimeter
band [6]. Such systems employ a two-step measurement cycle.
First, the gas being studied is polarized by a CP emitted from
a powerful source. Second, after the source extinction, the
emission of the molecules corresponding to the free induction
decay (FID) is recorded. The signal level is proportional to the
polarization reached at the end of the CP. The spectrum of the
molecular emission is then recovered by the use of a Fourier
transform. The broadband nature of CP spectroscopy has the
advantage that many rotational transitions may be probed
simultaneously and can be used as a new means to produce
input data for quantitative spectroscopy or chemical kinetics
experiments [7] if the relative intensities of the transitions are
reliable.

While this technique is very well suited to the frequency
measurement of rotational transitions, measurements of line
strengths require more care. It has already been shown that the
position of the rotational transition frequency in the pulse can
affect the measured intensity, especially in cases where pulse
durations are increased to obtain sufficient signal-to-noise
ratios [5,8]. However, most groups use a model originally
developed by McGurk et al. [9] to model FID signals. It
neglects re-emission effects during the pulse, together with
population and coherence relaxation times, due to a very fast
passage on the transition. In the model, the polarization at
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the end of the pulse is proportional to
√

Tc/�ω, where Tc

is the pulse duration and �ω is the spectral extension of the
CP. This behavior is in contradiction with the experimental
measurements for which we observe a maximum FID signal
for a particular pulse duration [5].

This work proposes analytical expressions for the polar-
ization which will be helpful to analyze the experiments with
slower CP. Section II deals with the polarizing step where the
molecules evolve under the influence of the CP. We propose
three approximations and compare them with the numerical
integration of the optical Bloch equations. Both thermalized
cases (cell and high-density uniform supersonic flow achieved
with Laval nozzles) and nonthermalized cases (molecular
beam) are discussed. Section III presents the second step of a
CP experiment, i.e., the free induction decay. The results of
Sec. II are leveraged to propose an analytical expression of
the FID recorded signal. This formula is validated through
comparison with experimental data in the thermalized case
using an experimental setup described in Ref. [5], similar to
experimental setups of Refs. [2,4,6,10]. We show how to use
this expression to optimize the amplitude of the signal and to
take into account the dependence of the intensity on the line
position.

II. ANALYTICAL EXPRESSION OF THE POLARIZATION
IN A CP EXPERIMENT

A. Optical Bloch equations

The molecular interaction with an electromagnetic wave
has been extensively described in the literature [9,11–14]. We
discuss for simplicity a two-level isolated molecular system,
given by its energy levels Ea and Eb with Ea − Eb = h̄ω0. We
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consider the interaction between this two-level system and an
electromagnetic field with the angular frequency ω(t ). The
system of N molecules with a transition dipole moment, μab,
is described by the evolution of its density matrix. Introduc-
ing the relaxation mechanisms by γ1 = 1/T1 and γ2 = 1/T2

(respectively, the inverse of the decay time of the population
difference and the inverse of the dipole dephasing time) and
Weq, the population difference at thermodynamic equilibrium,
we get the following generic forms of the optical Bloch
equations:

dz

dt
(t ) = −(γ2 + iω0)z(t ) − iE (t )W (t ), (1)

dW

dt
(t ) = −γ1[W (t ) − Weq] + 1

2i
[E∗(t )z(t ) − E (t )z∗(t )],

(2)

where W (t ) and z(t ) = P (t )/(Nμab) correspond to the dif-
ference of population and the pseudopolarization, respec-
tively, with P (t ) being the polarization. The function E (t ) =
e−iα(t )�0 represents the perturbation of the system with �0 =
μab E0

h̄ being the Rabi frequency and α(t ) being a generic
function of time. Equations (1) and (2) are solved for the
given functions W (t ) and z(t ), respectively. Using the general
solution of a first-order differential equation, we have

z(t ) = z(0)e−(iω0+γ2 )t − i
∫ t

0
e−(iω0+γ2 )(t−x)E (x)W (x)dx, (3)

W (t ) = Weq + [W (0) − Weq]e−γ1t

+ 1

2i

∫ t

0
e−γ1(t−x)[E∗(x)z(x) − E (x)z∗(x)]dx. (4)

We suppose that z(t ) and W (t ) may be written as series:

z(t ) = z(0)(t ) + z(1)(t ) + z(2)(t ) + · · · ,

W (t ) = W (0)(t ) + W (1)(t ) + W (2)(t ) + · · · . (5)

Replacing these series in Eqs. (3) and (4) and identifying term
by term, we find the series recurrences:

z(n+1)(t ) = −i
∫ t

0
e−(iω0+γ2 )(t−x)E (x)W (n)(x)dx,

W (n+1)(t ) = 1

2i

∫ t

0
e−γ1(t−x)[E∗(x)z(n)(x) − E (x)z(n)∗(x)]dx.

(6)

B. Mathematical formulation

We consider a linear CP with the duration Tc and the
spectral extension �ω. The CP frequency equals the molec-
ular resonance at time r0Tc with r0 ∈ [0; 1], the relative line
position in the CP (for r0 = 1

2 the chirp is centered on the
resonance ω0). The angular frequency is given by

ω(t ) = dα

dt
(t ) = ω0 − r0�ω + �ω

Tc
t . (7)

Except for free-induction-decay or double-resonance experi-
ments, we are dealing with z(0) = 0. Only the odd terms of
the z series and the even terms of the W series are nonzero. In

particular, the first nonzero terms of the series are

z(1)(t ) = −i
∫ t

0
e−(iω0+γ2 )(t−x)E (x)W (0)(x)dx,

W (0)(t ) = Weq + [W (0) − Weq]e−γ1t . (8)

A rotating-wave approximation is performed by introducing
ξ (n)(t ) = eiα(t )z(n)(t ). If we define β2 = �ω

Tc
, the sweep speed

of the pulse, the pseudopolarization is then given by

ξ (1)(t ) = Weqg(t, γ2) + [W (0) − Weq]e−γ1t g(t, γ2 − γ1), (9)

where

g(t, γ ) = −i�0

∫ t

0
e−γ (t−x)−icβ2(t−x)Tc+i β2

2 (t2−x2 )dx, (10)

which can be integrated using the error function

g(t, γ ) = ρ(t, γ )eiθ (t,γ )σ (t, γ ), (11)

where

ρ(t, γ ) =
√

π�0√
2β

exp[−γ (t − r0Tc)],

θ (t, γ ) = (t − r0Tc)2 β2

2
− 3

4
π − γ 2

2β2
,

σ (t, γ ) = erf

[
ei π

4√
2

(
r0Tcβ − i

γ

β

)]

+ erf

[
ei π

4√
2

(
(t − r0Tc)β + i

γ

β

)]
. (12)

At time t = Tc (polarization at the end of the pulse), we can
simplify the expressions by ignoring small terms ( γ

β
� 1) and

taking a first-order asymptotic expansion of the error function
[15] in order to obtain

gasy(Tc, γ ) = ρasy(Tc, γ )eiθasy (Tc ) + gosc(Tc, γ ), (13)

where

ρasy(Tc, γ ) =
√

2π�0√
�ω

√
Tc exp[−Tc(1 − r0)γ ],

θasy(Tc) = (1 − r0)2 �ω

2
Tc − 3

4
π,

gosc(Tc, γ ) = �0

�ω

[
1

1 − r0
+ 1

r0
exp

(
i
�ω

2
Tc(1 − 2r0)

)]
× exp[−Tc(1 − r0)γ ]. (14)

If we use Eq. (9), ξ (1)(Tc) is then approximated by

ξ (1)
asy (Tc) = Weqgasy(Tc, γ2)

+ [W (0) − Weq]e−γ1Tc gasy(Tc, γ2 − γ1). (15)

The term gosc(Tc, γ ) induces an oscillation whose ampli-
tude decreases as Tc and/or �ω increases. We neglect it to get
an approximation of the pseudopolarization:

ξ (1)
app(Tc) = eiθasy (Tc ){Weqρasy(Tc, γ2)

+ [W (0) − Weq]e−γ1Tcρasy(Tc, γ2 − γ1)}. (16)
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FIG. 1. Polarization modulus at the end of the CP against the chirp duration Tc for the J = 17 → 16 rotational transition of OCS at
206.745 GHz. |ξ (1)(Tc )| is the first nonzero term of the series, |ξ (1)

asy (Tc )| is the asymptotic expansion and |ξ (1)
app(Tc )| is the last approximation

of the polarization. The parameters are �0 = 2.4 rd/μs, W (0) = Weq = 6 × 10−4, and T2 = T1 = 0.3 μs. The first, second, and third columns
correspond to r0 = 0.1, 0.5, and 0.9. The first, second, and third rows correspond to �ν = 10, 100, and 1000 MHz.

Finally, the modulus of the pseudopolarization is approxi-
mated by |ξ (Tc)| ≈ |ξ (1)(Tc)| ≈ |ξ (1)

asy (Tc)| ≈ |ξ (1)
app(Tc)|, with

∣∣ξ (1)
app(Tc)

∣∣ =
√

2π�0

√
Tc

�ω
e− Tc

T2
(1−r0 )

× ∣∣Weq + [W (0) − Weq]e− Tc
T1

r0
∣∣, (17)

which is the product of three terms. The first one corresponds
to the polarization in the McGurk et al. approximation [9]. The
second one describes an exponential decay with relaxation
time T2, for a duration of Tc(1 − r0) (the duration between
the line position and the end of the pulse). The third term
represents the relaxation of the difference population towards
the equilibrium with the relaxation time T1, for the duration
r0Tc (the duration between the beginning of the pulse and the
line position).

C. Numerical validation of the approximations

Figure 1 compares the three approximations (|ξ (1)(Tc)|,
|ξ (1)

asy (Tc)|, |ξ (1)
app(Tc)|) of the modulus of the polarization with

the numerical integration of the optical Bloch equations using
a Rosenbrock method [16] for three different spectral exten-
sions and three different line positions r0. We consider a two-
level system consisting of the J = 16 and J = 17 rotational
levels of the OCS molecule with W (0) = Weq and T2 = T1 =
0.3 μs. We notice that except for the case �ν = 10 MHz

and r0 = 0.9 of Fig. 1(c), the first approximation |ξ (1)(Tc)|
given by Eq. (9) reproduces the numerical integration. As soon
as �ν � 100 MHz, the curves corresponding to the second
approximation |ξ (1)

asy (Tc)| [Eq. (15)] are acceptable. The curves
corresponding to the third approximation |ξ (1)

app(Tc)| [Eq. (16)]
have no oscillations and reproduce the global behavior of the
numerical results, in particular the optimal pulse duration and
the corresponding value of the polarization. Figure 1 suggests
however two remarks. First, the asymptote of the modulus of
the polarization for high Tc value is not zero. This effect is
seen for r0 � 0.5 and would be visible at Tc > 10 μs for r0 =
0.9. This asymptote decreases when �ν increases and/or r0

decreases. Second, for �ν = 1000 MHz, the amplitude of the
oscillations decreases from r0 = 0.1 to r0 = 0.5 but increases
from r0 = 0.5 to r0 = 0.9.

D. Discussion

The molecules interacting with a chirped pulse can be
probed under different experimental conditions: in an ordi-
nary cell [5,17,18], in a uniform supersonic flow [8], or in
a molecular beam [2,3,19]. We can take advantage of the
typical characteristics of each experimental setup summed up
in Table I to adapt the analytic approximation (17) of the
modulus of the polarization obtained in Sec. II B.

In an ordinary cell or in a uniform supersonic flow, the
molecules are thermalized. The rotational temperature may
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TABLE I. Characteristic parameters for three experimental setups. The simplified modulus of polarization (see text) and the optimal
duration Tc,max for the maximum signal are reported. Trot is the molecular rotational temperature.

Thermodynamic cond. Thermalized case Nonthermalized case

Experiment Ordinary cell Uniform supersonic flow Molecular beam
Trot 300 K 10–150 K 5–10 K
T2 ≈T1 <T1

W(0) Weq(Trot ) �Weq(300 K)

|ξ (1)
app(Tc )| √

2π�0

√
Tc
�ω

|Weq(Trot )|e− Tc
T2

(1−r0 ) √
2π�0

√
Tc
�ω

|W (0)|
Tc,max

T2
2(1−r0 ) −

be the ambient temperature in the former situation while it
is lowered to a few dozens of kelvin in the latter one. In both
cases, the relaxation time T2 is of the same order of magnitude
as T1 and the initial population difference W (0) corresponds
to its equilibrium value Weq(Trot ). Under these conditions,
the analytic approximation of Eq. (17) is proportional to
|Weq(Trot )|, which can be significantly increased in a uniform
supersonic flow with respect to an ordinary cell at 300 K
by decreasing the temperature. The pulse duration giving the
maximal polarization is found to be Tc,max = T2/[2(1 − r0)],
which depends on T2 but not on T1.

The behavior of experiments in the nonthermalized case
is different. In a molecular beam experiment, the rotational
temperature is lowered to a few kelvin and the collisional
linewidth is strongly reduced, implying generally T2, T1 � Tc

[14,20]. Under these conditions, the analytic approximation

of Eq. (17) simplifies to
√

2π�0

√
Tc
�ω

|W (0)| (see Table I)
and thus reduces to the McGurk et al. model [9], which is a
monotonously increasing function of the pulse duration. The
molecular beam chirped-pulse setup is very advantageous in
terms of the signal-to-noise ratio. First, the signal is enhanced
by the initial difference populations W (0) which can be in-
creased by 1 or 2 orders of magnitude compared to the dif-
ference population in an ordinary cell at 300 K. Second, the
duration of the FID signal increases due to the relaxation time
T2 (see III) to such an extent that the decay of the FID signal is
often driven by the Doppler inhomogeneous broadening (see
Appendix A). The Doppler width is indeed proportional to
ω0 [see Eq. (A5)] and more pronounced in the millimeter or
submillimeter ranges than in the microwave range. Unfortu-
nately, the drawback of a molecular beam experiment is a
limited operating frequency range due to the peaked shape of
the population of energy levels towards the low J values [21].

III. FREE-INDUCTION-DECAY SIGNAL

A. Mathematical formulation

The source extinction occurs at t = Tc. The emission of the
polarized molecules which evolve freely is observed with time
t ′ = t − Tc. The polarization in the rotating-wave approxima-
tion P̃ (t ′) is given by (see Appendix A)

P̃ (t ′) = Nμabξ (Tc) exp

[
− t ′

T2
− t ′2�ω2

D

4 ln 2

]
, (18)

where �ωD is the Doppler width. The electric field is emitted
at the angular frequency ω0, the molecular resonance, with an

amplitude proportional to the polarization module [2]:

E (t ′) ∝ |P̃ (t ′)|e−i(ω0t ′+�) + c.c.. (19)

Chirped-pulse experiments use a heterodyne detection scheme
[5] where a local oscillator of angular frequency ωLO is used
to shift the spectrum from ω0 to the intermediate angular
frequency ωIF = ω0 − ωLO. If φ is a phase term at the time
origin, the output signal is (see Appendix B)

S(t ′) ∝ Nμab

∣∣ξ (1)
app(Tc)

∣∣e− t ′
T2 e− t ′2�ω2

D
4 ln 2 cos(ωIFt ′ + φ). (20)

The exponential terms describe dampings respectively due
to the dephasing polarization and Doppler broadening. The
last term is an oscillation at the intermediate angular fre-
quency ωIF.

B. Experimental results

CP experiments have been performed in order to check the
validity of the FID signal model of Eq. (20) in the case of a
thermalized sample (W (0) = Weq). We recorded the FID sig-
nal of the OCS molecule around 206.745 GHz corresponding
to the rotational transition J = 17 → 16. For a given pressure
(i.e., T2 fixed) and a given relative position r0, we measured
the FID signal for different pulse durations Tc. After a fast
Fourier transform, the amplitude at the intermediate frequency
ωIF is proportional to

F (ω = ωIF, Tc) = N

√
Tc

�ω
e− Tc

T2
(1−r0 )

. (21)

These amplitudes F (ω = ωIF, Tc) measured for different Tc

values have been compared with two models. The simplest is
given by

B P

√
Tc

�ω
exp[−Tc(1 − r0)2πγOCSP], (22)

which is |ξ (1)
app(Tc)| from Eq. (21) reformulated with exper-

imental parameters. In the second model, the polarization
used in Eq. (18) is given by Eq. (9) rather than Eq. (17),
corresponding to |ξ (1)(Tc)|. The number of molecules N is
assumed to be proportional to the gas pressure P, and T2 =

1
2πγOCSP is determined by the OCS self-pressure broadening
coefficient γOCS = 4.8 GHz/atm of the J = 17 ← 16 tran-
sition, measured in Ref. [22]. The parameter B corresponds
to the instrument sensitivity of a given experimental config-
uration. It accounts for variations in mixer conversion losses
and amplifier gains. The value of B is constant for a given
experimental configuration. This parameter and the pressure
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are fitted against the experimental data sets in the second
model. These two values are also used to plot the black curve
corresponding to the simplest model. Figure 2 superposes
the experimental data (points) with the fitted model |ξ (1)

app(Tc)|
from Eq. (22) (black curves) and the model corresponding to
|ξ (1)(Tc)| [green (gray) curves]. A good agreement between
the experimental and the fitted data is observed for the three
different line positions r0 at P = 100 μbar (corresponding to
T1 ≈ T2 = 0.3 μs) and �ν = 1000 MHz. For all experimental
curves, the relative difference between measured and fitted
amplitudes with the simplest model never exceeds 30%. Such
differences, especially around Tc ≈ Tc,max for r0 = 0.1 and
0.5, are attributed to the oscillations mentioned above in
Sec. II C and seen again on the green (gray) curves. For
r0 = 0.9 the oscillations are present over the entire Tc range.
Oscillations have also been discussed as “edge effects” by
Park and Field [23] for short pulse durations due to the
“windowing” of the perturbating electric field. This effect
is reduced in our experiment by programming raised cosine
edges (5-ns rise time) rather than a rectangular time window
in the arbitrary wave generator. The edge effects might explain
the underestimated amplitude of the oscillations, given by our
model [green (gray) curves], visible for r0 = 0.5 at low Tc

values. The signal does not fall to zero for large Tc values,
which is consistent with Fig. 1, where the first approximation
coincides exactly with the numerical simulation for �ν =
1000 MHz. The amplitude of the experimental data in this
region is nonetheless higher than that of the fitted curve. This
might suggest a shortcoming in the isolated two-level model
itself as we can see in Fig. 5 of Hindle et al. [5], where other
transitions with noticeable intensities around the ground-state
(GS) rotational transition J = 17 → 16 exist in the frequency
range covered by the CP [24]. In particular, the intensity of
the transition J = 17 → 16 at 206.966 GHz in the v2 = 1
bending state is only ten times weaker than the GS counterpart
at 206.745 GHz. Our hypothesis is that this second transition
is polarized by the CP and produces a FID signal at its own
frequency. This FID signal at 206.966 GHz may then polarize
again the GS transition at 206.745 GHz.

However, the results exhibited in Fig. 2 demonstrate that
our simplest model with its approximations is sufficient to re-
produce the behavior of the emitted intensities in the chirped-
pulse experiment. This conclusion is supported by the anal-
yses of experimental data at P = 20 μbar and P = 50 μbar
which show strictly identical patterns.

C. Discussion

1. Optimization of the CP parameters at a given pressure

Equation (20) in the case of a thermalized sample is
relatively simple but depends on the parameters Tc, r0, T2,
and N . The signal amplitude at t ′ = 0 can be rewritten in the
form of Eq. (22) to show the influence of the gas pressure or
equivalently in the following form to show the influence of
Tc/T2:

Sr0
Tc/T2

∝ 1√
T2�ω

√
Tc

T2
e− Tc

T2
(1−r0 )

. (23)

(a)

(b)

(c)

FIG. 2. Comparison between experiment and models, the line
position r0 as a parameter, P = 100 μbar, and �ν = 1000 MHz.
Points are experimental data and the black curve is the fit using
Eq. (22) giving |ξ (1)

app(Tc )|. The green (gray) curve is a fit where the
polarization used in Eq. (18) is given by Eq. (9) rather than Eq. (17)
giving |ξ (1)(Tc )|. The vertical dotted lines indicate the positions of
Tc,max. (a) r0 = 0.1. (b) r0 = 0.5. (c) r0 = 0.9.
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FIG. 3. Three-dimensional view of the amplitude of the signal
S in arbitrary units from Eq. (23) versus Tc/T2 and r0 at T2 fixed.
T #

c
T2

≈ 0.04 is the solution of the equation S0
Tc/T2

= S0
2 .

Experimentally, T2 (adjusted with the gas pressure) is fixed
by considerations of Fourier transform resolution. For a given
T2, the optimal pulse duration is given by Tc,max = T2

2(1−r0 ) .
Figure 3 is a three-dimensional view of the amplitude of the
signal from Eq. (23) versus Tc/T2 and r0 at T2 fixed. The
dashed line gives the signal amplitude of S0

2 which intersects

the surface at Tc
T2

= T #
c

T2
. It shows that, as long as Tc

T2
< 0.2, the

signal amplitude is quasi independent of the line position r0.
Inside this region, the output signal is proportional to

√
Tc/�ω

and corresponds to the approximation of a fast chirped pulse
obtained by McGurk et al. [9]. Outside this region, the signal
amplitude can be increased significantly but at the expense
of a dependence on the line position r0 within the pulse.
However, we observe that up to Tc

T2
= 2, the amplitude of

the signal for r0 = 0 is always greater than the amplitude

for Tc
T2

= T #
c

T2
. In other words, working at Tc/T2 = 2 is more

interesting than Tc
T2

� 0.04 in terms of the signal-to-noise ratio:
the gain in amplitude for r0 = 1 is an order of magnitude while
the gain for r0 = 0 is at least 1.

2. Dependence of the line strength on the line position

Abeysekera et al. [8] experimentally discovered the line
position effect on the line intensity. They considered two
related experiments to mitigate the problem: in the first
experiment, the frequencies were swept to higher values,
whereas the frequencies were swept to lower values in the
second experiment. They proposed to average the two CP
spectra to compensate for the line position effect: Save =
(Sup + Sdown)/2. They worked with a uniform supersonic flow
for which Eq. (23) applies.

The signals are the same in the two experiments except that
r0 in the first one is replaced by 1 − r0 in the second one. The

corresponding signals are respectively Sup = A e− Tc
T2

(1−r0 ) and

Sdown = A e− Tc
T2

r0 , where A is a proportionality constant. The
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FIG. 4. Relative errors in percent for Sup (solid curve) and Save

(dashed curve) as a function of the reduced pulse duration Tc
T2

.

average of the two signals is given by

Save = Ae− Tc
2T2 cosh

[
Tc

T2

(
r0 − 1

2

)]
. (24)

In order to estimate the dependence of the FID signal with
respect to the line position in the CP, r0, we define the maximal
relative error for a given Tc/T2 as

δS

(
Tc

T2

)
= maxr0∈[0,1] S

( Tc
T2

, r0
) − minr0∈[0,1] S

( Tc
T2

, r0
)

minr0∈[0,1] S
( Tc

T2
, r0

) ,

(25)

where S is either Sup or Save. A maximum of the two functions
is found at r0 = 1, whereas the minimum is found at 0 and 1

2

for, respectively, Sup and Save. Under these conditions, δSup ( Tc
T2

)

and δSave ( Tc
T2

) are given by

δSup

(
Tc

T2

)
= e

Tc
T2 − 1, (26)

δSave

(
Tc

T2

)
= 2 sinh2 Tc

4T2
. (27)

The plot of these two relative errors as a function of Tc
T2

, given
in Fig. 4, shows that the heuristic approach of averaging,
proposed by Abeysekera et al. [8], drastically reduces the
effect of the line position on the line intensity. The error
δSave ( Tc

T2
) is lower than 12.5% if Tc/T2 � 1 and it is reasonable

to use the average spectrum as data for the relative transition
intensities. Conversely, if Tc/T2 > 1, the relative error is not
acceptable anymore. We then recommend to use Sup to correct
for the dependence of the line position on the line intensity.

IV. CONCLUSION

The FID signal of a two-level system interacting with a
linear CP depends on the polarization at the end of the CP.
The value of this polarization, in either thermalized cases
(cell or uniform supersonic flow) or nonthermalized cases
(molecular beam), was approached through three consecutive
analytical approximations which improve the model proposed
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by McGurk et al. [9]. In particular, the last approximation
neglected the oscillations in the polarization and a very simple
formula for the optimal pulse duration (for which the modulus
of the polarization is maximum) was obtained.

The simple expression between the pulse duration, the line
position in the CP, and the signal amplitude will certainly be
useful in spectroscopy, where it is convenient to use slower
CPs to increase the signal over a fast CP. Moreover, this
relation describing the connection between the position of the
lines in the CP and their intensity will allow for a correction
of the intensities required for high-resolution molecular spec-
troscopic studies.
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APPENDIX A: DOPPLER BROADENING IN THE FREE
INDUCTION DECAY

The FID corresponds to the extinction of the source at t =
Tc and the re-emission of the polarized molecules which freely
evolve. We perform a change of variable in this section: t ′ =
t − Tc.

1. System evolution

Since the source is switched off, the Rabi frequency is set
to zero and the optical Bloch equations in the rotating frame
[13,25] reduce to

dU

dt
(t ′) = −γ2U (t ′) − δ V (t ′),

dV

dt
(t ′) = −γ2V (t ′) + δ U (t ′),

dW

dt
(t ′) = −γ1[W (t ′) − Weq],

(A1)

where δ is the detuning from the resonance, null if the inho-
mogenous broadening is negligible, and Weq is the population
difference at the thermal equilibrium. (U,V,W ) is the Bloch
vector and the polarization is P (t ′) = [U (t ′) − iV (t ′)]Nμab.
This is a simple coupled system of differential equations. The
third equation is directly integrable, giving

W (t ′) = [W (Tc) − Weq]e−γ1t ′ + Weq, (A2)

where W (Tc) = W (t ′ = 0). The remaining part of the system
is then

dU

dt
(t ′) = −γ2U (t ′) − δ V (t ′),

(A3)
dV

dt
(t ′) = −γ2V (t ′) + δ U (t ′),

which may be diagonalizable to find eigenvalues and eigen-
vectors and finally the solution:

⇒
[
U (t ′)
V (t ′)

]
=

⎡
⎣e− t ′

T2 [cos(δt ′)U0 − V0 sin(δt ′)]

e− t ′
T2 [sin(δt ′)U0 + V0 cos(δt ′)]

⎤
⎦, (A4)

where U0 = U (t ′ = 0) and V0 = V (t ′ = 0).

2. Inhomogeneous broadening

We must take into account all the contributions due to
inhomogeneous broadening characterized by �ωD, the half
width at half maximum, given by

�ωD = ω0

c

√
2RT ln 2

M
, (A5)

where T is the temperature and M is the molecular weight.
Different molecules have different frequency resonances due
to the Doppler effect and thus different detuning δ. The
polarization is given by the integral of Eq. (A4) over all the
detunings:[

U (t ′)
V (t ′)

]

=

⎡
⎢⎢⎣

∫ +∞
−∞ e− t ′

T2 [cos(δt ′)U0−V0 sin(δt ′)]
√

ln 2
π

e
− ln 2 δ2

�ω2
D

�ωD
dδ

∫ +∞
−∞ e− t ′

T2 [sin(δt ′)U0+V0 cos(δt ′)]
√

ln 2
π

e
− ln 2 δ2

�ω2
D

�ωD
dδ

⎤
⎥⎥⎦.

(A6)

These integrals are tabulated or can be computed with MAPLE

[16], giving [
U (t ′)
V (t ′)

]
= e− t ′

T2 e− t ′2�ω2
D

4 ln 2

[
U0

V0

]
. (A7)

APPENDIX B: DETECTION OF THE FID SIGNAL

In a CP experiment we are interested in the electric field
re-emitted during the FID sequence with the polarization
given by Eq. (A7). We calculate the electric field in the slowly
varying amplitude and phase (SVAP) approximation [9,13].
The general forms for the electric field and the polarization
that propagate along the y axis are

E (y, t ′) = 1
2 [Er (y, t ′) + iEi(y, t ′)]e−i(ω0t ′−ky) + c.c., (B1)

P(y, t ′) = 1
2 Nμab[U (t ′) − iV (t ′)]e−i(ω0t ′−ky) + c.c. (B2)

The SVAP approximation neglects the amplitude and phase
variations during temporal and spatial periods:

∂E

∂y
� kE ,

∂E

∂t ′ � ωE ,
∂P

∂t ′ � ωP.

If we neglect also 1
c

∂E
∂t ′ compared to ∂E

∂y , we get simplified
propagation equations for the real and imaginary parts:

∂Er

∂y
= k

2ε
NμabV, (B3)

∂Ei

∂y
= k

2ε
NμabU, (B4)
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equations that we can easily integrate between y = 0 and y =
L corresponding to the length of the gas cell:

E (L, t ′) = k

4ε
NμabL(V + iU )e−i(ω0t ′+�) + c.c..

Finally, taking Eq. (A7) into account, we get

E (L, t ′) = k

4ε
NμabL e− t ′

T2 e− t ′2�ω2
D

4 ln 2

√
U 2

0 + V 2
0

× e−i(ω0t ′+�−θ ) + c.c., (B5)

where [U0;V0] = [U (t = Tc);V (t = Tc)].
In the experiment, we access the electric field by a

heterodyne scheme tuned in the way to observe S(t ′) =
A E (t ′) cos(νIFt ′ + φ), where A is a constant depending on
mixer efficiency, amplifier gain, etc.; νIF is the intermediate
frequency (νIF = ν0 − νLO); and φ is the phase at the origin
of time:

S(t ′) ∝ |P (Tc)|e− t ′
T2 e− t ′2�ω2

D
4 ln 2 cos(νIFt ′ + φ). (B6)
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