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Implementation of a gauge-invariant time-dependent configuration-interaction-singles
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We present a numerical implementation of the gauge-invariant time-dependent configuration-interaction-
singles (TDCIS) method [Appl. Sci 8, 433 (2018)] for three-dimensional atoms. In our implementation, an
orbital-like quantity called a channel orbital [Phys. Rev. A 74, 043420 (2006)] is propagated instead of
configuration-interaction (CI) coefficients, which removes a computational bottleneck of explicitly calculating
and storing numerous virtual orbitals. Furthermore, besides its physical consistency, the gauge-invariant
formulation allows us to take advantage of the velocity gauge treatment of the laser-electron interaction over
the length gauge one in the simulation of high-field phenomena. We apply the present implementation to
high-order harmonic generation from helium and neon atoms, which numerically confirms the gauge invariance
and demonstrates the effectiveness of the rotated velocity gauge treatment.
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I. INTRODUCTION

Recent laser technology capable of generating strong laser
pulses with an intensity �1014 W/cm2 has enabled us to
explore electron dynamics in the nonperturbative regime,
e.g., high-order harmonic generation (HHG), above threshold
ionization, nonsequential double ionization, and attosecond
pulse generation [1–3]. While laser-driven electron dynamics
is rigorously described by the time-dependent Schrödinger
equation (TDSE), its direct numerical solution is practically
unfeasible for systems with more than two electrons. For theo-
retical investigation of multielectron dynamics in intense laser
field, various tractable ab initio methods have been devel-
oped, e.g., time-dependent multiconfiguration self-consistent
field (TD-MCSCF) methods [4–13], time-dependent coupled
cluster method [14,15], time-dependent R-matrix approach
[16–20], and time-dependent reduced two-body density ma-
trix approach [21,22].

Among them, the time-dependent configuration-inter-
action-singles (TDCIS) method is one of promising methods
[23–33]. This method has been successfully applied to various
electron dynamics such as giant enhancement in HHG in
Xe [32] and decoherence in attosecond photoionization [24].
In the TDCIS method, the total electronic wave function is
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approximated by a superposition of time-independent Slater
determinants

|�(t )〉 = |�0〉C0(t ) +
occ∑

i

vir∑
a

∣∣�a
i

〉
Ca

i (t ), (1)

where |�0〉 is the Hartree-Fock (HF) ground state and |�a
i 〉 is

a singly excited configuration replacing an occupied orbital φi

with a virtual orbital φa unoccupied in the ground state. The
orbital functions are fixed and propagation of configuration-
interaction (CI) coefficients (C0 and {Ca

i }) describes the sys-
tem dynamics. Although applications of the TDCIS method
are limited to the single excitation or ionization due to the
truncation of CI space, its low computational cost and ease of
analysis are attractive.

The conventional TDCIS method with CI coefficients has
two major issues: the explicit calculation and storage of virtual
orbitals {φa} and a violation of gauge invariance. Virtual
orbitals {φa} should include both bound and continuum or-
bitals, whose number is infinite in principle. In a practical
simulation with real-space grids, one has to prepare virtual
orbitals in advance by numerically obtaining all eigenstates of
the discretized HF equation. The number of the virtual orbitals
increases with the number of the grid points. Thus, the cal-
culation and storage of virtual orbitals become unacceptably
demanding for molecules with a large number of grid points.
To solve this problem, Rohringer et al. have proposed an
alternative but equivalent formulation of the TDCIS method in
which a time-dependent orbital-like quantity called a channel
orbital is propagated instead of the CI coefficient [23]. The
channel orbital is defined by using {φa} and Ca

i as

|χi(t )〉 ≡
vir∑
a

|φa〉Ca
i (t ). (2)
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The equations of motions (EOMs) of CI coefficient are
converted to those of C0 and {χi}. This reformulation re-
moves the computational bottleneck of handling numerous
virtual orbitals, while in principle including all the virtual
orbitals within a grid space, and has enhanced the utility
of the TDCIS method. However, to the best of our knowl-
edge, the applications of the channel orbital-based TDCIS
method have been limited to one-dimensional (1D) model
in Refs. [23,34,35] and nobles gas atoms with Hartree-Slater
potential in Ref. [24].

The TDCIS method, either CI coefficient based or channel
orbital based, suffers from a violation of gauge invariance, as
a general consequence of the truncation of CI space. Although
it is known that the velocity gauge (VG) offers efficient
simulations of high-field phenomena, it was impossible to
enjoy this advantage within the TDCIS method. To overcome
this difficulty, we have recently reported a gauge-invariant re-
formulation of the TDCIS method [36]. In our reformulation,
a rotated velocity gauge (rVG) transformed from the length
gauge (LG) by a unitary operator has been introduced. This
unitary transformation ensures the gauge invariance between
the LG and rVG, and Ref. [36] numerically confirmed the
equivalence of these gauges for a model 1D Hamiltonian.

In this paper, we report a three-dimensional numerical
implementation of the gauge-invariant TDCIS method for
atoms subject to a linearly polarized laser pulse. We employ
a spherical harmonics expansion of orbital functions with the
radial coordinate discretized by a finite-element discrete vari-
able representation (FEDVR) [37–40]. We apply the present
implementation to HHG from helium and neon atoms and
assess the advantage of the rVG over the LG and VG.

This paper proceeds as follows. In Sec. II, we briefly
review the TDCIS methods. The numerical implementation
of the gauge-invariant TDCIS method to three-dimensional
atoms is given in Sec. III. We describe numerical applications
in Sec. IV and conclude this work in Sec. V. We use Hartree
atomic units (a.u.) throughout the paper unless otherwise
stated.

II. THEORY

A. The system Hamiltonian and gauge transformation

We consider an atom with N electrons with a nucleus
located at the origin. The time evolution of the N-electron
wave function |�(t )〉 is governed by the TDSE,

i
∂

∂t
|�(t )〉 = Ĥ (t )|�(t )〉, (3)

where Ĥ (t ) is the time-dependent nonrelativistic Hamiltonian

Ĥ (t ) = Ĥ0 + Ĥext(t ), (4)

decomposed into the field-free part,

Ĥ0 =
N∑

i=1

ĥ0(ri, pi ) +
N∑

i> j

1

|ri − r j | (5)

and the laser-electron interaction part

Ĥext(t ) =
N∑

i=1

ĥext(ri, pi, t ). (6)

In these expressions, ri and pi = −i∇i are the position and
the canonical momentum of the electron i, respectively. ĥ0 is
given by

ĥ0(r, p) = p2

2
− Z

|r| , (7)

where Z is the atomic number. Within the electric dipole
approximation, ĥext for the LG and VG are given by

ĥLG
ext (r, p, t ) = E(t ) · r, (8a)

ĥVG
ext (r, p, t ) = A(t ) · p, (8b)

where E(t ) and A(t ) = − ∫ t
−∞ dt ′E(t ′) are the electric field

and the vector potential of the external laser field, respectively.
The two gauges are physically equivalent, and any physical

observable takes the same value, independent of the choice
of the gauge. The LG wave function |�LG〉 and VG wave
function |�VG(t )〉 are mutually transformed by a gauge trans-
formation as

|�VG(t )〉 = Û (t )|�LG(t )〉, (9)

Û (t ) ≡ exp

[
−i

N∑
i=1

(
A(t ) · ri − 1

2

∫ t

−∞
dt ′|A(t ′)|2

)]
. (10)

B. The CI coefficient-based TDCIS method in the length gauge

In the conventional TDCIS method based on CI coeffi-
cients, orbitals satisfy the canonical, restricted HF equation

f̂ |φp〉 ≡ ĥ0|φp〉 +
occ∑

i

(
2Ŵ φi

φi
|φp〉 − Ŵ φi

φp
|φi〉

) = εp|φp〉, (11)

where f̂ is the Fock operator and Ŵ φ

φ′ is the potential due to
the product of two given orbitals φ and φ′, defined in the real
space as

Ŵ φ

φ′ (r1) ≡
∫

dr2
φ∗(r2)φ′(r2)

|r1 − r2| . (12)

εp is the orbital energy of orbital φp. In the TDCIS wave
function in Eq. (1), |�0〉 is the HF ground state formed with
the occupied orbitals as

|�0〉 =
occ∏

i

ĉ†
i↑ĉ†

i↓|〉, (13)

where ĉ†
pσ and ĉpσ are the creation and annihilation operators,

respectively, of spin-orbital φp ⊗ σ , and |〉 is the vacuum.
σ ∈ {↑,↓} denotes the spin function. |�a

i 〉 is a singly excited
configuration replacing an occupied orbital φi with a virtual
orbital φa ∣∣�a

i

〉 = 1√
2

(ĉ†
a↑ĉi↑ + ĉ†

a↓ĉi↓)|�0〉. (14)

The EOMs of CI coefficients is derived through the Dirac-
Frenkel time-dependent variational principle [41], requiring
the Lagrangian L(t )

L(t ) = 〈�|Ĥ (t ) − i
∂

∂t
− E0|�〉 (15)

to be stationary with respect to the variation of C∗
0 and {Ca∗

i }.
E0 = 〈�0|Ĥ0|�0〉 denotes the HF energy. This constant shift,
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introduced for the simple notation of the EOMs, does not
affect physical results. In the LG case, in which the wave
function is written as

|�LG(t )〉 = |�0〉C0 +
occ∑

i

vir∑
a

∣∣�a
i

〉
Ca

i , (16)

the EOMs of CI coefficients are obtained as

iĊ0 =
√

2E ·
occ∑

j

vir∑
b

〈φ j |r|φb〉Cb
j , (17a)

iĊa
i = 〈φa|

⎧⎨
⎩

occ∑
j

vir∑
b

F̂i j |φb〉Cb
j +

vir∑
b

E · r|φb〉Cb
i

+
√

2E · r|φi〉C0

⎫⎬
⎭ − E ·

occ∑
j

〈φ j |r|φi〉Ca
j , (17b)

where

F̂i j |φb〉 = δi
j ( f̂ − εi )|φb〉 + 2Ŵ

φ j

φb
|φi〉 − Ŵ

φ j

φi
|φb〉. (18)

C. The channel orbital-based TDCIS method
in the length gauge

The EOMs of CI coefficients [Eq. (17)] can be rewritten,
by substituting channel orbital Eq. (2) into Eq. (17), as

iĊ0 =
√

2E ·
occ∑

j

〈φ j |r|χ j〉, (19a)

i|χ̇i〉 = P̂{(F̂ + E · r)|χi〉 +
√

2E · r|φi〉C0}

−E ·
occ∑

j

|χ j〉〈φ j |r|φi〉, (19b)

where

F̂ |χi〉 = ( f̂ − εi )|χi〉 +
occ∑

j

(
2Ŵ

φ j
χ j |φi〉 − Ŵ

φ j

φi
|χ j〉

)
, (20)

and P̂ is the projection operator onto the space spanned by
virtual orbitals

P̂ =
vir∑
a

|φa〉〈φa| = 1̂ −
occ∑

j

|φ j〉〈φ j |, (21)

with 1̂ being the identity operator.

D. Velocity gauge and rotated velocity gauge

One can, in principle, derive the EOMs for the VG case
in the same way as for the LG. Let us write the total wave
function and channel orbital as

|�VG(t )〉 = |�0〉D0 +
occ∑

i

vir∑
a

∣∣�a
i

〉
Da

i , (22)

|η(t )〉 =
vir∑
a

|φa〉Da
i . (23)

|�0〉 and |�a
i 〉 are the same configurations as those used in

the LG case. Their EOMs are obtained through the same
procedures as in the LG case as

iḊ0 =
√

2A ·
occ∑

j

〈φ j |p|η j〉, (24a)

i|η̇i〉 = P̂{(F̂ + A · p)|χi〉 +
√

2A · p|φi〉C0}

− A ·
occ∑

j

|η j〉〈φ j |p|φi〉. (24b)

It is known that TDCIS, which uses time-independent
orbitals, is not gauge invariant [36,42,43]. Instead of the con-
ventional VG as described above, we have recently proposed
the rVG [36], where we define the rVG wave function by the
gauge transformation from the LG wave function as

|�rVG(t )〉 = Û (t )|�LG(t )〉. (25)

The rVG orbitals are related to the LG ones by

|φ′
p(t )〉 = û(t )|φp〉, (26)

|χ ′
i (t )〉 = û(t )|χi〉 =

vir∑
a

|φ′
a〉Ca

i , (27)

where

û(t ) = exp

{
−i

(
A(t ) · r − 1

2

∫ t

−∞
dt ′|A(t ′)|2

)}
. (28)

They satisfy the following EOMs [36]:

iĊ0 =
√

2E ·
occ∑

j

〈φ′
j |r|χ ′

j〉, (29a)

i|χ̇ ′
i 〉 = P̂′{(F̂ ′ + A · p)|χ ′

i 〉 +
√

2E · r|φ′
i〉C0}

− E ·
occ∑

j

(|χ ′
j〉〈φ′

j |r|φ′
i〉 + |φ′

j〉〈φ′
j |r|χ ′

i 〉), (29b)

where P̂′ and F̂ ′
i are given by Eqs. (21) and (20), respectively,

with {φ j} replaced with {φ′
j}. Although Eq. (29) contains the

dipole operator E · r, this does not prevent us from enjoying
the advantages of the VG treatment, since it acts only on the
localized occupied orbitals {φ′

i}.

III. IMPLEMENTATION TO THREE-DIMENSIONAL
ATOMS

A. Spherical-FEDVR basis

The present implementation is based on our TD-MCSCF
code [12], which uses spherical-FEDVR basis functions

ψklm(r) = 1

r
αk (r)Ylm(), (30)

where r and  are the radial and angular coordinate of r,
respectively, Ylm are spherical harmonics, and αk are radial
FEDVR basis functions [37,38]. The radial coordinate of the
simulation box [0, Rmax] is divided into KFE finite elements.
Each finite element supports KDVR local DVR functions, and
neighboring elements are connected by a bridge function.
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In total, there are Krad = KFEKDVR − (KFE − 1) radial grid
points {rk}, on which αk (rk′ ) = δkk′/

√
wk, with {wk} being the

integration weights.
We expand the channel orbital χi in the spherical-FEDVR

basis as

χi(r; t ) =
Krad−1∑

k=2

Lmax∑
l=0

ψklmi (r)gkl
i (t ), (31)

where Lmax is the maximum angular momentum included. The
FEDVR basis functions corresponding to r1 = 0 and rKrad =
Rmax are removed to enforce the vanishing boundary condition
for rχi at both ends of the simulation box.

The electrostatic potentials for electron-electron interac-
tion, Ŵ

φ j

φi
(r) and W

φ j
χi (r, t ) required for the EOM of channel

orbitals, are computed by solving Poisson’s equation,

∇2Ŵ
φ j

φi
(r) = −4πφ∗

j (r)φi(r), (32a)

∇2Ŵ
φ j
χi (r, t ) = −4πφ∗

j (r)χi(r, t ), (32b)

using the method described in Ref. [12]. It should be noted
that Ŵ

φ j

φi
(r) is time independent, and Eq. (32a) needs to

be solved only once before the simulation. On the other
hand, Ŵ

φ j
χi (r, t ) is time dependent and should be computed

at every time step. However, since its source φ∗
j (r)χi(r, t )

[see Eq. (32b)] and operand {φ j (r)} [see Eq. (20)] are both
localized around the atom due to the locality of occupied
orbitals, Eq. (32b) can be solved with less computational
cost than the similar equation appearing, e.g., in the time-
dependent Hartree-Fock and TD-MCSCF method [12].

B. Time propagation with exponential time differencing
fourth-order Runge-Kutta scheme

For an efficient propagation of the EOM of channel-orbital-
based TDCIS, we use the exponential time differencing
fourth-order Runge-Kutta scheme (ETDRK4) by Krogstad
[44–46]. To this end, we arrange C0 and {χi} into a unified
vector χ = (C0, χ )T and rewrite the EOMs of C0 and {χi} by
a matrix form

i
∂

∂t
χ = hχ + W [χ, t], (33)

where h is a chosen stiff part of the right-hand side of
the EOM (see below) and W [χ, t] is a nonstiff remainder.
We choose the stiff part h to be either (i) the field-free
one-electron Hamiltonian ĥ0 or (ii) the totality of the one-
electron Hamiltonian ĥ0 + ĥext(t ). For the first case (i) with

time-independent h, the time propagation from χn = χ(tn) to
χn+1 = χ(tn + �t ) is given by

χn+1 = ϕ0(−ih�t )χn − i�t[ f0(−ih�t )W n

+ f1(−ih�t )(W a + W b) + f2(−ih�t )W c], (34)

where f1, f2, and f3 are defined as

f0(z) = ϕ1(z) − 3ϕ2(z) + 4ϕ3(z), (35a)

f1(z) = 2ϕ2(z) − 4ϕ3(z), (35b)

f2(z) = −ϕ2(z) + 4ϕ3(z), (35c)

where z = −ih�t , ϕ0(z) = ez, and

ϕk+1(z) = 1

z

(
ϕl (z) − 1

k!

)
(k = 0, 1, 2, . . . ). (36)

W n, W a, W b, and W c are given by

W n = W [χn, tn], (37a)

W a = W [an, tn + �t/2], (37b)

W b = W [bn, tn + �t/2], (37c)

W c = W [cn, tn+1], (37d)

where an, bn, and cn are intermediate vectors given as

an = ϕ0(z/2)χn − i�tϕ1(z/2)W n/2, (38a)

bn = ϕ0(z/2)χn − i�tϕ1(z/2)W n/2

−i�tϕ2(z/2)(W a − W n), (38b)

cn = ϕ0(z)χn − i�tϕ1(z)W n − 2i�tϕ2(z)(W b − W n).

(38c)

The operator exponential ϕ0(z) and ϕ0(z/2) in the spherical-
FEDVR basis are approximated by the Padé (3/3) approxi-
mation, and higher order ϕk functions are obtained by suc-
cessively applying Eq. (36). The denominator of the Padé
approximation is factorized and operated by the matrix iter-
ation method [12]. We follow Ref. [45] for the modification
required for a time-dependent stiff part h. In the absence of
a linear part for C0, time propagation of C0 reduces to the
well-known fourth-order Runge-Kutta scheme.

C. Expectation value

The expectation value of one-body operator 〈O〉 =
〈�|O|�〉 can be evaluated in the LG case as [23,36]

〈O〉 =
occ∑

i

{2〈φi|O|φi〉 + 〈χi|O|χi〉} + 2
√

2Re

[
C0

occ∑
i

〈χi|O|φi〉
]

−
occ∑
i j

〈χi|χ j〉〈φ j |O|φi〉. (39)

The VG expression is obtained by simply replacing {C0, χ j} with {D0, η j}, and the rVG one by replacing {φ j, χ j} with {φ′
j, χ

′
j}.

The Ehrenfest theorem d
dt 〈O〉 = −i〈�|[O, Ĥ ]|�〉 does not hold for TDCIS. Instead, we evaluate the time derivative of 〈O〉

as [36]

˙〈O〉 ≡ d〈O〉
dt

= 2Re

[
occ∑

i

{〈χi|O|χ̇i〉 +
√

2Ċ0〈χi|O|φi〉 +
√

2C0〈χ̇i|O|φi〉}
]

(40)
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in the LG case. {C0, χ j} is to be replaced with {D0, η j} for VG. The rVG case needs extra terms [36]:

˙〈O〉 = 2Re

⎡
⎣ occ∑

i

{〈χ ′
i |O|χ̇ ′

i 〉 +
√

2Ċ0〈χ ′
i |O|φ′

i〉 +
√

2C0〈χ̇ ′
i |O|φ′

i〉} −
occ∑
i j

〈χ ′
i |χ̇ ′

j〉〈φ′
j |O|φ′

i〉
⎤
⎦

−
√

2Im

[
C0

occ∑
i

{2E · 〈χ ′
i |Or̂|φ′

i〉 + |A|2〈χ ′
i |O|φ′

i〉}
]

− iE ·
occ∑
i j

(
2δi

j − 〈χ ′
i |χ ′

j〉
)〈φ′

j |[r̂, O]|φ′
i〉. (41)

Equations (39), (40), and (41) are valid not only for atoms but
also any multielectron system including molecules.

D. Ionization probability

To conveniently analyze how ionization proceeds using
the TD-MCSCF wave functions with time-varying orbitals,
we have previously introduced [10] a domain-based n-fold
ionization probability Pn, defined as a probability to find n
electrons in the outer region |r| > Rion and the other N − n
electrons in the inner region |r| < Rion with a given distance
Rion from the origin. This quantity is gauge invariant even
during the pulse, unlike the population of the (field-free) con-
tinuum levels [42,43]. To apply this approach to the TDCIS
method with channel orbitals, it is reasonable to assume that
the occupied orbitals {φi} are localized inside the inner region,
i.e., φi(r) = 0 for |r| > Rion. Then, the yield of the neutral
species or the survival probability P0 is computed as

P0(t ) = |C0(t )|2 +
occ∑

i

〈χi|χi〉<, (42)

where 〈χi|χ j〉< is the overlap integral in the inner region

〈χi|χ j〉< ≡
∫

|r|<Rion

drχ∗
i (r; t )χ j (r; t ). (43)

Noting that the atom described by a TDCIS wave function
is at most singly ionized, we obtain the single-ionization
probability as P1(t ) = 1 − P0(t ).

IV. NUMERICAL EXAMPLE

We present numerical applications of the implementation
of the reformulated TDCIS method described in the previous
section and assess efficiency of the rVG. In all simulations
reported below, we assume a laser field linearly polarized
along the z axis of the following form:

E (t ) = √
I0 sin(ωt ) sin2

(
π

t

NoptT

)
(0 � t � NoptT ),

(44)
where I0 is the peak intensity, ω is the central frequency,
T = 2π/ω is the period, and Nopt is the total number of optical
cycles.

A. Helium

First, we consider helium atom exposed to a laser pulse
with I0 = 4.0×1014 W/cm2, λ = 400 nm, and Nopt = 12. In
this condition, an exact numerical solution of the TDSE is

available [47,48], from which the expectation value of dipole
velocity and dipole acceleration can be calculated by using the

FIG. 1. Time evolution of (a) the dipole moment, (b) the dipole
velocity, and (c) the dipole acceleration of He subject to a laser pulse
with λ = 400 nm, I0 = 4×1014 W/cm2, and Nopt = 12, obtained with
the exact TDSE (courtesy of Burgdörfer) [40,47,48] and the TDCIS
method with length gauge (LG), conventional velocity gauge (VG),
and rotated velocity gauge (rVG).
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FIG. 2. HHG spectra from He exposed to a laser pulse with the
same conditions as Fig. 1, computed from the dipole acceleration
shown in Fig. 1(c). Comparison of the TDSE result (courtesy of
Burgdörfer) and TDCIS ones with LG, rVG, and VG.

Ehrenfest theorem. For the TDCIS method, we apply O = ẑ
in Eqs. (39) and (40) to evaluate the expectation value of
dipole moment and velocity, respectively. Dipole acceleration
is computed by numerically differentiating dipole velocity.

Time evolution of the calculated dipole moment, dipole
velocity, and dipole acceleration are shown in Fig. 1, and
HHG spectra obtained as the modulus squared of the Fourier
transform of the dipole acceleration is presented in Fig. 2. In
these figures, one can see the perfect agreement between the
LG and rVG results, which numerically confirms the gauge
invariance between the two gauges. In contrast, the results
of conventional VG with fixed orbitals strongly deviate from
them. It should be noted that, from the comparison between
LG (and rVG) and VG results alone, we cannot a priori
tell which is more accurate. The comparison with the TDSE
results now reveals that the former reproduces the TDSE
results much better than the latter, which convinces us of an
empirical preference of the LG and rVG treatments.

We show the temporal evolution of the survival probability
P0 with Rion = 20 a.u. in Fig. 3 (see the Appendix for the Rion

dependence of P0). The conventional VG treatment strongly

FIG. 3. Time evolution of the survival probability P0. Compar-
ison of the TDSE result (courtesy of Burgdörfer) and TDCIS ones
with LG, rVG, and VG with Rion = 20 a.u.

FIG. 4. HHG spectra of Ne subject to an IR laser pulse with
a wavelength of 800 nm and an intensity of 1.0×1014 W/cm2.
(a) Results of the LG and rVG with Lmax = 100. (b) Results of the
LG with various Lmax. (c) Results of the rVG with various Lmax.

overestimates ionization. The fact that tunneling ionization is
the first process of the three-step model [49,50] explains the
substantial overestimation of the HHG yield in Fig. 2. The
LG and rVG results, on the other hand, underestimate tunnel-
ing ionization. Correspondingly, we notice that the harmonic
intensity is slightly underestimated in Fig. 2.

B. Neon

We next consider a neon atom subject to a laser field
with λ = 800 nm, I0 = 8.0×1014 W/cm2, and Nopt = 3 and
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discuss convergence with respect to the maximum angular
momentum Lmax. We show the HHG spectra calculated with
various values of Lmax in the LG and rVG in Fig. 4. Figure 4(a)
shows the equivalence between the LG and rVG for suffi-
ciently large Lmax(=100). As can be seen in Fig. 4(b), which
shows LG results, Lmax = 60 is not sufficient to obtain a
converged result. On the other hand, the rVG requires far less
Lmax; even Lmax = 40 well reproduces the result with Lmax =
100, and the spectrum is converged with Lmax = 60 [Fig. 4(c)].
This observation indicates that the rVG TDCIS is simultane-
ously as accurate as the LG and as efficient as the VG.

V. CONCLUSIONS

We have presented a 3D numerical implementation of
the recently formulated gauge-invariant TDCIS method [36]
for atoms subject to a linearly polarized intense laser field.
Compared to the conventional TDCIS method that uses CI
coefficients as working variables, the present implementation
introduces channel orbitals [23], avoiding calculation and
storage of numerous virtual orbitals. We have applied this to
He and Ne atoms and calculated survival probabilities and
HHG spectra for intense laser pulses. The perfect agreement
of the LG and rVG results obtained with a sufficiently large
number of partial waves numerically demonstrates the gauge
invariance of the method. The comparison with the numeri-
cally exact TDSE results for He shows the rVG and LG’s su-
periority to the conventional VG in terms of accuracy. The VG
largely overestimates tunneling ionization and then harmonic
intensity. The analysis with neon reveals that the rVG has an
advantage in computational efficiency over the LG in terms
of the number of spherical harmonics required to obtain con-
verged HHG spectrum. Thus, our gauge-invariant reformula-
tion will make TDCIS a promising approach for multielectron
dynamics not only in atoms but also in molecules driven by
high-intensity laser fields.
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APPENDIX: Rion DEPENDENCE ON P0

We show P0 from the LG TDCIS results with various
values of Rion in Fig. 5. We can see stepwise ejection of
electron wave packets that propagate outward; the larger Rion

is, the later P0 is depleted. In the cases of Rion = 10, 20, and
30 a.u., P0 nearly reaches approximately the same final value
in the end of the simlation (after twelve optical cycles).
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[22] F. Lackner, I. Březinová, T. Sato, K. L. Ishikawa, and J.
Burgdörfer, Phys. Rev. A 95, 033414 (2017).

[23] N. Rohringer, A. Gordon, and R. Santra, Phys. Rev. A 74,
043420 (2006).

[24] A. Gordon, F. X. Kärtner, N. Rohringer, and R. Santra,
Phys. Rev. Lett. 96, 223902 (2006).

[25] A. Karamatskou and R. Santra, Phys. Rev. A 95, 013415
(2017).

[26] S. Pabst, L. Greenman, P. J. Ho, D. A. Mazziotti, and R. Santra,
Phys. Rev. Lett. 106, 053003 (2011).

[27] L. Greenman, P. J. Ho, S. Pabst, E. Kamarchik, D. A. Mazziotti,
and R. Santra, Phys. Rev. A 82, 023406 (2010).

[28] M. Grosser, J. M. Slowik, and R. Santra, Phys. Rev. A 95,
062107 (2017).

[29] S. Pabst and R. Santra, J. Phys. B: At. Mol. Opt. Phys. 47,
124026 (2014).

[30] A. Sytcheva, S. Pabst, S.-K. Son, and R. Santra, Phys. Rev. A
85, 023414 (2012).

[31] S. Pabst, A. Sytcheva, A. Moulet, A. Wirth, E. Goulielmakis,
and R. Santra, Phys. Rev. A 86, 063411 (2012).

[32] S. Pabst and R. Santra, Phys. Rev. Lett. 111, 233005
(2013).

[33] E. Heinrich-Josties, S. Pabst, and R. Santra, Phys. Rev. A 89,
043415 (2014).

[34] J. A. You, J. M. Dahlström, and N. Rohringer, Phys. Rev. A 95,
023409 (2017).

[35] J. A. You, N. Rohringer, and J. M. Dahlström, Phys. Rev. A 93,
033413 (2016).

[36] T. Sato, T. Teramura, and K. L. Ishikawa, Appl. Sci 8, 433
(2018).

[37] T. N. Rescigno and C. W. McCurdy, Phys. Rev. A 62, 032706
(2000).

[38] C. W. McCurdy, M. Baertschy, and T. N. Rescigno, J. Phys. B:
At. Mol. Opt. Phys. 37, R137 (2004).

[39] B. I. Schneider, L. A. Collins, and S. X. Hu, Phys. Rev. E 73,
036708 (2006).

[40] B. I. Schneider, F. Johannes, S. Nagele, R. Pazourek, S. Hu,
L. A. Collins, and J. Burgdörfer, in Quantum Dynamic Imaging,
edited by A. D. Bandrauk and M. Ivanov (Springer, New York,
2011), p. 149.

[41] P. Kramer and M. Saraceno, Geometry of the Time-Dependent
Variational Principle in Quantum Mechanics (Springer,
New York, 1981).

[42] K. L. Ishikawa and T. Sato, IEEE J. Sel. Top. Quantum Electron.
21, 8700916 (2015).

[43] T. Sato, Y. Orimo, T. Teramura, T. Oyunbileg, and K. L.
Ishikawa, in Progress in Ultrafast Intense Laser Science XIV,
edited by K. Yamanouchi, P. Martin, M. Sentis, L. Ruxin, and
D. Normand, Springer Series in Chemical Physics Vol. 118
(Springer International, Cham, 2018), pp. 143–172.

[44] S. Krogstad, J. Comput. Phys. 203, 72 (2005).
[45] M. Hochbruck and A. Ostermann, Acta Num. 19, 209 (2010).
[46] D. Kidd, C. Covington, and K. Varga, Phys. Rev. E 96, 063307

(2017).
[47] J. Feist, S. Nagele, R. Pazourek, E. Persson, B. I. Schneider,

L. A. Collins, and J. Burgdörfer, Phys. Rev. Lett. 103, 063002
(2009).

[48] R. Pazourek, J. Feist, S. Nagele, E. Persson, B. I. Schneider,
L. A. Collins, and J. Burgdörfer, Phys. Rev. A 83, 053418
(2011).

[49] P. B. Corkum, Phys. Rev. Lett. 71, 1994 (1993).
[50] Super-intense Laser-Atom Physics, edited by B. Piraux, A.
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