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Width and shift of Fano-Feshbach resonances for van der Waals interactions
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We revisit the basic properties of Fano-Feshbach resonances in two-body systems with van der Waals
tail interactions, such as ultracold neutral atoms. Using a two-channel model and two different methods, we
investigate the relationship between the width and shift of the resonances and their dependence on the low-energy
parameters of the system. Unlike what was previously believed [C. Chin et al., Rev. Mod. Phys. 82, 1225 (2010)]
for magnetic resonances, we find that the ratio between the width and the shift of a resonance does not depend
only on the background scattering length, but also on a closed-channel scattering length. We obtain different
limits corresponding to different cases of optical and magnetic resonances. Although the generalization of the
theory to the multichannel case remains to be done, we found that our two-channel predictions are verified for a
specific resonance of lithium-6.
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I. INTRODUCTION

A Fano-Feshbach resonance [1,2] is the strong modifica-
tion of the scattering properties of two particles due to their
coupling with a bound state in a different internal state. At
low energy where the s-wave scattering is dominant, these
resonances cause the scattering length of the two particles
to diverge. While such resonances may accidentally occur
in nature [3], it was realized that they could be induced in
ultracold alkali atoms by applying a magnetic field to these
systems [4]. Because of different Zeeman shifts experienced
by different hyperfine states of atoms, it is possible to tune
the intensity of the magnetic field such that a bound state in
a certain hyperfine state approaches the scattering energy of
the two atoms, resulting in a Fano-Feshbach resonance. This
led to one of the major achievements in the field of ultra-
cold atoms, i.e., the possibility to control their interactions,
enabling the experimental study of a wealth of fundamental
quantum phenomena for over nearly two decades [5–13].

The general formalism of Fano-Feshbach resonances has
already been studied in detail [1,2,14,15]. This work focuses
on the general relationship between the width and shift char-
acterizing Fano-Feshbach resonances. In Sec. II of this article,
we introduce the two-channel model which is used afterwards
to derive analytic relations. In Sec. III, we recall how the shift
and width of the resonance can be deduced in the isolated
resonance approximation. In Secs. IV and V, we establish the
relationship between the shift � and the width �, in particular
for systems characterized at large interparticle distance by a
van der Waals interaction.

Our main result shows the dependence of these quantities
upon the open-channel (background) scattering length abg and
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a closed-channel scattering length ac:

� ∝ (abg − ac), � ∝ (abg − ac)2. (1)

This result is inconsistent with the formula given by Eq.
(37) of Ref. [15] obtained from multichannel quantum defect
theory (MQDT). To clarify this discrepancy, in Sec. VI we
use the MQDT approach to rederive the width and shift. This
derivation turns out to confirm our results obtained with the
isolated resonance approximation. Moreover, we show that
the formula of Ref. [15] relies on a simplifying assumption
that appears to be invalid in general. Finally, in Sec. VIII,
we illustrate our results with the broad magnetic resonance
of lithium-6 atoms.

II. THE TWO-CHANNEL MODEL

The simplest description of Fano-Feshbach resonances re-
quires two channels, corresponding to two different internal
states of a pair of atoms. Each channel is associated with a
different interaction potential between the two atoms. At large
distances, these two potentials tend to different energies, or
thresholds, which are equal to the energies of two separated
atoms in the internal states of the corresponding channel. For
a resonance to occur, the initially separated atoms must scatter
with a relative kinetic energy that is above the threshold of one
channel, called the open channel, but below the threshold of
the other channel, called the closed channel. In addition, the
relative motion of the atoms in one channel must be coupled
to that of the other channel. The wave function for the relative
vector R between the two atoms with relative kinetic energy E
is therefore described by two components �o(R) and �c(R),
respectively, for the open and the closed channel, satisfying
the coupled Schrödinger equations (in ket notation):

(T + Voo − E )|�o〉 + Voc|�c〉 = 0, (2)

(T + Vcc − E )|�c〉 + Vco|�o〉 = 0, (3)
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where Voo and Vcc are the open- and closed-channel potentials
with Vcc(∞) > E > Voo(∞), and Voc = V ∗

co are the coupling
potentials. In Eqs. (2) and (3), T is the relative kinetic energy
operator,

T = − h̄2

2μ
∇2

R, (4)

where μ is the reduced mass of the atoms. For convenience,
we choose Voo(∞) = 0. Equations (2) and (3) can be inte-
grated as follows:

|�o〉 = ∣∣�̄E
o

〉 + G+
o Voc|�c〉, (5)

|�c〉 = 0 + GcVco|�o〉, (6)

where G+
o = (E + i0+ − T − Voo)−1 and Gc = (E − T −

Vcc)−1 are the resolvents of the open and closed channels,
and |�̄E

o 〉 is the scattering eigenstate of the open-channel
Hamiltonian T + Voo at energy E . It is energy normalized, i.e.,
〈�̄E

o |�̄E ′
o 〉 = δ(E − E ′).

III. SHIFT AND WIDTH OF AN ISOLATED RESONANCE

The description of a Fano-Feshbach resonance is usually
done in the isolated resonance approximation [14,16,17]. In
that approximation, only a single bound state |�m〉 (here
assumed with s-wave symmetry) of the closed channel gives a
significant contribution to the resonance. The closed-channel
resolvent may therefore be decomposed into a resonant and a
nonresonant part,

Gc = |�m〉〈�m|
E − Em

+
∑
n 	=m

|�n〉〈�n|
E − En︸ ︷︷ ︸
Gnr

c

, (7)

where |�n〉 and En denote all the eigenstates and energies
of the closed-channel Hamiltonian T + Vcc, normalized as
〈�n|�n′ 〉 = δn,n′ . One finds

|�o〉 = |�bg〉 + G+
o Tres|�bg〉, (8)

|�c〉 = |�m〉 〈�m|Vco|�o〉
E − Em

+ Gnr
c Vco|�o〉, (9)

where we have introduced the background scattering state
|�bg〉 and the operator Tres given by

|�bg〉 = ∣∣�̄E
o

〉 + G+
o VocGnr

c Vco|�o〉, (10)

Tres = Voc|�m〉〈�m|Vco

E − Em − 〈�m|VcoG+
o Voc|�m〉 . (11)

Equation (8) shows that |�o〉 is analogous to a scattering state
in a single-channel problem, where |�bg〉 plays the role of the
incident state and Tres is the transition operator. In this single-
channel picture, the scattering amplitude is thus proportional
to the matrix element 〈�bg|Tres|�bg〉 of this transition operator
for the incident state. From Eqs. (8)–(11), we have

〈�bg|Tres|�bg〉 = �

2π

1

E − Em − � + i�′/2
, (12)

where � and � are given by

� = 〈�m|VcoRe(G+
o )Voc|�m〉, (13)

� = 2π |〈�m|Vco|�bg〉|2, (14)

and �′ = 2π |〈�m|Vco|�̄E
o 〉|2. In the isolated resonance ap-

proximation, whenever the scattering energy E is close to the
molecular energy, the molecular states n 	= m only bring a
small correction to the closed-channel state in Eq. (9) and to
the background scattering state in Eq. (10). One can thus make
the approximation |�c〉 ∝ |�m〉 and |�bg〉 ≈ |�̄E

o 〉, yielding
�′ ≈ �. We can then identify a Breit-Wigner law in Eq. (12)
with the width � and shift �. From Eq. (8), one finds the
s-wave scattering phase shift,

η = ηbg + ηres, (15)

where ηbg is the background scattering phase shift contained
in |ψbg〉 and ηres is the resonant scattering phase shift given
by the resonant K matrix, Kres = tan ηres, of the Breit-Wigner
form,

Kres = − �/2

E − Em − �
. (16)

In the limit of low energy, E = h̄2k2

2μ
, the scattering length

a = − limk→0 tan η/k is therefore

a = abg − limk→0 �/2k

Em + �
. (17)

The scattering length abg, the width �, and shift � are thus the
parameters that characterize the Fano-Feshbach resonance at
low energy. In the rest of this paper, we consider � and � in
the limit of low scattering energy.

The isolated resonance approximation is valid in the limit
of small coupling Vco with respect to level spacings in the
closed channel, so that effectively the resonant molecular level
is well isolated from the other levels. Indeed, the condition
|〈�m|�c〉| � |〈�n|�c〉| needed to ensure that |�c〉 is approx-
imately proportional to |�m〉 gives the requirement

|Ẽm − Ẽn| � π |〈�n|Vco|�bg〉〈�m|Vco|�bg〉|, (18)

where Ẽm = Em + 〈�m|VcoG+
0 Voc|�m〉 and Ẽn = En +

〈�n|VcoG+
0 Voc|�m〉 are the dressed energies of the

closed-channel molecular levels. We call the regime where
the inequality in Eq. (18) is satisfied the diabatic limit.

Even for large couplings Vco, it may be possible to apply
the isolated resonance in another basis for which the new
coupling becomes small. One such basis is the adiabatic basis
that diagonalizes at each separation R the potential matrix Vi j .
The resulting equations are formally similar to the original
equations, where the potentials Voo and Vcc are replaced by the
adiabatic potentials V ′

oo and V ′
cc, and the couplings Voc and Vco

are replaced by radial couplings V ′
oc = −V ′

co of the form (see
Appendix A)

V ′
oc(R) = − h̄2

2μ

[
2

Q(R)

R

d

dR
(R·) + dQ(R)

dR

]
, (19)

where the function Q(R) in Eq. (19) is given by

Q(R) = −1

2

d

dR

{
arctan

[
2Voc(R)

Voo(R) − Vcc(R)

]}
. (20)
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If the coupling V ′
oc happens to be small enough, the condition

(18) written in the new basis may be satisfied and the isolated
resonance approximation may be applied again with a bound
state |� ′

m〉 among the family of bound states |� ′
n〉 in the

new closed channel. We call this regime of weak adiabatic
coupling the adiabatic limit.

IV. GENERAL DEPENDENCE ON abg

We first consider the dependence of the width upon the
background scattering length for a vanishing colliding energy.
Due to the isotropic character of the interchannel coupling,
only the s-wave component of the background scattering state
contributes in Eq. (14). At zero scattering energy, the s-wave
component [�bg(R)]s of the background state |�bg〉 can be
written in terms of radial functions as

[�bg(R)]s ≡
∫

d	R

4π
〈R|�bg〉 ∝ u0(R) − abgu∞(R)

R
, (21)

where the integration over the solid angle 	R selects the s-
wave component, and the radial functions u0 and u∞ are two
independent solutions of the open-channel radial equation,[

− h̄2

2μ

d2

dR2
+ Voo(R)

]
u(R) = 0, (22)

with the asymptotic boundary conditions u0(R) −−−→
R→∞

R and

u∞(R) −−−→
R→∞

1. The linear combination of these two func-

tions in Eq. (21) corresponds precisely to the physical solution
of (22) that is regular at the origin. It is then clear from
Eqs. (14) and (21) that the width � is the square of a quantity
varying linearly with abg. In particular, for some value of abg,
the width � vanishes.

Second, we examine the dependence of the shift of the
resonance as a function of the background scattering length.
For this purpose, we use the Green’s function of the s-wave
radial Schrödinger equation for the open channel,[

− h̄2

2μ

d2

dR2
+ Voo(R) − E

]
GE

o (R, R′) = −δ(R − R′). (23)

It is related to the resolvent by

GE
o (R, R′) = 4πRR′[Go(R, R′)

]
s ≡ RR′

∫
d	R〈R|G+

o |R′〉.
(24)

In the following, we will focus on the low-energy regime. In
this regime, the Green’s function GE

o (R, R′) is well approxi-
mated at short distances R, R′ � k−1 by its zero-energy limit,

G0
o (R, R′)

= − 2μ

h̄2

{
[u0(R) − abgu∞(R)]u∞(R′) for R < R′

[u0(R′) − abgu∞(R′)]u∞(R) for R > R′.

(25)

Using this last expression, it follows from Eq. (13) that the
shift � varies linearly with abg.

V. CASE OF VAN DER WAALS INTERACTIONS

Neutral atoms in their ground state interact via interactions
that decay as −C6/R6 (van der Waals potential) beyond a

certain radius R0. In this case, one can give the explicit
dependence of the width and shift on abg. The van der Waals
tail introduces a natural length scale RvdW (or energy EvdW)
denoted as the van der Waals length (or energy):

RvdW = 1

2

(
2μC6

h̄2

)1/4

, EvdW = h̄2

2μR2
vdW

. (26)

In what follows, we will also use the Gribakin-Flambaum
mean scattering length ā = 4π/�(1/4)2RvdW, where �(·)
denotes the Gamma function, giving ā ≈ 0.955978 . . . RvdW

[18]. The radial functions u0(R) and u∞(R) are known analyt-
ically in the region R > R0 of the van der Waals tail,

u0(R)/RvdW = √
x�(3/4)J−1/4(2x−2), (27)

u∞(R) = √
x�(5/4)J1/4(2x−2), (28)

where x = R/RvdW and J denotes the Bessel function.
In practice, R0 < RvdW and, in the short-range region,
R0 < R � RvdW, the functions exhibit rapid oscillations that
are well approximated by the semiclassical formulas,

u0(R)/RvdW ≈ �(3/4)
x3/2

√
π

cos(2x−2 − π/8), (29)

u∞(R) ≈ �(5/4)
x3/2

√
π

cos(2x−2 − 3π/8). (30)

One deduces from Eq. (14) and the normalization factor of
the scattering state �̄E

o that the resonance width vanishes at
zero energy with a linear law in the colliding momentum
k = √

2μE/h̄. Thus, in the limit of small k, one finds the
explicit dependence of � and � upon abg,

�

2kā
= πEvdW|

√
2A − rbgB|2, (31)

� = −πEvdW[
√

2C − rbgB2], (32)

where we introduced the reduced background scattering
length rbg = abg/ā, and the coefficients

A =
∫ ∞

0
dxw(x)x3/2 cos(2x−2 − π/8),

B =
∫ ∞

0
dxw(x)x3/2 cos(2x−2 − 3π/8), (33)

C =
∫ ∞

0
dxw(x)x3/2 cos(2x−2 − 3π/8)

×
∫ x

0
dx′ cos(2x′−2 − π/8)w(x′)x′3/2

+
∫ ∞

0
dxw(x)x3/2 cos(2x−2 − π/8)

×
∫ ∞

x
dx′ cos(2x′−2 − 3π/8)w(x′)x′3/2, (34)

with w(x) = √
RvdWE−1

vdWRW (R) and W (R) = [Voc�m(R)]s.

A. Optical Fano-Feshbach resonance

In the case of an optical Fano-Feshbach resonance,
the closed-channel potential Vcc(R) typically decays as
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Vcc(∞) − C3/R3 (for pairs of alkali atoms in the S − P elec-
tronic state). As a result, the molecular state �m is usually
localized near the Condon point Rc [19], so that one can make
the approximation w(x) ≈ wcδ(x − xc), with the obvious no-
tation xc = Rc/RvdW. This gives

A = wcx3/2
c cos(2x−2

c − π/8), (35)

B = wcx3/2
c cos(2x−2

c − 3π/8), (36)

C = AB. (37)

Therefore,

�

2kā
= πEvdW|

√
2A − rbgB|2, (38)

� = −πEvdW[
√

2A − rbgB]B. (39)

These formulas are akin to Eqs. (3.6) and (3.7) in Ref. [19].
This gives a simple relation between � and �/2kā:

� = �

2kā

[
rbg + tan

(
2x−2

c − 3π/8
) − 1

]−1
. (40)

This relation holds as long as Rc � RvdW. For larger Condon
points, one has to use the general forms (27) and (28) of u0

and u∞, which gives

� = �

2kā

[
rbg −

√
2

J−1/4(2x−2
c )

J1/4(2x−2
c )

]−1

−−−−→
rc�RvdW

�

2k
(abg − Rc)−1. (41)

B. Magnetic Fano-Feshbach resonance

In the case of magnetic Fano-Feshbach resonances, the
closed-channel potential Vcc(R) has the same van der Waals
tail as the open-channel potential, i.e., Vcc(R) = Vcc(∞) −
C6/R6 for R > R0. We assume that the molecular state in-
volved in the resonance is not too deeply bound in the closed
channel, such that its probability density is significant in the
van der Waals region R > R0. This means that its binding
energy Eb = |Em − Vcc(∞)| is much smaller than C6/R6

0. In
practice, R0 ∼ 0.4 RvdW, which limits our consideration to
Eb � 4000 EvdW, i.e., typically the last or next-to-last molecu-
lar level of the closed-channel potential [15]. This situation is
often the case in practice. Indeed, the molecular state binding
energy Eb must be close to the energy separation |Voo(∞) −
Vcc(∞)| between the two channel thresholds. This separation
results from Zeeman and hyperfine splittings, which are, at
most, a few GHz for typical magnetic fields less than 1000 G.
Since EvdW typically ranges from 2 to 600 MHz for alkali
atoms [15], the condition Eb � 4000 EvdW is often satisfied.

In the interval of radii [R0,∼ min(1/κ, RvdW)] where κ =√
2μEb/h̄, the closed-channel potential is well approximated

by the van der Waals tail and the shape of the molecular
wave function is nearly energy independent. In this interval,
the molecular wave function �m(R) = 〈R|�m〉 may be ap-
proximated by the following zero-energy formula, similar to
Eq. (21):

�m(R) ∝ u0(R) − acu∞(R)

R
, (42)

where the radial functions u0(R) and u∞(R) are given in this
interval by the semiclassical formulas in Eqs. (29) and (30).
In Eq. (42), we have introduced the length ac that sets the
phase in the semiclassical region where the wave function of
the bound state oscillates. In the interval considered and in
the small-energy limit, all the eigenfunctions of the closed
channel have the same shape and, thus, in analogy with
Eq. (21) for the open channel, we call ac the closed-channel
scattering length. It is, in general, different from the open-
channel scattering length abg.

In what follows, we make the additional assumption that
the interchannel coupling can be neglected beyond a certain
radius Rfree, satisfying the condition

R0 < Rfree < min(1/κ, RvdW), (43)

which is usually the case for magnetic resonances. As we shall
see, the crucial point is that the wave functions admit several
oscillations between R0 and Rfree. Let us now consider the
adiabatic and diabatic limits.

1. Adiabatic limit

In the adiabatic basis, the interchannel coupling is given by
the radial coupling V ′

co of Eq. (19). Therefore, we have

W (R) = − h̄2

2μR

[
dQ

dR
+ 2Q

d

dR

]
[R�m(R)]

≈ − h̄2

μR
Q(R)

d

dR
[R�m(R)]. (44)

We assume that the function W (R) takes negligible values
for radii less than R0 and that it is localized in a region
where the formula Eq. (42) is often a good approxima-
tion for the molecular state �m [20]. It follows that for
R0/RvdW < x < Rfree/RvdW,1

w(x) = −W (x)x−3/2[
√

2 sin(2x−2 − π/8)

− rc sin(2x−2 − 3π/8)], (45)

where W (x) = λmRvdWQ(R) and λm is a dimensionless nor-
malization factor depending on the molecular wave function
�m. We assume that W (x) has a support that comprises sev-
eral oscillations of �m(R) and is varying slowly with respect
to these oscillations. Replacing the expression of Eq. (45)
into Eqs. (33) and (34), and neglecting the terms with fast
oscillations, one finds

�

2kā
= EvdW × π

4
W2|rc − rbg|2, (46)

� = −EvdW × π

4
W2

(rc − rbg), (47)

where rc = ac/ā and rbg = abg/ā and

W =
∫ Rfree/RvdW

R0/RvdW

dx W (x) = λm

∫ Rfree

R0

dR Q(R). (48)

1Here, we have neglected the terms ∝x1/2 with respect to those
∝x−3/2.
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These expressions are consistent with the fact that the width
and shift vanish when the scattering lengths of the open and
closed channels are the same. Indeed, in the coupling region,
both the open- and closed-channel wave functions have the
same short-range oscillations with the same phase, and since
the radial coupling operator shifts the phase of one of them by
π/2 through the derivative d/dR, the resulting overlap is zero.
From Eqs. (46) and (47), we obtain the low-energy relation
between the width and the shift,

� = �

2kā
× (rbg − rc)−1 . (49)

This simple relation constitutes the main result of this paper.
We note in passing that it has a form similar to the relation
obtained for optical resonances; see Eq. (41).

2. Diabatic limit

In the diabatic basis, the interchannel coupling Vco is
typically proportional to the exchange energy, i.e., the dif-
ference between the triplet and singlet potentials for alkali
atoms, which decays exponentially with atomic separation.
It is therefore localized at separations smaller than the van
der Waals length, in a region that usually depends on the
short-range details of the potentials. There is therefore no
obvious simplification from the formulas (31) and (32) in
general.

C. Comparison with other works

Our previous results, in particular Eq. (49), are inconsistent
with formula (37) of Ref. [15], which reads as2

� = �

2kā

[
rbg − 1

1 + (rbg − 1)2

]
. (50)

Other works [21,22] have provided expressions of � and
�/2k (see Eqs. (1.47) and (1.48) of Ref. [22]) that lead to

� = �

2k
(abg − r0)−1, (51)

where r0 is a length scale associated with the range of the
open-channel interaction, i.e., typically of the order of ā.

Most strikingly, none of the above formulas depend on
the closed channel, unlike Eq. (49) which depends on ac.
The formula of Eq. (51) was derived under the approximation
that the low-energy scattering properties of the open channel
are dominated by a pole (bound state) near its threshold,
neglecting contributions from other poles in the Mittag-Leffler
expansion of the resolvent Go. This approximation seems to
be valid only for large abg, and one can check that in this
limit, both Eq. (51) and our result given by Eq. (49) indeed
tend to the same limit. On the other hand, the formula of
Eq. (50) is supposed to be valid for any value of abg and
without any particular assumption on the closed channel. It
was first published in Eq. (32) of Ref. [23], and stated to be
derived from the MQDT. To understand the discrepancy with

2We note that there is a global minus sign missing in Eq. (37) of
Ref. [15].

our result, we now treat the two-channel resonance problem
using the MQDT.

VI. MULTICHANNEL QUANTUM DEFECT THEORY

We present here a self-contained derivation of the MQDT,
following the approach of Refs. [24,25].

A. MQDT setup

1. Reference functions and short-range Y matrix

The coupled radial equations for the s-wave component of
Eqs. (2) and (3) read as follows:[

− h̄2

2μ

d2

dR2
+ Voo(R) − E

]
ψo(R) + Voc(R)ψc(R) = 0, (52)

[
− h̄2

2μ

d2

dR2
+ Vcc(R) − E

]
ψc(R) + Vco(R)ψo(R) = 0, (53)

where ψo(R) = R[�o(R)]s and ψc(R) = R[�c(R)]s are the
s-wave radial wave functions. The starting point of MQDT
is that the channels are uncoupled for radii R > Rfree. In
this region, one can express the two independent solutions
ψ (1) = (ψ (1)

o , ψ (1)
c ) and ψ (2) = (ψ (2)

o , ψ (2)
c ) of Eqs. (52) and

(53) as linear combinations of reference functions ( f̂o, ĝo) and
( f̂c, ĝc), which are solutions of the diagonal potentials Voo and
Vcc in each channel at energy E :(

ψ (1)
o ψ (2)

o
ψ (1)

c ψ (2)
c

)
=

(
f̂o − ĝoYoo −ĝoYoc

−ĝcYco f̂c − ĝcYcc

)
. (54)

The functions f̂o and f̂c are taken to be regular at the origin,
i.e., they vanish at R = 0, and therefore the functions ĝo

and ĝc must be irregular. They are normalized such that the
Wronskians W [ f̂o, ĝo] = f̂oĝ′

o − f̂ ′
oĝo = 1 and W [ f̂c, ĝc] = 1.

One finds, in the limit of weak coupling (see Appendix B),

Yco = −( f̂c| f̂o), (55)

Yoc = −( f̂o| f̂c) = Y ∗
co, (56)

Yoo = −[ f̂o|ĝc( f̂c| f̂o)<] − [ f̂o| f̂c(ĝc| f̂o)>], (57)

Ycc = −[ f̂c|ĝo( f̂o| f̂c)<] − [ f̂c| f̂o(ĝo| f̂c)>], (58)

where we have introduced the shorthand notations

( f̂i|ĝ j ) ≡
∫ ∞

0
dR f̂i(R)

2μ

h̄2 Vi j (R)ĝ j (R), (59)

( f̂i|ĝ j )< ≡
∫ R

0
dR′ f̂i(R

′)
2μ

h̄2 Vi j (R
′)ĝ j (R

′), (60)

( f̂i|ĝ j )> ≡
∫ ∞

R
dR′ f̂i(R

′)
2μ

h̄2 Vi j (R
′)ĝ j (R

′). (61)

The second ingredient of MQDT is that in the uncoupled
region, the reference functions are usually governed by the
tails of the potentials Voo and Vcc. For example, assuming that
the potential Voo has a van der Waals tail with van der Waals
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length RvdW, the reference functions f̂o and ĝo may be written
in the region R0 < R � RvdW:

f̂ o ≈ R1/2
vdW

1

2
x3/2 sin

(
2

x2
+ π

8
+ ϕo

)
, (62)

ĝo ≈ R1/2
vdW

1

2
x3/2 cos

(
2

x2
+ π

8
+ ϕo

)
, (63)

which are two independent linear combinations of Eqs. (29)
and (30). The phase ϕo is adjusted to make the function f̂o

regular at the origin. The above expressions do not depend
on the energy E because the potentials are deep enough in
the interval [R0, RvdW] that wave functions are nearly energy
independent there. On the other hand, the asymptotic part (i.e.,
for R � RvdW) of the functions ( f̂o, ĝo) [respectively, ( f̂c, ĝc)]
is a linear combination of free-wave solutions in the open
channel (respectively, closed channel) and is strongly energy
dependent.

2. Elimination of the closed channel

Since the reference functions f̂c and ĝc are in the closed
channel, they are, in general, exponentially divergent at large
distance. Only one particular linear combination of ψ (1)

and ψ (2) is the physical solution of Eqs. (52) and (53),
having a nondiverging component in the closed channel
ψc ∝ exp(−κR) for large R, where κ = √

Vcc(∞) − E . We
define cot γc such that

f̂c + cot γcĝc ∝ exp(−κR) for R → ∞. (64)

Therefore, we must have ψc ∝ f̂c + cot γcĝc, which implies
that for R > Rfree,

ψo ∝ f̂o − [
Yoo − Yoc(Ycc + cot γc)−1Yco

]︸ ︷︷ ︸
Ỹ

ĝo. (65)

3. Energy-normalized reference functions

In the open channel, one can define another set of reference
functions fo and go that are energy-normalized solutions of the
potential Voo, such that

fo −−−→
R→∞

√
2μ

4π2h̄2k
sin(kR + ηo), (66)

go −−−→
R→∞

−
√

2μ

4π2h̄2k
cos(kR + ηo). (67)

Again, fo is chosen to be regular fo(0) = 0, so that the phase
shift ηo −−→

k→0
−kao is simply the physical phase shift of the

potential Voo. The function fo is thus the radial function of the
s-wave component of the energy-normalized scattering state
|�̄E

o 〉.
One can connect the reference functions f̂o and ĝo to the

functions fo and go as follows:

fo =
√

2μ

4π2h̄2 C−1 f̂o, (68)

go =
√

2μ

4π2h̄2 C(G f̂o + ĝo), (69)

provided that the short-range phase ϕo is adjusted to satisfy

tan ϕo = 1

1 − ro
, with ro ≡ ao

ā
. (70)

Then, using the zero-energy analytical solutions (27) and (28)
of the van der Waals problem (which are also valid at low
energy for R � k−1), one finds, for small k,

C−1 ≈
k→0

√
kā[1 + (1 − ro)2], (71)

G ≈
k→0

ro − 1. (72)

4. K matrix resulting from the interchannel coupling

Expressing the open-channel radial wave function ψo of
Eq. (65) in terms of the reference functions fo and go in
Eqs. (68) and (69) gives, for R > Rfree,

ψo ∝ fo − Ỹ (1 + ỸG)−1C−2go. (73)

Then, one can directly identify the K matrix, K̃ = tan η̃,
resulting from the coupling of the open channel with the
closed channel:

K̃ = Ỹ (1 + ỸG)−1C−2. (74)

Indeed, one can check from Eqs. (66) and (73) that the total
phase shift is

η = ηo + η̃, (75)

and a resonance occurs for η = π/2 + nπ , i.e., at a pole of
K = tan η. Using Eq. (65), the explicit form of K̃ reads

K̃ = C−2

[Yoo − Yoc(Ycc + cot γc)−1Yco]−1 + G . (76)

B. Weak-coupling limit

1. MQDT formulas

For weak coupling, the pole of K appears for a scattering
energy E near the energy Em of a molecular level in the
potential Vcc. Let us consider a scattering energy E that is
close to the energy Em. By definition of a bound state, when
E is exactly equal to Em, the coefficient cot γc must be equal
to zero such that the combination f̂c(R) + cot γcĝc(R), which
converges at R → ∞, is also regular at R = 0. We denote this
bound-state radial wave function by f̂m(R). When E is close
to but different from Em, one can make the Taylor expansion,

cot γc ∼ α(E − Em) with α =
[

d (cot γc)

dE

]
E=Em

. (77)

The coefficient α in Eq. (77) is related to the normalization
of the bound-state wave function f̂m; see Appendix C. In this
approximation, one gets, from Eq. (76),

K̃ ≈ C−2{
Yoo − Yoc[Ycc + α(E − Em)]−1Yco

}−1 + G
. (78)

When E is sufficiently far from Em, then K̃ ≈ K̃o with
K̃o = tan η̃o = C−2Yoo/(1 + GYoo). One can then rewrite K̃ in
the form

K̃ = K̃o + Kres

1 − K̃oKres
, (79)
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i.e.,

η̃ = η̃o + ηres, (80)

where Kres = tan ηres has the standard Breit-Wigner form for
an isolated resonance given by Eq. (16), with the width and
shift,

�/2 = C−2 1

(1 + GYoo)2 + C−4Y 2
oo

|Yoc|2α−1, (81)

� =
[G(1 + GYoo) + C−4Yoo

(1 + GYoo)2 + C−4Y 2
oo

|Yoc|2 − Ycc

]
α−1. (82)

Combining Eqs. (75) and (80), one retrieves the total phase
shift of Eq. (15),

η = ηo + η̃o︸ ︷︷ ︸
ηbg

+ηres. (83)

At low scattering energy E , one retrieves the scattering length
of Eq. (17) and, using Eqs. (71) and (72), one obtains

abg = − lim
k→0

ηo + η̃o

k
= ao − ā[1 + (ro − 1)2]Yoo

1 + (ro − 1)Yoo
, (84)

�

2kā
= ā[1 + (ro − 1)2]

[1 + (ro − 1)Yoo]2
|Yoc|2α−1, (85)

� =
[

ro − 1

1 + (ro − 1)Yoo
|Yoc|2 − Ycc

]
α−1. (86)

From Eqs. (55)–(58), one can see that the off-diagonal matrix
elements Yoc and Yco of the short-range Y matrix are of first
order in the coupling Vco, whereas the diagonal elements
Yoo and Ycc are of second order. Therefore, in the limit of
weak coupling, one may neglect Yoo in the above expressions,
resulting in

abg ≈ ao, (87)

�

2kā
≈ ā[1 + (rbg − 1)2]|Yoc|2α−1, (88)

� ≈ [(rbg − 1)|Yoc|2 − Yccα
−1]. (89)

It may seem natural to neglect Ycc as well. Indeed, the formula
of Eq. (50) was obtained from the above equations by neglect-
ing both diagonal elements Yoo and Ycc, as can be checked
easily. However, a closer inspection of Eq. (89) shows that
both |Yoc|2 and Ycc are of second order in the coupling. One
may therefore not neglect Ycc in that equation. In the next
section, we show that one can retrieve, from Eqs. (88) and
(89), the results of the isolated resonance theory, Eqs. (13)
and (14), provided Ycc is not neglected.

2. Equivalence with the isolated resonance approximation

As shown in Sec. III, the isolated resonance approximation
consists in considering only one resonant molecular level and
neglecting the contribution from other molecular levels in the
closed channel. Similarly, in the MQDT formalism, we have
made a Taylor expansion (77) near a particular molecular
level. The contribution from other molecular levels is repre-
sented by the matrix element Yoo. In this section, we show
that neglecting this term in MQDT is indeed equivalent to the
isolated resonance approximation, leading back to Eqs. (13)
and (14).

Let us first calculate the width of the resonance. Neglecting
Yoo in Eq. (81) and using Eq. (56) and (68), one gets

�/2 ≈C−2|( f̂o| f̂c)|2α−1

=
∣∣∣∣∣∣
∫ ∞

0
dR

√
4π2h̄2

2μ
fo(R)

2μ

h̄2 Voc(R) f̂c(R)α−1/2

∣∣∣∣∣∣
2

= π

∣∣∣∣∣
∫ ∞

0
4πdR fo(R) Voc(R) f̂c(R)

√
2μ

4π h̄2α

∣∣∣∣∣
2

= π
∣∣〈�̄E

o

∣∣Voc|�c〉
∣∣2, (90)

where �c(R) = f̂c(R)
R

√
2μ

4π h̄2α
. Close to the resonance, �c

is simply the closed-channel bound state �m satisfying
〈�m|�m〉 = 1 (see details in Appendix C). Hence, we retrieve
the formula given by Eq. (14) for the width in the isolated
resonance approximation.

Let us now calculate the shift of the resonance. Neglecting
Yoo in Eq. (82) and using Eqs. (56) and (58), we get

� = α−1{G|( f̂c| f̂o)|2 + [ f̂c|ĝo( f̂o| f̂c)< + f̂o(ĝo| f̂c)>]}. (91)

Then, writing |( f̂c| f̂o)|2 as { f̂c| f̂o[( f̂o| f̂c)< + ( f̂o| f̂c)>]}, one
finds

� = α−1[ f̂c|(G f̂o + ĝo)( f̂o| f̂c)< + f̂o(G f̂o + ĝo| f̂c)>]. (92)

Using Eqs. (68) and (69), we obtain

� = 4π2 h̄2

2μ
α−1[ f̂c|go( fo| f̂c)< + fo(go| f̂c)>]. (93)

Finally, using fm(R) = R�m(R) =
√

2μ

4π h̄2α
f̂c(R), we arrive at

� = 16π3

(
h̄2

2μ

)2

[ fm|go( fo| fm)< + fo(go| fm)>], (94)

which is exactly the same as the isolated-resonance approx-
imation formula (13) for the shift. Indeed, starting from
Eq. (13), one finds

� = 4π

∫
RdR

∫
R′dR′�m(R)Vco(R)

×GE
o (R, R′)Voc(R′)�m(R′), (95)

where the s-wave Green’s function GE
o (R, R′) of Eq. (24)

can be approximated at low energy and in the range of
the interchannel coupling by its zero-energy limit G0

o (R, R′).

By using Eq. (25) and the relations fo =
√

2μk
4π2 h̄2 u0 and

go = −
√

2μ

4π2 h̄2k
u∞ deduced from Eqs. (66) and (67), one

obtains

� = 16π3
∫ ∞

0
dR fm(R)Vco(R)

×
[ ∫ R

0
dR′ fo(R′)go(R)Voc(R′)

+
∫ ∞

R
dR′ fo(R)go(R′)Voc(R′)

]
fm(R′), (96)
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which is exactly Eq. (94). This shows that the isolated res-
onance approximation is equivalent to the MQDT in which
Yoo is neglected. We note that neglecting Ycc in addition to Yoo

would lead to the erroneous result � = 4π h̄2

2μ
G|( fm| f̂o)|2.

We conclude that our results are consistent with the
MQDT, whereas formula (50) should be discarded as re-
sulting from the generally invalid neglect of Ycc. Although
the formula (50) was reported to be verified numerically for
various magnetic resonances, we surmise that it was done
mostly for resonances with a large background scattering
length abg, for which the shift is conspicuous and can be more
easily determined. In that limit, both Eq. (50) and our result
(49) reduce to � ≈ �/(2kabg). This would explain why the
shortcomings of Eq. (50) have been, so far, unnoticed.

VII. COMPARISON WITH TWO-CHANNEL
CALCULATIONS

We now compare our prediction given by Eq. (49) to the
result of numerical two-channel calculations. For this purpose,
we consider the following two-channel model defined in the
adiabatic basis. The two adiabatic potentials V+ and V− (see
Appendix A) are constructed as Lennard-Jones potentials, i.e.,
the sum of a van der Waals attraction and a 1/R12 repulsion
modeling the repulsive core, with an extra interaction decay-
ing exponentially, ±A exp(−R/B), physically corresponding
to an exchange interaction:

V−(R) = 16EvdW

[
σ 6

−
R12

− R6
vdW

R6

]
− A exp(−R/B), (97)

V+(R) = 16EvdW

[
σ 6

+
R12

− R6
vdW

R6

]
+ A exp(−R/B) + δ, (98)

where σ− and σ+ are of the order of 0.2R2
vdW, A = 2.0 ×

107EvdW, and B = RvdW/30. The energy separation δ between
the two potentials at large distance can be varied to account
for the Zeeman effect of the magnetic field on the potentials.
The adiabatic coupling function Q(R) is taken as

Q(R) = W

L
sech2

(
R − R0

L

)
,

where L = 0.08 RvdW and R0 = 0.43RvdW so that it is lo-
cated in the region of van der Waals oscillations of the
wave functions. This model thus constitutes a simplified yet
realistic description of magnetic Fano-Feshbach resonances.
For sufficiently small values of W , the adiabatic coupling is
perturbative and the model meets the conditions of derivation
of the formula given by Eq. (49). For a small value such
as W = 0.01, the diabatic potentials Voo and Vcc [obtained
by inverting Eq. (A2)] are almost identical to the adiabatic
potentials V− and V+. We consider values up to W = 0.39,
corresponding to a more realistic situation where both diabatic
potentials are nearly degenerate at short distance with the
average of the two adiabatic potentials 1

2 (V− + V+), as shown
in Fig. 1.

Changing σ− or σ+ enables one to independently control
the scattering lengths ao and ac, as well as the positions of
the bare energy levels of each adiabatic potential V− or V+.
These quantities are easily obtained numerically using either a
propagation method or a matrix representation with finite dif-
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FIG. 1. Adiabatic and diabatic potentials of the two-channel
model. The solid curves represent the potentials V− and V+ of
Eqs. (97) and (98) for σ− = 0.196 RvdW, σ+ = 0.200 RvdW, and δ =
0. For a weak adiabatic coupling strength W = 0.01, the diabatic
potentials Voo and Vcc nearly coincide with the potentials V+ and V−.
For a stronger adiabatic coupling strength W = 0.39, the diabatic
potentials Voo and Vcc, shown by dashed and dotted curves, are nearly
equal at short distance to the average of the two adiabatic potentials
V− and V+.

ferences. To solve the two coupled equations, we first return to
the original diabatic basis by using the transformation matrix
P of Eq. (A4) and then solve the coupled equations (2) and (3)
numerically. We can obtain the scattering length a as a func-
tion of the energy separation δ, which exhibits divergences
that can be fit by the formula a = abg − �0ā/(δ − E0). Com-
paring with Eq. (17), we obtain the width of the corresponding
resonance limk→0

�
2kā = �0 and its shift � = Eb − E0, where

Eb is the binding energy of the closest molecular level (of
energy Em = δ − Eb) in the closed-channel adiabatic potential
V+. We repeat this procedure for different values of ao that
produce different values of �0, �, and abg. It is then possible
to plot the ratio �0/� as a function of abg. The result is shown
in Fig. 2, for two different fixed values ac = −2.087 RvdW

(blue points) and ac = 1.774 RvdW (red points), and for two
different values W = 0.01 (upper panel) and W = 0.39 (lower
panel). The analytical formula given by Eq. (49) predicts a
linear behavior that crosses zero at abg = ac (red and blue
lines), which is verified to a large extent by the numerical data.
In contrast, the formula of Eq. (50) does not depend on ac and
predicts a qualitatively different behavior (dashed curve) that
is inconsistent with the numerical results.

We note that while the data for W = 0.01 are well in the
perturbative regime, as we find that abg ≈ ao to a very good
accuracy, the data for W = 0.39 are at the limit of validity
of the perturbative regime because abg is only approximately
equal to ao and in a smaller range of values. Nevertheless,
within that range, the formula of Eq. (49) appears to remain
verified even at this coupling strength.

VIII. APPLICATION TO LITHIUM-6

Although we were able in the previous section to check our
formula given by Eq. (49) by numerically solving the two-
channel equations (2) and (3) with van der Waals potentials,
it is more difficult to verify that formula from experimental
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FIG. 2. Ratio between the width parameter �0 = limk→0 �/2kā
and shift �, for resonances with different values of the reduced
background scattering length rbg obtained by varying the short-range
parameter σ− of the open-channel adiabatic potential V−. The upper
panel is obtained for a coupling strength W = 0.01 for which the
diabatic potentials are almost equal to the adiabatic potentials V+ and
V−, and the lower panel is obtained for a coupling strength W = 0.39
for which the diabatic potentials are nearly degenerate.

data or even from a realistic multichannel calculation. While
the width and background scattering lengths can usually be
determined both experimentally and theoretically, the shift
from the bare molecular state is more ambiguous because it is
not directly observable if the coupling causing the resonance
cannot be tuned, as is the case for conventional magnetic
Fano-Feshbach resonances.

Here, we consider the case of the broad resonance of
lithium-6 atoms in the two lowest hyperfine states near a
magnetic field intensity of 834 G, for which the bare molec-
ular state causing the resonance has been identified as the
last vibrational level of the singlet potential [15,26]. This
is illustrated in Fig. 3, which was obtained from a realistic
multichannel calculation taking into account the five rele-
vant hyperfine channels. The upper panel shows that the
variation of the scattering length is well fit by the formula
a = abg − ā�B/(B − B0), making it possible to determine
the “magnetic width” of the resonance �B = 14162 G, the
resonance position B0 = 834.045 G, and the background
scattering length abg = −53.78 ā, where ā = 1.5814 nm. The
lower panel of Fig. 3 shows the molecular energy, which
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FIG. 3. Broad Fano-Feshbach resonance of lithium-6 atoms in
the hyperfine states a and b (first and second lowest states) around a
magnetic field intensity of 834 G. Upper panel: The s-wave scattering
length as a function of the magnetic field intensity. Lower panel: The
energy spectrum (below the ab scattering threshold) as a function
of the magnetic field intensity. The solid black curve represents
the energy of the dressed molecular state (with total nuclear spin
I = 0) associated with the broad resonance. The black arrow shows
the resonance position B0 at which the dressed molecular state
reaches the threshold. The dashed gray line shows the energy of
the last level of the singlet 1�+

g potential corresponding to the bare
molecular state causing the resonance, intersecting the threshold at
the bare resonance position B1. Lengths are expressed in units of
ā = 1.5814 nm.

reaches the threshold at the resonance point B0 (solid black
curve, corresponding to a molecular state with total nuclear
spin I = 0) and the energy Em of the bare molecular state
causing the resonance (dashed black line, corresponding to
the last level ν = 38 of the singlet potential), which reaches
the threshold at the magnetic field intensity B1 = 541.28 G.

Comparing with Eq. (17), one finds

δμ�B = lim
k→0

�

2kā
, δμ(B1 − B0) = lim

k→0
�, (99)

where δμ is the difference of magnetic moments between the
bare molecule and the separated atoms. One can then calculate
the ratio of the two quantities in Eq. (99):

lim
k→0

�

2kā�
= �B

B1 − B0
≈ −48.38. (100)

This value turns out to compare well with the value
[1 + (rbg − 1)2](rbg − 1)−1 = −54.79 given by formula (50).
However, as explained in the previous section, this is because
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FIG. 4. Background scattering length abg of the lithium-6 reso-
nance as a function of the triplet scattering length at , for different
values of the singlet scattering length as. This graph shows that abg

is nearly independent of as and is approximately equal to at . Lengths
are expressed in units of ā = 1.5814 nm.

the value of rbg is unusually large, so that the formula reduces
to ≈ rbg = −53.79, which is also the limit of the formula
given by Eq. (49). The broad 834 G resonance therefore does
not allow one to discriminate between these formulas. For this
purpose, one needs to theoretically change the value of the
background scattering length.

It is not easy, in general, to control only the background
scattering length by altering the Hamiltonian of the system.
However, the case of lithium-6 is somewhat fortunate in that
respect because the background scattering length turns out
to be given essentially by the the triplet scattering length at

of the system, as shown in Fig. 4, while the closed channel
is controlled by the singlet scattering length as since the
close-channel bare molecular state is of a singlet nature. These
values can be changed by slightly altering the shape of the
triplet and singlet potentials at short distances. For fixed
values of as, we can extract and plot the magnetic width �B

as a function of the background scattering length abg, which
is varied by varying at . This is shown in the top panels of
Fig. 5. Using the relation between the magnetic width and the
energy width of the resonance in Eq. (99), the data can be well
fit by the adiabatic formula (46), where ac is set to as. This
indicates that the resonance is in the adiabatic regime and that
the closed-channel molecular state is indeed controlled by the
singlet scattering length as, with ac ≈ as. A different value
of W has to be set for each value of as, indicating that the
coupling in the Hamiltonian is somehow modified when as is
changed.

Next, for fixed values of as, we can calculate the last singlet
bound-state energy, and find the magnetic field intensity B1

at which the scattering threshold intersects that energy. In
addition, we can extract the resonance position B0 and plot
it as a function of abg. This is shown in the lower panels
of Fig. 5. The resonance position B0 varies approximately
linearly with abg and intersects the value B1 at abg = ac, as
expected from Eq. (47). Moreover, for each case, the slope of
that linear dependence is consistent with the coefficient of the
quadratic dependence of the width parameter, in agreement
with Eqs. (46) and (47).

The ratio �B/(B1 − B0) of Eq. (100) is plotted in Fig. 6
as a function of the background scattering length abg. The
linear variation of Eq. (49) is again validated and the explicit
dependence of the results on the closed-channel scattering
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FIG. 5. Plots of the magnetic width �B and position B0 of the resonance [see Eqs. (99) and (100), and discussion around] as a function of
the reduced background scattering length rbg = abg/ā, for three different singlet scattering lengths as indicated in the box at the top of each
figure. The dots are obtained from a multichannel calculation, while the dashed curves represent Eqs. (46) and (47).
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FIG. 6. Ratio between the magnetic width �B and shift B1 − B0,
as a function of the reduced background scattering length rbg =
abg/ā, for different values of the reduced closed-channel scattering
length rc = ac/ā. The dots are from a multichannel calculation (see
Fig. 5) and the solid lines correspond to Eq. (49), while the dashed
curve corresponds to Eq. (50).

length ac confirms the inadequacy of Eq. (50), which only
depends on the background scattering length abg. Although
the results presented here support the validity of Eqs. (46)–
(49), a full confirmation of these equations in the multichannel
case will be possible when a reliable way of determining
the effective underlying two-channel model of a resonance is
achieved, a task we leave as a future challenge.3

IX. CONCLUSION

This work has clarified the relationship between the width
and shift of Fano-Feshbach resonances for van der Waals
interactions. This insight will be crucial for the construction
of effective interactions that can be used to treat few- or many-
body problems, while faithfully reproducing the physics of
Fano-Feshbach resonances. Experimentally, the determina-
tion of the shift is possible, as demonstrated recently [28]. The
proposal in Ref. [29] for experimentally modifying the back-
ground scattering length of a given resonance is also a promis-
ing direction. This opens interesting perspectives to confirm
our result. A similar analysis of the width and shift could also
be of importance for resonances whose coupling can be con-
trolled, such as microwave Fano-Feshbach resonances [30].
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APPENDIX A

The two-channel Hamiltonian of Eqs. (2) and (3) is

H =
(

T 0
0 T

)
+ V, (A1)

where T is the kinetic operator T = − h̄2

2μ
d2

dR2 and V is the

potential matrix (Voo Voc
Vco Vcc

). This expression of the Hamiltonian
corresponds to the diabatic basis, which is a convenient repre-
sentation for weak coupling Voc. In the strong-coupling limit,
the criterion of Eq. (18) is not verified and this representation
becomes inconvenient. Instead, we consider the adiabatic
basis obtained by diagonalizing the potential matrix,

V ′ = P−1V P =
(

V+ 0
0 V−

)
, (A2)

where

V± = Voo + Vcc

2
±

√
(Voo − Vcc)2

4
+ |Voc|2. (A3)

Assuming that V is real, the transformation matrix P is given
by

P =
(

cos θ
2 − sin θ

2
sin θ

2 cos θ
2

)
, with tan θ = 2Voc

Voo − Vcc
, (A4)

where 0 < θ < π . Although the potential becomes diagonal
in the adiabatic basis, the kinetic operator transforms as
follows:

P−1T P =
⎛
⎝ T + h̄2

2μ
Q2 − h̄2

2μ

[ dQ
dR + 2Q d

dR

]
h̄2

2μ

[ dQ
dR + 2Q d

dR

]
T + h̄2

2μ
Q2

⎞
⎠, (A5)

where the terms Q(R) = − 1
2

dθ (R)
dR arise from the action of the

derivative operator in T . This gives rise to new off-diagonal
couplings called radial couplings.

For magnetic Fano-Feshbach resonances of alkali atoms,
the function Q(R) shows a peak that can be located in the van
der Waals region [20].

APPENDIX B

1. Calculation of Yi j

From Eqs. (2) and (3), we have

ψo(R) = A × f̂o(R) +
∫ ∞

0
dR′ĜE

o (R, R′)Voc(R′)ψc(R′),

ψc(R) = B × f̂c(R) +
∫ ∞

0
dR′ĜE

c (R, R′)Vco(R′)ψo(R′),

where A and B are two numbers, and we have introduced the
two Green’s function,

ĜE
i (R, R′) = 2μ

h̄2

1

W [ f̂i, ĝi]

{
f̂i(R)ĝi(R′) for R < R′

f̂i(R′)ĝi(R) for R > R′,
(B1)

satisfying the radial equation[
− h̄2

2μ

d2

dR2
+ Vii(R) − E

]
ĜE

i (R, R′) = −δ(R − R′), (B2)
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and the appropriate boundary condition GE
i (R, R′) −−→

R→0
0,

since both f̂i are regular at the origin. This gives

ψo(R) = A × f̂o(R) + ( f̂o|ψc)<ĝo(R) + (go|ψc)> f̂o(R),

ψc(R) = B × f̂c(R) + ( f̂c|ψo)<ĝc(R) + (gc|ψo)> f̂c(R).

Therefore, for R > Rfree,

ψo(R) −−−−→
R�Rfree

A × f̂o(R) + ( f̂o|ψc)ĝo(R),

ψc(R) −−−−→
R�Rfree

B × f̂c(R) + ( f̂c|ψo)ĝc(R).

We find the two linearly independent solutions ψ (1) and ψ (2)

for (A, B) = (1, 0) and (A, B) = (0, 1). For (A, B) = (1, 0),
we get

Yoo = −(
f̂o

∣∣ψ (1)
c

)
; Yco = −(

f̂c

∣∣ψ (1)
o

)
. (B3)

And for (A, B) = (0, 1), we get

Yoc = −(
f̂o

∣∣ψ (2)
c

)
; Ycc = −(

f̂c

∣∣ψ (2)
o

)
. (B4)

2. Limit of weak coupling

In the limit of weak coupling, we can make the following
approximations:

Yco = −(
f̂c

∣∣ψ (1)
o

) ≈ −( f̂c| f̂o), (B5)

ψ (1)
c = ĝc

(
f̂c

∣∣ψ (1)
o

)
<

+ f̂c
(
gc

∣∣ψ (1)
o

)
>

≈ ĝc( f̂c| f̂o)< + f̂c(gc| f̂o)>, (B6)

and, therefore,

Yoo = −(
f̂o

∣∣ψ (1)
c

) = −[ f̂o|ĝc( f̂c

∣∣ f̂o)< + f̂c(gc| f̂o)>]. (B7)

Likewise,

Yoc = −(
f̂o

∣∣ψ (2)
c

) ≈ −( f̂o

∣∣ f̂c), (B8)

ψ (2)
o = ĝo( f̂o|ψc)< + f̂o(go|ψc)>

≈ ĝo( f̂o| f̂c)< + f̂o(go| f̂c)>, (B9)

and, therefore,

Ycc = −(
f̂c

∣∣ψ (2)
o

) ≈ −[ f̂c|ĝo( f̂o| f̂c)< + f̂o(go| f̂c)>]. (B10)

APPENDIX C

In this Appendix, we establish the connection between
the coefficient α of Eq. (77) and the normalization of the

bound-state wave function f̂m of Sec. VI. The exponentially
convergent function ψc ≈ f̂c + α(E − Em)ĝc becomes the
closed-channel bound state f̂m when E = Em. The functions
ψc and f̂m are solutions of the closed-channel radial equations:

− h̄2

2μ
ψ ′′

c + (Vcc − E )ψc = 0, (C1)

− h̄2

2μ
f̂ ′′
m + (Vcc − Em) f̂m = 0. (C2)

Multiplying the first equation by f̂m and the second equation
by ψc, taking the difference between the two equations, and
integrating gives

− h̄2

2μ

∫ ∞

0
(ψ ′′

c f̂m − f̂ ′′
mψc)dR

−(E − Em)
∫ ∞

0
ψc f̂mdR = 0. (C3)

Integrating by parts gives

h̄2

2μ
[ψ ′

c f̂m − f̂ ′
mψc]R=0 − (E − Em)

∫ ∞

0
ψc f̂mdR = 0. (C4)

Using the explicit form of ψc,

h̄2

2μ
{[ f̂ ′

c + α(E − Em)ĝ′
c] f̂m − f̂ ′

m[ f̂c + α(E − Em)ĝc]}R=0

−(E − Em)
∫ ∞

0
[ f̂c + α(E − Em)ĝc] f̂mdR = 0. (C5)

Using the fact that f̂m(0) = 0 and f̂c(0) = 0, we obtain∫ ∞

0
[ f̂c + α(E − Em)ĝc] f̂mdR = h̄2

2μ
αW [ f̂m, ĝc]. (C6)

Finally, taking the limit E → Em, we get f̂c → f̂m, and
W [ f̂m, ĝc] → W [ f̂m, ĝm] = 1, which gives∫ ∞

0
f̂ 2
mdR = h̄2

2μ
α. (C7)

This last equation relates the coefficient α to the normalization
of the bound-state wave function f̂m. Thus, for E ≈ Em,

the state �c(R) = f̂c(R)
R

√
2μ

4π h̄2α
is approximately the bound

state �m(R) = f̂m (R)
R

√
2μ

4π h̄2α
, with the proper normalization∫ ∞

0 4πR2dR|�m(R)|2 = 1.
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