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It was shown recently that the discrete scaling symmetry, which underlies the Efimov effect in the three
identical boson system with two-body short-range interactions, survives when single-particle one-dimensional
(1D) spin-orbit coupling terms are added to the Hamiltonian. Each three-body energy level in the ordinary Efimov
scenario turns into an energy manifold that contains four energy levels in the presence of 1D spin-orbit coupling
(equal mixture of Rashba-Dresselhaus coupling). This work provides a detailed characterization of the energy
levels in these manifolds. The two-boson energies, which enter into the three-boson scattering threshold, are
analyzed in detail. Moreover, the structural properties, e.g., momentum distributions of the two- and three-boson
systems, are analyzed for various parameter combinations.
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I. INTRODUCTION

The three-boson system with two-body short-range inter-
actions has captured physicists’ attention ever since Efimov’s
bizarre and counterintuitive prediction that the strengthening
of the two-body binding leads, in a certain parameter regime,
to a weakening of the three-body binding [1–4]. It is now well
understood that this behavior is linked to the existence of a
discrete scaling symmetry and, associated with this symmetry,
a limit cycle [5]. The discrete scaling symmetry has been
probed in atom-loss measurements in nondegenerate cold
atom systems [6–11]. Just a few years ago, the quantum-
mechanical density of the helium Efimov trimer system was
measured in a molecular-beam experiment that allows for size
selection by using matter-wave diffraction and imaging via
Coulomb explosion [12]. In a different experimental setup,
radio-frequency spectroscopy was used to probe the energy
spectrum [13,14].

Ever since Efimov’s prediction in the early 70s, there has
been a quest to extend the Efimov scenario beyond the three
identical boson paradigm. In fact, motivated by possible appli-
cations to nuclear systems, Efimov himself considered various
extensions to three-particle systems with different masses and
spin degrees of freedom [4]. Possible extensions to the four-
and higher-body sector have captured scientists’ imagination
and challenged our analytical and numerical toolbox for the
past forty-plus years [15–24]. More recently, possible imprints
of three-body Efimov physics on many-body systems have
been investigated [25–30]. This work explores an extension
of Efimov’s scenario along a different line; namely, it con-
siders the three-boson Efimov scenario in the presence of
single-particle forces. The most frequently considered single-
particle force in the literature is an external confinement,
which reduces the “position space” available to the three-
particle system [31–37]. Our work, in contrast, considers one-
dimensional (1D) spin-orbit coupling terms, which modify
the single-particle dispersion. The impact of other spin-orbit

coupling schemes on Efimov trimers has been considered in
the literature [38–40].

In recent work [41], it was demonstrated that Efimov’s
discrete scaling law persists in the presence of 1D spin-orbit
coupling in an enlarged parameter space that includes not only
the two-body s-wave scattering length, but also the parameters
that characterize the 1D spin-orbit coupling terms. The dis-
crete scaling law tells us that, once we know the shape of four
energy surfaces in a five-dimensional parameter space, we
can predict all other energy surfaces in the five-dimensional
parameter space. This is similar to the “normal” Efimov
scenario where, once we know one energy curve in the energy-
scattering length plane, all other energy curves in this plane
are determined by the radial scaling law [5,23]. In this work,
we map out the shape of the three-boson energy surfaces
in the presence of 1D spin-orbit coupling in a subspace of
the full parameter space. Particular emphasis is given to the
near-threshold behavior and its dependence on the generalized
total momentum (center-of-mass quasimomentum). The de-
termination of the three-atom threshold requires the two-body
energies as input. Because of this, the two-boson system is
investigated in detail. In contrast to the extensively studied
two-fermion system with various types of spin-orbit coupling
[42–51], comparatively few works on the two-boson system
with two-dimensional (2D) and three-dimensional (3D) spin-
orbit coupling are found in the literature [51–56].

This work also considers structural properties of extremely
weakly bound two- and three-boson systems in the presence of
1D spin-orbit coupling terms. The momentum distributions of
weakly bound eigenstates help us understand the effects of the
1D spin-orbit coupling terms on the binding energy. In certain
parameter regimes, the momentum distributions of weakly
bound states and those of the lowest scattering threshold are
strongly correlated. Signatures of these correlations may be
observable in dedicated cold atom time-of-flight experiments.
Moreover, the generalized momentum and the mechanical
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momentum in the laboratory frame are discussed for states
with the strongest binding and for states with the lowest total
energy.

The remainder of this paper is organized as follows:
Section II introduces the theoretical background. Sections III
and IV present our results for the two- and three-boson
systems, respectively. The dependence of the binding energy
and the total ground-state energy on the s-wave scattering
length and the spin-orbit coupling parameters is analyzed.
Momentum distribution functions are also analyzed. Finally,
Sec. V presents our conclusions.

II. THEORETICAL BACKGROUND

A. System Hamiltonian

We consider N identical bosons with mass m and three-
dimensional position vectors �r j . Each atom is treated as an
effective spin-1/2 system with spin-orbit coupling. Using the
Pauli spin-1/2 operators σ̂ j,x, σ̂ j,y, and σ̂ j,z for the jth particle,
the single-particle Hamiltonian ĥ j reads [57]

ĥ j = �̂p2
j

2m
Îj + h̄kso

m
p̂ j,zσ̂ j,z + �

2
σ̂ j,x + δ

2
σ̂ j,z, (1)

where kso, �, and δ are referred to as the spin-orbit coupling
strength, Raman coupling, and detuning, respectively. The
operator p̂ j,z denotes the z component of the generalized
momentum operator �̂p j of the jth atom ( �̂p j contains the
components p̂ j,x, p̂ j,y, and p̂ j,z). The quantity Î j denotes the
2×2 identity operator in the spin space of the jth particle.
The system Hamiltonian ĤN for N interacting particles reads

ĤN =
N∑

j=1

ĥ j + V̂int, (2)

where the interaction term V̂int contains two-body interactions
V2b and three-body interactions V3b,

V̂int =
⎛
⎝ N∑

j=1, j<k

V2b(r jk ) +
N∑

j=1, j<k,k<l

V3b(r jkl )

⎞
⎠Î1,...,N . (3)

Here, we define the two-body relative distance r jk and three-
body hyperradius r jkl as

r jk = |�r j − �rk| (4)

and

r jkl = (
r2

jk + r2
jl + r2

kl

)1/2
. (5)

The quantity Î j,...,k with j � k denotes the identity operator of
the spin-space spanned by particles j through k.

We use Jacobi coordinates [58,59] to separate the center-
of-mass degrees of freedom from the relative degrees of
freedom. Thus, the total system Hamiltonian ĤN in Eq. (2)
can be rewritten as

ĤN = ĤN,com + ĤN,rel, (6)

where the center-of-mass Hamiltonian ĤN,com and the relative
Hamiltonian ĤN,rel take the forms

ĤN,com = �̂q2
N

2μN
Î1,...,N + h̄ksoNq̂N,z

μN
�̂N,z (7)

and

ĤN,rel =
N−1∑
j=1

�̂q2
j

2μ j
Î1,...,N +

N−1∑
j=1

h̄kso

m
q̂ j,z�̂ j,z

+ Nδ

2
�̂N,z + N�

2
�̂N,x + V̂int. (8)

The quantity �̂q j ( j = 1, . . . , N) denotes the generalized jth
Jacobi momentum operator and μ j is the associated Jacobi
mass. The transformation from the generalized single-particle
momentum operators �̂p j to the generalized Jacobi operators

�̂q j is given by ( �̂p1, . . . , �̂pN )T = U ( �̂q1, . . . , �̂qN )T , where the
matrix U is given by [58]

U =

⎛
⎜⎜⎜⎜⎜⎜⎝

1 −1 0 · · · 0
1
2

1
2 −1 · · · 0

...
...

1
N−1

1
N−1 · · · · · · −1

1
N

1
N · · · · · · 1

N

⎞
⎟⎟⎟⎟⎟⎟⎠

. (9)

The transformation from the single-particle position vectors
�r j to the Jacobi vectors �ρ j (to be used below) and from

the single spin operators �̂σ j to the Jacobi spin operators �̂� j

proceeds analogously (Appendix A of Ref. [41] provides
explicit expressions for �̂1,z and �̂2,z).

We identify the first term on the right-hand side of Eq. (7)
as the kinetic energy associated with the center-of-mass de-
grees of freedom. Since the total generalized momentum
operator �̂qN is associated with three conserved quantities [60],
the eigenenergies and eigenstates of ĤN can be obtained by
considering each fixed �qN subspace separately. Here, �qN is
the eigenvalue of the operator �̂qN . Similar to the system
without spin-orbit coupling, the kinetic energy associated with
the center-of-mass degrees of freedom contributes a constant
energy shift to the eigenenergy for each fixed �qN and does not
impact the binding energy. The second term on the right-hand
side of Eq. (7) is structurally similar to the first term in the
second line of Eq. (8). This discussion motivates us to define
a modified relative Hamiltonian ˆ̄HN,rel, which combines the
second term on the right-hand side of Eq. (7) and the first term
in the second line of Eq. (8),

ˆ̄HN,rel = ˆ̄HN,rel,ni + V̂int, (10)

where the noninteracting relative Hamiltonian ˆ̄HN,rel,ni reads

ˆ̄HN,rel,ni =
N−1∑
j=1

�̂q2
j

2μ j
Î1,...,N +

N−1∑
j=1

h̄kso

m
q̂ j,z�̂ j,z

+ N δ̃

2
�̂N,z + N�

2
�̂N,x. (11)
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The generalized detuning δ̃, which contains the true detuning
δ and the center-of-mass momentum �qN , is defined through

δ̃

2
= h̄kso

μN
qN,z + δ

2
. (12)

The shift introduces a nontrivial dependence of the eigenen-
ergy on the total generalized momentum �qN . No such depen-
dence exists for the system without spin-orbit coupling. Using
Eqs. (10) and (11), the total N-particle Hamiltonian for fixed
�qN is given by

ĤN (�qN ) = �q2
N

2μN
Î1,...,N + ˆ̄HN,rel. (13)

Equations (10) and (11) can be viewed as the system Hamil-
tonian in the center-of-mass frame and the generalized de-
tuning δ̃ can be interpreted as the effective detuning that the
system sees in the center-of-mass frame. The center-of-mass
momentum dependence of ˆ̄HN,rel,ni in Eq. (11) is a direct
consequence of the breaking of the Galilean invariance in
spin-orbit-coupled systems [61].

In this work, the δ̃ dependence of the binding energy
Ē (n)

N,binding(δ̃), where the superscript “n” indicates the nth eigen-
state, is presented for two and three identical bosons. The
binding energy is directly related to the dissociation properties
of few-body systems. For example, weakly bound states tell us
the critical scattering lengths at which enhanced three-body
losses are expected to occur in the presence of 1D spin-orbit
coupling [41]. Once the critical generalized detuning δ̃cr at
which the binding energy Ē (n)

N,binding(δ̃) is the largest has been
determined, the z component of the generalized total momen-
tum of the corresponding state is uniquely determined via
Eq. (12) for each fixed δ. The same conclusion was reached
by Shenoy [45] for two identical fermions with 1D spin-orbit
coupling.

B. Binding energy

To determine the binding energies Ē (n)
N,binding(δ̃), one needs

to calculate the threshold energy ĒN,rel,th(δ̃) and the eigenen-
ergy Ē (n)

N,rel(δ̃) of the Hamiltonian ˆ̄HN,rel for a given generalized
detuning δ̃,

Ē (n)
N,binding(δ̃) = max

[
ĒN,rel,th(δ̃) − Ē (n)

N,rel(δ̃), 0
]
. (14)

Equation (14) implies that, assuming a fixed bare detuning δ,
the eigenenergy of a state with total generalized momentum
�qN is referenced to the threshold energy for a state with the
same �qN . This is consistent with the fact that the compo-
nents of �qN can be interpreted as good quantum numbers.
The threshold energy ĒN,rel,th(δ̃) of the N-particle system is
the lowest eigenenergy of a state for which one or more
particles are far away from the rest of the system such that
the interactions vanish between the “far-away particles” and
the rest of the system. For the two-body system, for example,
the threshold energy Ē2,rel,th(δ̃) is equal to the lowest eigenen-

ergy of two noninteracting particles [60],

Ē2,rel,th(δ̃) = min
�q1

[
Ē (0)

2,rel,ni(�q1, δ̃)
]
. (15)

Here, Ē (0)
2,rel,ni(�q1, δ̃) corresponds to the lowest relative disper-

sion relationship of the noninteracting Hamiltonian ˆ̄H2,rel,ni

with generalized detuning δ̃ and relative generalized momen-
tum �q1. Since the relative generalized momentum �q1 is not
a conserved quantity for the two-particle Hamiltonian ˆ̄H2,rel,
the threshold energy is obtained by minimizing Ē (0)

2,rel,ni(�q1, δ̃)
with respect to �q1.

For the three-body system, the threshold energy Ē3,rel,th(δ̃)
corresponds to either the lowest eigenenergy of three non-
interacting particles or to the lowest eigenenergy of an
atom-dimer state (details are given in Appendixes C–E of
Ref. [41]). Specifically, we define the three-atom thresh-
old energy Ē aaa

3,rel,th(δ̃) and the atom-dimer threshold energy
Ē ad

3,rel,th(δ̃) through

Ē aaa
3,rel,th(δ̃) = min

�q1,�q2

[
Ē (0)

3,rel,ni(�q1, �q2, δ̃)
]

(16)

and

Ē ad
3,rel,th(δ̃) = min

�q2

[
Ē (0)

2,rel

(
δ̃ + h̄ksoq2,z

m

)

+ Ē (0)
2,rel,ni

(
�q2, δ̃ − 2h̄ksoq2,z

m

)
− �q2

2

4m

]
, (17)

respectively. Here, Ē (0)
3,rel,ni(�q1, �q2, δ̃) corresponds to the lowest

dispersion relationship of the noninteracting relative Hamil-
tonian ˆ̄H3,rel,ni with generalized detuning δ̃ and generalized
Jacobi momenta �q1 and �q2. Equation (17) shows that it is
necessary to fully map out the δ̃ dependence of Ē (0)

2,rel(δ̃) to ob-
tain Ē ad

3,rel,th(δ̃). Putting this together, the three-body threshold
energy Ē3,rel,th(δ̃) is determined by

Ē3,rel,th(δ̃) = min
[
Ē aaa

3,rel,th(δ̃), Ē ad
3,rel,th(δ̃)

]
. (18)

C. Total ground-state energy

While the binding energy is relevant in the few-body con-
text, the ground-state energy E (0)

N (�qN ) of ĤN (�qN ) is relevant
in the many-body context. Due to the breaking of the Galilean
invariance, it is nontrivial to find the critical generalized
total momentum �qN,cr at which E (0)

N (�qN ) reaches its minimum
value, i.e., the total ground-state energy. This is different from
the corresponding system without spin-orbit coupling, where
E (n)

N (�qN ) reaches its minimum value for �qN = 0. According to
the Hellman-Feynman theorem [62], we have

∇�qN E (0)
N (�qN )

=
(

qN,x

μN
,

qN,y

μN
,

qN,z

μN
+ h̄ksoN

μN

〈
�

(0)
�qN

∣∣�̂N,z

∣∣� (0)
�qN

〉)T

, (19)

where |� (0)
�qN

〉 denotes the ground state of ĤN (�qN ) with gener-
alized total momentum �qN . Since the critical generalized total
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momentum �qN,cr is defined through

∇�qN E (0)
N (�qN )

∣∣
�qN =�qN,cr

= 0, (20)

Eq. (19) yields

�qN,cr = (
0, 0, −h̄ksoN

〈
�

(0)
�qN,cr

∣∣�̂N,z

∣∣� (0)
�qN,cr

〉)T
. (21)

In cold atom experiments, synthetic 1D spin-orbit coupling
has first been realized using a Raman laser scheme [57]. The
derivation of the effective low-energy cold atom Hamiltonian
involves going from a bare state basis (laboratory frame) to a
dressed state basis (rotated frame) [57]. As a consequence, the
total mechanical momentum �̂qN,lab in the laboratory frame is
related to the generalized momentum �̂qN in the rotated frame
via

�̂qN,lab = (q̂N,x, q̂N,y, q̂N,z + h̄ksoN�̂N,z )T . (22)

“Sandwiching” Eq. (22) with the state �
(0)
�qN,cr

, one obtains

�qN,lab,cr =(
qN,x,cr, qN,y,cr, qN,z,cr + h̄ksoN

〈
�

(0)
�qN,cr

∣∣�̂N,z

∣∣� (0)
�qN,cr

〉)T
,

(23)

where qN,i,cr (i = x, y, z) denotes the ith component of the
critical generalized total momentum �qN,cr and �qN,lab,cr is the
critical mechanical momentum in the laboratory frame. Plug-
ging Eq. (21) into Eq. (23), we find that �

(0)
�qN,cr

is characterized
by a vanishing average total mechanical momentum vector in
the laboratory frame, regardless of the system parameters such
as detuning and Raman coupling strength. Said differently,
the state corresponding to the lowest ground-state energy
E (0)

N (�qN,cr) among all ground-state energies E (0)
N (�qN ) has zero

average total mechanical momentum in the laboratory frame.
This conclusion disagrees with the conclusions presented in
Ref. [47].

Given the ground-state energy Ē (0)
N,rel(δ̃) of ˆ̄HN,rel, the

ground-state energy E (0)
N (�qN ) of ĤN (�qN ) is obtained through

E (0)
N (�qN ) = �q2

N

2μN
+ Ē (0)

N,rel(δ̃). (24)

Equation (24) facilitates the process of mapping out the �qN

dependence of E (0)
N (�qN ), i.e., Eq. (24) serves as a “hook” that

connects E (0)
N (�qN ) and Ē (0)

N,rel(δ̃) for variable detunings δ. For

example, given E (0)
N,δ1

(�qN ), E (0)
N,δ2

(�qN ) is obtained via

E (0)
N,δ2

(�qN ) = �q2
N − �Q2

2μN
+ E (0)

N,δ1
( �Q), (25)

where

�Q =
(

qN,x, qN,y,
(δ2 − δ1)μN

2h̄kso
+ qN,z

)T

. (26)

In practice, we calculate the eigenenergies of ˆ̄HN,rel as a
function of the generalized detuning δ̃ by using the explicitly
correlated Gaussian approach [41,58,59] (see Appendix B
of Ref. [41] for more details). In a second step, we use
Eqs. (24)–(26) for a fixed bare detuning δ to obtain EN (�qN ) for
various �qN .

D. Interaction potential and energy scales

Throughout this work, we assume that the two-body inter-
action potential V2b(r jk ) is the same for all spin channels. We
use a Gaussian model potential with range r0 and depth v0,

V2b(r jk ) = −v0 exp

(
− r2

jk

2r2
0

)
. (27)

The depth v0 (v0 � 0) is adjusted to dial in the desired two-
body s-wave scattering length as. The v0 values considered are
such that the potential V2b(r jk ) supports at most one two-body
s-wave bound state. The three-body interaction employed in
this work also has a Gaussian form,

V3b(r jkl ) = V0 exp

(
− r2

jkl

2R2
0

)
. (28)

The parameters R0 and V0 (V0 � 0) are used to tune the three-
body parameter κ∗ [19,22,41,63],

E∗ = − h̄2κ2
∗

m
, (29)

where E∗ denotes the relative energy of the lowest universal
three-boson state at unitarity in the absence of spin-orbit
coupling. The term “universal three-boson state” in this con-
text refers to a state described nearly perfectly by Efimov’s
zero-range theory [5,23]. For the parameters considered in this
work, the most strongly bound three-boson state is the lowest
universal three-boson state [41]. To guarantee that we are in
the universal regime, the ranges r0 and R0 in Eqs. (27) and (28)
are chosen to be much smaller than all other length scales in
the problem.

In the following two sections, we discuss the binding
energies Ē (n)

N,binding(δ̃), the critical generalized detuning δ̃cr, the

ground-state energy E (0)
N (�qN ) of ĤN (�qN ), the critical total gen-

eralized momentum �qN,cr, and the total ground-state energy
E (0)

N (�qN,cr) for bosonic systems with N = 2 and N = 3. Since
E (0)

N (�qN ) depends nontrivially only on the z component of �qN ,
we take �qN = (0, 0, qN,z )T throughout and use the notation
E (0)

N (qN,z ) when we discuss E (0)
N (�qN ). Throughout this paper,

we use Eso and 1/kso as energy and length units:

Eso = h̄2k2
so

2m
. (30)

III. TWO-BOSON SYSTEM

A. Binding energy

The two-body binding energies depend on the dimension-
less parameters askso, δ̃/Eso, and �/Eso. For � = 0, i.e., in
the absence of spin-orbit coupling, the total spin projection
operator �̂2,z commutes with ˆ̄H2,rel. This means that the
associated Mz projection quantum number is a good quantum
number and that the different spin channels are decoupled.
Assuming that the eigenenergies for the case without spin-
orbit coupling are known, the two-body eigenenergies for
� = 0 can be obtained analytically (see Appendix). In the
zero-range limit, one finds that the system supports up to three
two-boson bound states. The binding energy is, in this � = 0
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FIG. 1. The contours show the negative of the two-boson binding
energy, in units of Eso, as functions of (askso )−1 and δ̃/Eso for � =
2Eso [panels (a), (c), and (e)] and infinitesimally small � [panels (b),
(d), and (f)]. The panels in the first row, second row, and third row
show the negative of the binding energy of the energetically lowest-
lying two-boson state (n = 0), of the first-excited two-boson state
(n = 1), and of the second-excited two-boson state (n = 2). Note the
different ranges of the x axis in panels (a)–(f).

case, measured with respect to the minimum of the respective
noninteracting relative dispersion curve. If we instead mea-
sure the binding energies for the � = 0 system with respect to
the absolute minimum of all noninteracting relative dispersion
curves, i.e., the lowest scattering threshold among the three
different Mz channels, the binding energies depend, in general,
on δ̃ (see Appendix). Even though these binding energies are
calculated with respect to the incorrect threshold, they can be
interpreted as being those for infinitesimally small but finite
�. The resulting binding energies are shown in Figs. 1(b),
1(d), and 1(f) for the lowest two-boson state (n = 0), the
first-excited two-boson state (n = 1), and the second-excited
two-boson state (n = 2), respectively.

For finite �, Mz is not a good quantum number any more
and the eigenstates are nontrivial superpositions of the four
product spin states. Thus, the binding energies Ē (n)

2,binding(δ̃)
in the presence of spin-orbit coupling have, in general, to

be determined numerically. As discussed in Sec. II B, the
two-body binding energies Ē (n)

2,binding(δ̃) are obtained by calcu-

lating the eigenenergies of the Hamiltonian ˆ̄H2,rel for various
generalized detunings δ̃ and by measuring the energies relative
to the lowest two-atom threshold energy Ē2,rel,th(δ̃) with the
same δ̃. Figures 1(a), 1(c), and 1(e) show contour plots of
the negative of the binding energy Ē (n)

2,binding(δ̃) for n = 0,
n = 1, and n = 2, respectively, for � = 2Eso as functions
of (askso)−1 and δ̃/Eso. It is expected that the spin-orbit
coupling has the most pronounced effect on the eigenstates
when the binding is weak. To focus on the relatively weak
binding regime, the range of the (askso)−1 values is different in
Figs. 1(a)–1(f).

Comparison of the left and right columns of Fig. 1 shows
that the “shapes” of the contours for the first- and second-
excited states for � = 2Eso [Figs. 1(c) and 1(e)] are quite sim-
ilar to those for infinitesimally small � [Figs. 1(d) and 1(f)].
The binding energies of the first and second-excited states are
smaller for � = 2Eso than for infinitesimally small �. For
example, for δ̃ = 0, Fig. 1(c) shows that the first-excited state
starts to be bound at (askso)−1 ≈ 1.1 while Fig. 1(d) shows
that it starts to be bound at (askso)−1 ≈ 1. While the spin-
orbit coupling (� = 2Eso) reduces the binding of the first-
excited and second-excited states compared with the case with
infinitesimally small �, the binding of the ground state is
enhanced by the finite spin-orbit coupling.

A key feature of Fig. 1(a) is that the two-boson sys-
tem supports a bound state on the negative s-wave scat-
tering length side. The s-wave interacting system without
spin-orbit coupling, in contrast, does not support a bound
state on the negative s-wave scattering length side [see
Fig. 1(b)]. This implies that the spin-orbit coupling leads
to an enhancement of the binding of the two-boson ground
state. For � = 2Eso, this enhancement is largest for a finite
δ̃, i.e., the critical generalized detuning is approximately
equal to 1.7Eso for all askso included in Fig. 1(a). For δ̃ =
1.7Eso and � = 2Eso, the smallest (askso)−1 value for which
the two-boson system supports a bound state is equal to
−1.016. Assuming (kso)−1 = 4000a0 [57], this corresponds
to as = −3937a0. This estimate shows that the enhance-
ment of the two-body binding energy due to the 1D spin-
orbit coupling is sizable in the equal-scattering-length case
considered in our work. Although the experimentally more
relevant unequal-scattering-length scenario requires separate
calculations, the qualitative behavior is expected to be sim-
ilar to that discussed here for the identical-scattering-length
case.

To gain a deeper understanding of the shape of the con-
tours in Fig. 1(a), it is helpful to analyze the lowest nonin-
teracting relative dispersion relationship Ē (0)

2,rel,ni(q1,z, δ̃) [see

Eq. (11)]. Figure 2(a) shows Ē (0)
2,rel,ni(q1,z, δ̃) for three different

generalized detunings δ̃. For δ̃ = 0 [the black solid line in
Fig. 2(a)], Ē (0)

2,rel,ni(q1,z, δ̃) has two global minima at finite q1,z.
For 0 < δ̃ < 1.697Eso (not shown), a local minimum exists
at q1,z = 0 in addition to the two global minima at finite
q1,z. For δ̃ = 1.697Eso [the red dashed line in Fig. 2(a)], the
minimum at q1,z = 0 is degenerate with the two minima at
finite q1,z; thus, Ē (0)

2,rel,ni(q1,z, δ̃) has three global minima. For

042708-5



Q. GUAN AND D. BLUME PHYSICAL REVIEW A 100, 042708 (2019)

-3

-2.5

-2
E 2,

re
l,n

i

 _
 ~

(0
)

(q
1,

z, δ
)/E

so

-1 0 1
q1,z/(h

_
kso)

0

0.5

1

1.5

n(
q 1,

z)h_ k so

(a)

(b)

FIG. 2. Correlations between (a) the lowest noninteracting rela-
tive dispersion curve and (b) the relative momentum distribution for
the ground state with � = 2Eso and (askso )−1 = −0.321. For both
panels, the black solid, red dashed, and blue dotted lines correspond
to δ̃ = 0, 1.7Eso, and 2.5Eso, respectively.

δ̃ > 1.697Eso [the blue dotted line in Fig. 2(a)], Ē (0)
2,rel,ni(q1,z, δ̃)

has one global minimum that is located at q1,z = 0. For
fixed δ̃, the minimum of Ē (0)

2,rel,ni(q1,z, δ̃) yields the threshold

energy Ē (0)
2,rel,th(δ̃). Thus, as δ̃ increases, the degeneracy of

the threshold energy goes from two for δ̃ < 1.697Eso to
three for δ̃ = 1.697Eso, to one for δ̃ > 1.697Eso. Figure 1(a)
indicates that the generalized detuning at which the degen-
eracy of the threshold energy is maximal and is approxi-
mately equal to the critical detuning δ̃cr at which the binding
energy is largest. The same conclusion also holds in the
three-boson system in the presence of 1D spin-orbit coupling
(see Sec. IV).

The correlation between the binding of the ground state
and the degeneracy of the noninteracting relative dispersion
curve can be most readily understood within the framework of
perturbation theory. As a rule of thumb, a larger degeneracy
of the noninteracting system leads to larger changes of the
interacting system, at least for sufficiently weak interactions.
This can be rationalized by the fact that the larger degeneracy
is associated with a larger Hilbert space and hence more
possibilities of “deforming” the unperturbed states. As a rule
of thumb, the energy splittings induced by the interactions
also increase with increasing degeneracy. Correspondingly,
the ground-state binding is enhanced the most for the largest
degeneracy of the noninteracting relative dispersion curve
while the excited-state binding is reduced (the energies are
pushed up more).

In the weakly bound regime, the structural properties of
the bound states are expected to reflect the behavior of the
associated noninteracting relative dispersion curves. As an
example, we consider the relative momentum distribution
n(q1,z ) along the z direction for various generalized detunings.

The relative momentum distribution n(q1,z ) is defined through

n(q1,z ) =
∑

σ

∫
	∗

rel,σ (�q′
1)δ(q′

1,z − q1,z )	rel,σ (�q′
1)d �q′

1, (31)

where 	rel,σ is the momentum space wave function associated
with the spin component σ (σ = |↑↑〉, |↑↓〉, |↓↑〉, and |↓↓〉)
of the eigenstate of the relative Hamiltonian H̄2,rel and δ(q′

1,z −
q1,z ) is the Dirac δ-function.

Figure 2(b) shows n(q1,z ) for the ground state for � = 2Eso

and (askso)−1 = −0.321 [same as in Fig. 1(a)]. For δ̃ = 0
[black solid line in Fig. 2(b)], n(q1,z ) has two distinct peaks
located at finite q1,z. Due to the spin-momentum locking,
the ground state is primarily a superposition of two spin
contributions; namely, |↑↓〉 and |↓↑〉. For δ̃ = 1.7Eso [red
dashed line in Fig. 2(b)], n(q1,z ) has three momentum peaks,
two at finite q1,z and one at vanishing q1,z. In this case,
the ground state has significant weights for the |↑↓〉, |↓↑〉,
and |↓ ↓〉 components. For δ̃ = 2.5Eso [blue dotted line in
Fig. 2(b)], the ground state has one peak located at vanishing
q1,z and consists predominantly of the |↓ ↓〉 spin component.
Comparing the curves in Figs. 2(a) and 2(b) for the same
generalized detuning, it can be seen that the q1,z values for
which n(q1,z ) reaches a maximum are correlated with those
for which the corresponding lowest relative dispersion curve
reaches a minimum.

B. Total ground-state energy

Given the ground-state energy Ē (0)
2,rel(δ̃) of the relative

Hamiltonian ˆ̄H2,rel, the ground-state energy E (0)
2 (q2,z ) of the

full Hamiltonian ĤN (q2,z ) is obtained by using Eq. (24).
Dashed and solid lines in Fig. 3 show the ground-state energy
E (0)

2 (q2,z ) and the threshold energy E2,th(q2,z ), respectively,
as a function of q2,z for � = 2Eso and various (askso)−1 and
δ/Eso combinations. Figures 3(a) and 3(b) cover the weakly
bound regime while Figs. 3(c) and 3(d) cover the more
strongly bound regime. For (askso)−1 = −0.321 and δ = 0
[Fig. 3(a)], the threshold energy E2,th(q2,z ) has three global
minima: two at finite q2,z and one at q2,z = 0. In this case, the
ground-state energy E (0)

2 (q2,z ) has two local minima at finite
q2,z and one global minimum at q2,z = 0. The former minima
correspond to scattering states and the latter minimum to a
bound state. For a nonzero bare detuning δ, both E2,th(q2,z )
and E (0)

2 (q2,z ) are “tilted” and asymmetric with respect to
q2,z = 0. For (askso)−1 = −0.321 and δ = 0.04Eso [Fig. 3(b)],
the minimum of E (0)

2 (q2,z ) at q2,z = 1.739h̄kso is degenerate
with the minimum at q2,z = 0. The minimum at q2,z = 0
corresponds to a bound state while the minimum at q2,z =
1.739h̄kso corresponds to a scattering state. For (askso)−1 =
−0.321 and δ > 0.04Eso (not shown), both E2,th(q2,z ) and
E2(q2,z ) possess a global minimum at q2,z ≈ 1.7h̄kso. In this
case, the global minimum of E2(q2,z ) corresponds to a scatter-
ing state.

Figures 3(c) and 3(d) show the results for (askso)−1 =
0.0113, i.e., the more strongly bound regime. For δ = 0
[Fig. 3(c)], the ground-state energy E (0)

2 (q2,z ) has one global
minimum at q2,z = 0. For δ = 0.21Eso [Fig. 3(d)], in con-
trast, the ground-state energy E (0)

2 (q2,z ) has two degenerate
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FIG. 3. The ground-state energy E (0)
2 (q2,z ) of ĤN (q2,z ) (red

dashed lines) and the threshold energy E2,th(q2,z ) (black solid lines)
for � = 2Eso and various (askso )−1 and δ/Eso combinations. Panels
(a) and (b) correspond to (askso )−1 = −0.321. Panels (c) and (d) cor-
respond to (askso )−1 = 0.0113. Panels (a) and (c) correspond to
δ = 0. Panel (b) and (d) correspond to δ = 0.04Eso and δ = 0.21Eso,
respectively.

global minima, one at q2,z ≈ 0 and the other at q2,z ≈ 1.7h̄kso.
Compared with the case shown in Fig. 3(b), the minimum
closest to 1.7h̄kso corresponds to a bound state instead of a
scattering state. For even larger δ, E (0)

2 (q2,z ) has a nondegen-
erate global minimum that corresponds to a bound state at
q2,z ≈ 1.7h̄kso.

Figure 3 indicates that, for each (askso)−1, there exists
a bare detuning δ for which the critical generalized total
momentum q2,z,cr jumps from a value close to zero to a
value close to 1.7h̄kso. Depending on the value of (askso)−1,
the global minimum of E (0)

2 (q2,z ) corresponds either to a
scattering state or to a bound state. Thus, we can identify
different “phases” for fixed �/Eso, which categorize the total
ground state. Figure 4 shows the “phase diagram” for the
total ground state as functions of (askso)−1 and δ/Eso for
� = 2Eso. For this �/Eso, the total ground state falls in one
of the following three phases: SSfinite: the ground state is a
scattering state with qz,cr,z 
= 0; BSfinite: the ground state is a
bound state with qz,cr,z ≈ 1.7h̄kso; BSzero: the ground state is
a bound state with qz,cr,z ≈ 0. The phases SSfinite and BSfinite

have no analogy in the two-body system without spin-orbit
coupling.

The region encircled by the blue squares, the red dotted
line, the black dot-dashed line, and the upper and left edge
of the figure corresponds to the phase SSfinite. The region
encircled by the lower and right edge of the figure, the blue
dashed line, and the red dotted line corresponds to the phase
BSzero. The region encircled by the blue dashed line, the
right and upper edge of the figure, and the black dot-dashed
line corresponds to the phase BSfinite. Along the red dotted
line [Fig. 3(b) corresponds to such a situation], the total
ground state is twofold degenerate: one state corresponds to a
scattering state with q2,z ≈ 1.7h̄kso and the other to a bound

FIG. 4. “Phase diagram” for the total ground state as functions
of (askso )−1 and δ/Eso for � = 2Eso. The contours show the total
ground-state energy E (0)

2 (q2,z )/Eso. The black dot-dashed line, blue
dashed line, red dotted line, and the blue squares separate the three
phases SSfinite, BSfinite, and BSzero from each other (see text for
details). The diamond and triangle mark the parameter combinations
corresponding to Figs. 3(b) and 3(d), respectively.

state with q2,z ≈ 0. Along the blue dashed line [Fig. 3(d)
corresponds to such a situation], the total ground state is
twofold degenerate: both states correspond to bound states
but with different q2,z, one has q2,z ≈ 1.7h̄kso and the other
q2,z ≈ 0. Along the blue squares, the total ground state is
threefold degenerate: one state corresponds to a scattering
state with q2,z = 0 and the other two to bound states with
q2,z = ±1.739h̄kso. Along the black dot-dashed line, the total
ground state is onefold degenerate and has a total momentum
q2,z ≈ 1.7h̄kso. For δ → ∞, the black dot-dashed line in Fig. 4
is characterized by (askso)−1 = 0, i.e., the role of � decreases
with increasing δ.

IV. THREE-BOSON SYSTEM

The three-boson properties depend on askso, δ̃/Eso, �/Eso,
and κ∗/kso. The latter is the three-body parameter associated
with Efimov physics. Throughout this section, we use R0/r0 =√

8 and fix the height of the three-body potential such that
the lowest three-boson state at unitarity in the absence of
spin-orbit coupling is characterized by κ∗r0 = 0.0152. This
state can be considered an Efimov state, i.e., upon variation of
as it follows Efimov’s radial scaling law quite accurately. For
example, the binding energy of the next excited state is 515.29
times smaller than the energy of the state we are considering at
unitarity. This ratio is within 0.1% of the scaling factor of Efi-
mov’s zero-range theory. Throughout this section, we fix kso

(and correspondingly Eso) and vary δ̃ and �. Specifically, we
choose kso such that it is comparable to κ∗, kso = 1.32κ∗, and
Eso = −0.871E∗. Due to the close match of the energy scales,
this parameter combination is expected to lead to significant
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modification of, for example, the momentum distribution of
the Efimov trimer near unitarity, i.e., near |as|−1 ≈ 0.

A. Binding energy

We start our discussion of the three-boson binding en-
ergy by considering the � = 0 case. As for the two-boson
system, the Mz quantum number of the three-boson system
is conserved when � is equal to zero. Since we have three
bosons with pseudospin 1/2, the Mz quantum number can
take four different values; namely −3/2,−1/2, 1/2, and 3/2.
Thus, for vanishing �, each energy curve in the “normal”
Efimov scenario turns into an energy manifold consisting of
four decoupled states. If we measure the binding energies of
these fixed Mz states with respect to the scattering threshold
for the corresponding Mz channel, the binding energies of
these states are the same as in the absence of spin-orbit
coupling (see Appendix). If we instead measure the binding
energies for the � = 0 system with respect to the absolute
minimum of all noninteracting relative dispersion curves,
i.e., the lowest scattering threshold among the four different
Mz channels, the binding energies depend, in general, on
δ̃ (see Appendix). As discussed in Sec. III in the context
of the two-boson system, even though these binding ener-
gies are calculated with respect to the incorrect threshold,
they can be interpreted as being those for infinitesimally
small but finite �. The binding energies for infinitesimally
small � are shown in Figs. 5(b), 5(d), 5(f), and 5(h) for
the lowest three-boson state (n = 0), the first-excited three-
boson state (n = 1), the second-excited three-boson state (n =
2), and the third-excited three-boson state (n = 3), respec-
tively. The binding energy of the ground state is independent
of the generalized detuning δ̃ while the binding energies of
the three excited states in the lowest energy manifold depend
on δ̃.

For finite �, the Mz quantum number is not conserved
any more. In this case, the three-boson binding energies
Ē (n)

3,binding(δ̃) need to be determined numerically. Figures 5(a),
5(c), 5(e), and 5(g) show the negative of the binding energies
Ē (n)

3,binding(δ̃) for n = 0, n = 1, n = 2, and n = 3, respectively,

for � = 2Eso as functions of (askso)−1 and δ̃/Eso. Comparison
of the binding energies for � = 2Eso (left column of Fig. 5)
and those for infinitesimally small � (right column of Fig. 5)
shows that the “shapes” of the contours in the same row are
quite similar for n = 1–3 but not for n = 0. For the same
(askso)−1 and δ̃/Eso, the binding energies of the excited states
for finite � are smaller than those for infinitesimally small
�. In contrast, the binding of the ground state is enhanced
due to the presence of spin-orbit coupling [compare Figs. 5(a)
and 5(b)]. For example, the δ̃ = 0 system with infinitesimally
small � supports a bound state for (askso)−1 � −0.504 while
that with � = 2Eso supports a bound state for (askso)−1 �
−1.304. Figure 5(a) shows that the binding energy for � =
2Eso is enhanced the most for δ̃ ≈ 0. This implies that the crit-
ical generalized detuning δ̃cr for � = 2Eso is equal to zero. In
addition, Fig. 5(a) displays a somewhat weaker enhancement
for δ̃ ≈ 2.27Eso. For infinitesimally small � [see Fig. 5(b)], in
contrast, no such dependence on δ̃ is observed; in this case, a
bound state is supported for (askso)−1 � −0.504 for all δ̃.

FIG. 5. The contours show the negative of the three-boson bind-
ing energy, in units of Eso, as functions of (askso )−1 and δ̃/Eso for
kso/κ∗ = 1.32 and � = 2Eso [panels (a), (c), (e), and (g)] and in-
finitesimally small � [panels (b), (d), (f), and (h)]. Panels in the first,
second, third, and forth row show the negative of the binding energy
for the three-boson states with n = 0, 1, 2, and 3, respectively. Note
the different ranges of the x axis in panels (a)–(h). The four states
n = 0–3 correspond to the lowest Efimov manifold. Applying the
generalized radial scaling law [41], these energy plots also describe
higher-lying Efimov manifolds.

To gain more insight into the weakly bound regime, we
look at the lowest noninteracting relative dispersion curve
Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) and the relative momentum distribution
n(q1,z, q2,z ) of the three-boson ground state. The relative
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FIG. 6. Correlations between the lowest noninteracting relative
dispersion curve and the relative momentum distribution for the
ground state for � = 2Eso and (askso )−1 = −0.96. Panels (a)–(c)
show the lowest noninteracting relative dispersion curves for δ̃ = 0,
2.27Eso, and 3.5Eso, respectively. Panels (d)–(f) show the relative
momentum distributions for the ground state for δ̃ = 0, 2.27Eso,
and 3.5Eso, respectively. Note that the contours in panels (a)–(e) are
equally spaced while those in panel (f) are not.

momentum distribution is defined through

n(q1,z, q2,z ) =
∑

σ

∫
	∗

rel,σ (�q′
1, �q′

2)δ(q′
1,z − q1,z )

× δ(q′
2,z − q2,z )	rel,σ (�q′

1, �q′
2)d �q′

1d �q′
2, (32)

where σ runs over the eight possible spin configurations.
Figures 6(a)–6(c) show Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) as functions of
q1,z and q2,z for � = 2Eso and three different δ̃. For δ̃ = 0
[Fig. 6(a)], Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) has six degenerate global min-
ima located away from (q1,z, q2,z ) = (0, 0). For finite δ̃, a
local minimum appears at (q1,z, q2,z ) = (0, 0) and the de-
generacy of the six minima located at (q1,z, q2,z ) 
= (0, 0) is
broken. Three minima turn into global minima while the other

three turn into local minima. For δ̃ = 2.27Eso [Fig. 6(b)],
the energy associated with the local minimum located at
(q1,z, q2,z ) = (0, 0) is degenerate with the energies associated
with the global minima located at (q1,z, q2,z ) 
= (0, 0). For
this δ̃, the global minimum of Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) is fourfold
degenerate. For larger δ̃ [Fig. 6(c)], the global minimum
of Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) is onefold degenerate and located at
(q1,z, q2,z ) = (0, 0). In summary, as δ̃ increases from 0 to
2.27Eso to larger values, the number of global minima of
Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) changes from six to three to four to
one. Correspondingly, the binding energy of the ground state
takes on a global maximum for δ̃ equal to zero and a lo-
cal maximum for δ̃ approximately equal to 2.27Eso. As in
the two-boson system, the enhancement of the binding of
the ground state is correlated with the degeneracy of the
global minimum of the noninteracting relative dispersion
curves.

Figures 6(d)–6(f) show n(q1,z, q2,z ) for the same parame-
ters as those used in Figs. 6(a)–6(c) and (askso)−1 = −0.96.
For this scattering length, the three-boson threshold is given
by the three-atom threshold for all δ̃ values, i.e., the corre-
sponding two-boson system does not support a bound state.
Comparison between the left and the right columns of Fig. 6
shows that the number of peaks of n(q1,z, q2,z ) is equal to
the number of global minima of Ē (0)

3,rel,ni(q1,z, q2,z, δ̃). The
values of q1,z and q2,z for which n(q1,z, q2,z ) is maximal are,
to a very good approximation, identical to those for which
Ē (0)

3,rel,ni(q1,z, q2,z, δ̃) is minimal.
The spin and the momentum in spin-orbit-coupled sys-

tems are locked. Using this together with the fact that the
total wave function has to be symmetric under the exchange
of any two bosons, we can, in a first-order approximation,
assign spin configurations to the global minima in Fig. 6.
For a single-particle system with 1D spin-orbit coupling, a
spin-up configuration prefers to have a negative momentum
along the z direction to lower the energy while a spin-
down configuration prefers to have a positive momentum
to lower the energy. Thus, a pair of parallel spins prefers
to have vanishing relative momentum and finite center-of-
mass momentum while a pair of antiparallel spins prefers
to have a finite relative momentum and vanishing center-of-
mass momentum. Global minima in Fig. 6 that are shifted
away from (0,0) are associated with antiparallel spin con-
figurations. For δ̃ = 0 [Fig. 6(d)], n(q1,z, q2,z ) has six peaks
located away from (q1,z, q2,z ) = (0, 0); this indicates that the
ground state is primarily a superposition of the six spin
states that contain antiparallel spin pairs; namely, |↑↑↓〉,
|↑↓↑〉, |↓↑↑〉, |↑↓↓〉, |↓↓↑〉, and |↓↑↓〉. For δ̃ > 0, the
ground state prefers to have more spin-down particles than
spin-up particles. For δ̃ = 2.27Eso [Fig. 6(e)], n(q1,z, q2,z )
has four peaks; three are located at (q1,z, q2,z ) 
= (0, 0) and
one at (q1,z, q2,z ) = (0, 0). This indicates that the ground
state is primarily a superposition of the spin configurations
|↑↓↓〉, |↓↓↑〉, |↓↑↓〉, and |↓↓↓〉. For δ̃ = 3.5Eso [Fig. 6(f)],
n(q1,z, q2,z ) has one peak located at (q1,z, q2,z ) = (0, 0);
this indicates that the ground state primarily consists of
three spin-down spins, i.e., the dominant spin configuration
is |↓↓↓〉.
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FIG. 7. The ground-state energy E (0)
3 (q3,z ) of Ĥ3(q3,z ) and the

threshold energy E3,th(q3,z ) for � = 2Eso and various (askso )−1 and
δ/Eso combinations. The black solid lines correspond to E3,th(q2,z ).
The red dashed, green dotted, and blue dot-dashed lines in panel
(a) show E (0)

3 (q3,z ) for δ = 0 and (askso )−1 = −1.1, −1.02, and −0.9,
respectively. The red dashed, green dotted, and blue dot-dashed lines
in panel (b) show E (0)

3 (q3,z ) for δ = 0.35Eso and (askso )−1 = −0.8,
−0.72, and −0.6, respectively.

B. Total ground-state energy

This section discusses the total ground-state energy
E (0)

3 (q3,z ) of Ĥ3(q3,z ), which is obtained from Ē (0)
3,rel(δ̃) using

Eq. (24). Figure 7 shows examples for � = 2Eso and vari-
ous (askso)−1 and δ/Eso combinations. For these parameter
combinations, the three-boson threshold is given by the three-
atom threshold (i.e., two-boson bound states do not exist).
Correspondingly, the three-boson threshold, shown by black
solid lines in Figs. 7(a) and 7(b) for δ = 0 and δ = 0.35Eso,
is independent of the value of (askso)−1. For vanishing δ

[Fig. 7(a)], the scattering threshold E3,th(q3,z ) has four global
minima that are located at q3,z = ±0.866h̄kso and q3,z =
±2.598h̄kso. For δ = 0.35Eso [Fig. 7(b)], the scattering thresh-
old E3,th(q3,z ) is “tilted” and has one global minimum that
is located at q3,z = 2.671h̄kso. For both panels in Fig. 7, the
total ground-state energy decreases (becomes more negative)
for decreasing (askso)−1. Moreover, for both panels the total
ground state corresponds to a scattering state for the most
negative (askso)−1 and to a bound state for (askso)−1 values
larger than some critical value. As (askso)−1 changes for fixed
δ/Eso, the degeneracy of the total ground state changes. For
example, for vanishing δ [Fig. 7(a)], the total ground state is
a fourfold degenerate scattering state located at finite q3,z for
(askso)−1 = −1.1 (red dashed line) and a onefold degenerate
bound state located at vanishing q3,z for (askso)−1 = −0.9
(blue dot-dashed line). For (askso)−1 = −1.02 (green dot-
ted line), the total ground state is fivefold degenerate: four
scattering states located at finite q3,z and one bound state
located at vanishing q3,z. For δ = 0.35Eso [Fig. 7(b)], the

0 0.5 1 1.5
δ/Eso

0

1

2

3

q 3,
z,

cr
/(h_ k so

)

0 0.5 1 1.5
δ/Eso

(a) (b)

FIG. 8. The critical center-of-mass momentum q3,z,cr of the
three-boson ground state as a function of δ/Eso for � = 2Eso and
(a) (askso )−1 = −0.72 and (b) (askso )−1 = −0.3.

total ground state corresponds to a scattering state located at
q3,z = 2.671h̄kso for (askso)−1 = −0.8 (red dashed line) and a
bound state located at q3,z ≈ 1.187h̄kso for (askso)−1 = −0.6
(blue dot-dashed line). For (askso)−1 = −0.72 (green dotted
line), the bound state located at q3,z ≈ 1.166h̄kso is degenerate
with the scattering state located at q3,z = 2.671h̄kso.

Figures 8(a) and 8(b) show the critical generalized
total momentum q3,z,cr as a function of δ/Eso for
(askso)−1 = −0.72 and (askso)−1 = −0.3, respectively.
For the range of δ/Eso considered here (0 < δ < 1.5Eso),
the three-boson threshold is equal to the three-atom
threshold for (askso)−1 = −0.72 and equal to the atom-dimer
threshold for (askso)−1 = −0.3. For (askso)−1 = −0.72 and
0 < δ < 0.35Eso, q3,z,cr increases continuously from 0 to
1.166h̄kso. In this regime, the total ground state corresponds
to a bound state. For δ = 0.35Eso, the critical generalized
total momentum q3,z,cr jumps from q3,z = 1.166h̄kso to
q3,z = 2.671h̄kso. For δ > 0.35Eso, q3,z,cr increases very
slowly. In this regime, the total ground state corresponds
to a scattering state. For (askso)−1 = −0.3 [Fig. 8(b)], the
total ground state corresponds to a bound state for all δ

considered. In this case, q3,z,cr increases continuously from
0 to 2.56h̄kso as δ increases from 0 to 1.49Eso. Thus, for the
parameter combinations considered in this work, the critical
generalized total momentum q3,z,cr of the three-boson system
varies continuously with respect to δ if the total ground state
corresponds to a bound state and changes discontinuously if
the total ground state jumps from a bound state to a scattering
state.

We repeat the analysis illustrated in Figs. 7 and 8 for other
(askso)−1 and δ/Eso combinations and summarize the results
in the “phase diagram” for the total ground state in Fig. 9
as functions of (askso)−1 and δ/Eso for � = 2Eso. For this
�/Eso, the total ground state falls in one of the following two
phases: SSfinite: the total ground state is a scattering state with
q3,z,cr 
= 0; BSfinite: the total ground state is a bound state with
q3,z,cr 
= 0. The region encircled by the blue squares, black
dot-dashed line, and the upper and left edge of the figure
corresponds to the phase SSfinite. The region encircled by the
green circles, the right and upper edge of the figure, and the
black dot-dashed line corresponds to the phase BSfinite. Along
the black dot-dashed line [the green dotted line in Fig. 7(b)
corresponds to such a situation], the total ground state is
twofold degenerate: a bound state located at finite q3,z,cr and a
scattering state located at finite q3,z,cr. Along the green circles
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FIG. 9. “Phase diagram” for the total ground state as functions
of (askso )−1 and δ/Eso for � = 2Eso. The contours show the total
ground-state energy E (0)

3 (q3,z )/Eso. The black dot-dashed line, the
green circles, and the blue squares separate the two phases SSfinite

and BSfinite from each other. The open circles and triangles mark
the parameter combinations corresponding to Figs. 7(a) and 7(b).
The arrows mark the scattering lengths corresponding to Figs. 8(a)
and 8(b).

[the blue dot-dashed line in Fig. 7(a) corresponds to such a
situation], the total ground state is a onefold degenerate bound
state with vanishing q3,z,cr. Along the blue squares, the total
ground state corresponds to a fourfold degenerate scattering
state located at finite q3,z,cr. In the phase BSfinite, q3,z,cr of the
total ground state changes smoothly with δ/Eso [see Fig. 8(b)].
When the system crosses the black dot-dashed line, q3,z,cr

changes discontinuously [see Fig. 8(a)]. As pointed out in
the context of studies of fermionic systems [45,47,64–69],
the phase diagrams shown in Figs. 4 and 9 can provide
useful input to understand pairing mechanisms and dynamical
properties of few-body clusters embedded in a Bose gas at
zero temperature in the presence of 1D spin-orbit coupling.

V. CONCLUSIONS

The binding energy Ē (n)
3,binding of the three-boson system in

the presence of 1D spin-orbit coupling and short-range two-
body s-wave interactions depends on five independent param-
eters; namely, the spin-orbit coupling strength kso, the Raman
coupling �, the generalized detuning δ̃, the two-body s-wave
scattering length as, and the three-body parameter κ∗. Using
the continuous scale invariance of the system [38,40,41], one
parameter can be chosen as the unit and thereby “scaled
away.” In this work, k−1

so and Eso were chosen as length and
energy units and all the results were represented in terms
of dimensionless parameters. The dimensionless binding
energy Ē (n)

3,binding/Eso depends on four independent dimen-

sionless parameters; namely, �/Eso, δ̃/Eso, askso, and κ∗/kso.
According to the generalized radial scaling law [41], once
the full parameter dependence of the dimensionless binding

energy surfaces Ē (n)
3,binding/Eso are mapped out for one energy

manifold, one can radially rescale the binding-energy surfaces
in the (Ē (n)

3,binding/Eso, �/Eso, δ̃/Eso, askso, κ∗/kso) space by
discrete scaling factors to obtain the entire spectrum.

This work mapped out the three-boson binding-energy sur-
faces for the lowest universal energy manifold in a subspace
that is characterized by � = 2Eso and κ∗ ≈ 0.758kso. For the
parameter combinations considered, the two- and three-boson
systems share some trends despite the fact that the three-boson
system depends on κ∗/kso while the two-boson system does
not. For example, the shapes of the energy surfaces for � =
2Eso are similar to those for infinitesimally small �. For the
two-boson system, the binding energy of the ground state is
enhanced while the binding energies of the first- and second-
excited states are weakened in the presence of 1D spin-orbit
coupling. Similarly, for the three-boson system, the binding
energy of the ground state in the lowest energy manifold is
enhanced while the binding energies of the first-, second-,
and third-excited states are weakened in the presence of 1D
spin-orbit coupling. The enhancement of the binding energies
of the ground state of the two- and three-boson systems
is correlated with the degeneracy of the lowest scattering
threshold; this is consistent with the density-of-state argument
presented in Ref. [45] for two spin-orbit-coupled fermions.
The modification of the binding energies due to the spin-
orbit coupling is associated with a modification of the critical
scattering lengths at which dimers and trimers merge with
the lowest scattering threshold. Taking advantage of Feshbach
resonance tuning [70], the critical scattering lengths can be
measured by monitoring atom losses in cold atom experiments
[6–11]. The enhanced spin-orbit-coupling–induced binding
is also expected to play a role in the context of many-
body physics. For example, a flow-enhanced pairing induced
by the 1D spin-orbit coupling in a Fermi gas is discussed
in Ref. [45].

In the weakly bound regime, the relative momentum dis-
tributions of the dimer and trimer show rich structures in
the presence of 1D spin-orbit coupling. These structures are
correlated with the structures of the corresponding lowest rel-
ative dispersion curves. Due to spin-momentum locking, the
weakly bound states have various mixtures of different spin
configurations. The characteristics of the relative momentum
distribution and spin structure are expected to be measurable
in dedicated cold atom experiments.

Due to the breaking of the Galilean invariance in 1D spin-
orbit-coupled systems, the eigenenergies of the full Hamilto-
nian depend nontrivially on the generalized total momentum.
This is in contrast to the corresponding systems without spin-
orbit coupling. We determined the “phase diagram” of the
total ground state of two- and three-boson systems. In these
phase diagrams, the phase boundaries separate phases that
are characterized by different generalized total momenta.
These phase diagrams provide guidance for many-body stud-
ies. The generalized total momentum of 1D spin-orbit-
coupled systems, realized by using the Raman laser scheme
in cold atom systems [57,71,72], can be measured by using
time-of-flight imaging. In contrast with the generalized total
momentum, the total mechanical momentum of the total
ground state vanishes regardless of the values of the spin-orbit
coupling parameters.
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In the future, it will be interesting to explore the analogous
physics for systems consisting of three fermions, away and
in the vicinity of a two-body p-wave resonance. Since the
dimer and trimer energies depend on the generalized total
momentum, it would also be interesting to study three-body
systems in the presence of spin-orbit coupling and an external
harmonic trap. For these systems, states with different total
generalized momentum are coupled.
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APPENDIX: ANALYTICAL SOLUTIONS FOR � = 0

This section provides analytical solutions for interacting
systems with � = 0, δ̃ � 0, and kso 
= 0 (throughout we as-
sume δ̃ � 0; the negative-δ̃ case can be treated analogously).
For � = 0, there exists no coupling between the different
spin states and the relative dispersion curves of the noninter-
acting system and the eigenstates of the interacting system
can be labeled by the product spin states, i.e., by the Mz

projection quantum number. The eigenstates of the interacting
system with � = 0, δ̃ � 0, and kso 
= 0 can be determined
analytically provided the solutions of the corresponding in-
teracting system for � = δ = kso = 0 are known. Although
the � = 0 Hamiltonian with kso 
= 0 is an artificial construct,
its solutions provide a good deal of guidance for the � 
= 0
Hamiltonian.

We start with the two-boson system interacting through a
zero-range two-body potential with positive s-wave scattering
length as. Denoting the relative wave function of the system
with � = δ = kso = 0 by ψ2,sr(|�ρ1|) and the corresponding
relative eigenenergy by E2,sr (“sr” stands for “short-range”),

three symmetric eigenstates of the two-boson system with
kso 
= 0 and δ̃ � 0 can be constructed,

�2,−1 = ψ2,sr(|�ρ1|) exp

(
i

h̄
�q2 · �ρ2

)
|↓↓〉, (A1)

�2,1 = ψ2,sr(|�ρ1|) exp

(
i

h̄
�q2 · �ρ2

)
|↑↑〉, (A2)

and

�2,0 = ψ2,sr(|�ρ1|)√
2

exp

(
i

h̄
�q2 · �ρ2

)
[exp(−iksoρ1,z )|↑↓〉

+ exp(iksoρ1,z )|↓↑〉]. (A3)

Here, the first subscript of � denotes the particle number and
the second subscript denotes the Mz quantum number. The
corresponding eigenenergies of Ĥ2 are

E2,−1 = E2,sr − δ̃ + �q2
2

2μ2
, (A4)

E2,1 = E2,sr + δ̃ + �q2
2

2μ2
, (A5)

and

E2,0 = E2,sr − 2Eso + �q2
2

2μ2
, (A6)

respectively.
For � = 0, the binding energy is obtained by referencing

the eigenenergy relative to the atom-atom threshold energy
that is associated with a state that has the same Mz projection
quantum number as the state considered. Doing so yields a
binding energy of |E2,sr| for all three two-boson states; these
bound states exist provided ψ2,sr describes a bound state.

Next, we consider the three-particle system. For � = δ̃ =
kso = 0, the energies of three identical bosons with zero- or
short-range two-body interactions have been—building on the
seminal work by Efimov [1]—studied extensively. Denoting
the relative three-boson eigenstate for � = δ̃ = kso = 0 by
ψ3,sr(�ρ1, �ρ2) and the corresponding eigenenergy by E3,sr (the
state considered can be any one of the Efimov states for, at
this point, unspecified scattering length), four fully symmetric

TABLE I. Two-boson binding energies for infinitesimally small Raman coupling strength � and generalized detuning δ̃ greater than or
equal to zero. Column 1 lists the two-boson state considered (the Mz quantum numbers are approximate since � is assumed to be finite).
Columns 2 and 3 list the corresponding binding energies. It is assumed that the two-boson system interacts through a zero-range potential. For
� = δ = kso = 0, a single bound state with energy E2,sr [binding energy |E2,sr| = h̄2/(2μ1a2

s )] is supported for positive as.

0 � δ̃ � 2Eso 2Eso < δ̃

Mz ≈ 1 |E2,sr| − 2Eso − δ̃ for (as )−1 �
√

2μ1(2Eso + δ̃)h̄ |E2,sr| − 2Eso − δ̃ for (as )−1 �
√

2μ1(2Eso + δ̃)/h̄

Mz ≈ −1 |E2,sr| − 2Eso + δ̃ for (as )−1 �
√

2μ1(2Eso − δ̃)/h̄ |E2,sr| for (as )−1 � 0

Mz ≈ 0 |E2,sr| for (as )−1 � 0 |E2,sr| + 2Eso − δ̃ for (as )−1 �
√

2μ1(δ̃ − 2Eso )/h̄
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TABLE II. Three-boson binding energies for infinitesimally small Raman coupling strength � and generalized detuning δ̃ greater than or
equal to zero. Column 1 lists the three-boson state considered (the Mz quantum numbers are approximate since � is assumed to be finite).
Columns 2 and 3 list the corresponding binding energies (the entries apply to any energy of the three-boson Efimov plot) assuming two-body
zero-range interactions with negative as. The energy of the three-boson system with zero-range interactions for � = δ = kso = 0 is denoted
by E3,sr. For � = δ = kso = 0, the two-boson system supports a single bound state with energy E2,sr for positive as but not for negative as. To
obtain the three-boson binding energies for positive as, the quantity −|E2,sr| has to be added to the entries given in columns 2 and 3.

0 � δ̃/Eso � 8/3, as � 0 8/3 < δ̃/Eso, as � 0

Mz ≈ 3/2 |E3,sr| − 8Eso/3 − 2δ̃ for |E3,sr| � 2δ̃ + 8Eso/3 |E3,sr| − 3δ̃ for E3,sr| � 3δ̃

Mz ≈ −3/2 |E3,sr| − 8Eso/3 + δ̃ for |E3,sr| � 8Eso/3 − δ̃ |E3,sr|
Mz ≈ 1/2 |E3,sr| − δ̃ for |E3,sr| � δ̃ |E3,sr| + 8Eso/3 − 2δ̃ for |E3,sr| � 2δ̃ − 8Eso/3

Mz ≈ −1/2 |E3,sr| |E3,sr| + 8Eso/3 − δ̃ for |E3,sr| � δ̃ − 8Eso/3

eigenstates of the Hamiltonian Ĥ3 with finite kso and vanishing � can be constructed:

�3,3/2 = ψ3,sr(�ρ1, �ρ2) exp

(
i

h̄
�q3 · �ρ3

)
|↑↑↑〉, (A7)

�3,−3/2 = ψ3,sr(�ρ1, �ρ2) exp

(
i

h̄
�q3 · �ρ3

)
|↓↓↓〉, (A8)

�3,1/2 = ψ3,sr(�ρ1, �ρ2)√
3

exp

(
i

h̄
�q3 · �ρ3

)[
exp

(
− i4

3
ksoz12,3

)
|↑↑↓〉 + exp

(
− i4

3
ksoz13,2

)
|↑↓↑〉 + exp

(
− i4

3
ksoz23,1

)
|↓↑↑〉

]
,

(A9)

and

�3,−1/2 = ψ3,sr(�ρ1, �ρ2)√
3

exp

(
i

h̄
�q3 · �ρ3

)[
exp

(
i4

3
ksoz12,3

)
|↓↓↑〉 + exp

(
i4

3
ksoz13,2

)
|↓↑↓〉 + exp

(
i4

3
ksoz23,1

)
|↑↓↓〉

]
.

(A10)

Here, zi j,k is defined as (ri,z + r j,z )/2 − rk,z, with ri,z denoting
the z component of the ith position vector �ri. The correspond-
ing eigenenergies are

E3,3/2 = E3,sr + 3δ̃

2
+ �q2

3

2μ3
, (A11)

E3,−3/2 = E3,sr − 3δ̃

2
+ �q2

3

2μ3
, (A12)

E3,1/2 = E3,sr − 8Eso

3
+ δ̃

2
+ �q2

3

2μ3
, (A13)

and

E3,−1/2 = E3,sr − 8Eso

3
− δ̃

2
+ �q2

3

2μ3
. (A14)

Equations (A7)–(A14) apply to every three-boson state, i.e.,
for each s-wave scattering length a given three-boson state
ψ3,sr is “split” into four states. As in the two-boson case,
the binding energy for � = 0 is obtained by referencing the

eigenenergy relative to the three-boson threshold energy that
is associated with a state that has the same Mz projection
quantum number as the state considered. Assuming two-body
zero-range s-wave interactions, doing so yields a binding en-
ergy of |E3,sr| for as < 0 and a binding energy of |E3,sr − E2,sr|
for as > 0 for all four three-boson states (these bound states
exist provided the state ψ3,sr describes a bound state).

An infinitesimally small � introduces couplings between
the different product spin states. As a consequence, Mz is no
longer a good quantum number and the interacting states for
infinitesimally small � have a finite overlap with the state(s)
that is (are) associated with the lowest two- or three-boson
thresholds (lowest energy of all the noninteracting relative
dispersion curves). To get a first sense of how this impacts
the binding energies, Tables I and II summarize the binding
energies for infinitesimally small �, calculated by using the
� = 0 energies reported above and referencing the energies
relative to the lowest two- and three-boson threshold, respec-
tively. These binding energies are shown in Figs. 1 and 5 of
the main text.
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