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Three-body interaction near a narrow two-body zero crossing
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We calculate the effective three-body force for bosons interacting with each other by a two-body potential
tuned to a narrow zero crossing in any dimension. We use the standard two-channel model parametrized by the
background atom-atom interaction strength, the amplitude of the open-channel to closed-channel coupling, and
the atom-dimer interaction strength. The three-body force originates from the atom-dimer interaction, but it can
be dramatically enhanced for narrow crossings, i.e., for small atom-dimer conversion amplitudes. This effect can
be used to stabilize quasi-two-dimensional dipolar atoms and molecules.
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I. INTRODUCTION

In recent years, dilute weakly interacting bosons with
intentionally weakened mean-field interactions have become
one of the main attractions in the field of quantum gases. The
weakness of the mean-field interaction in such systems makes
higher-order terms relatively more important leading to dra-
matic effects. A prominent example is the observation of di-
lute quantum droplets in dipolar atoms [1–4] and in nondipo-
lar mixtures [5–7]. Two-body interactions of different kinds
(contact and dipole-dipole in the dipolar case and interspecies
and intraspecies in the mixture case) are tuned to compete
with each other such that the resulting weak overall attraction
gets compensated by a higher-order Lee-Huang-Yang (LHY)
term [8–10]. An impressive experimental progress has been
made in the dipolar case on pursuing supersolidity through the
formation of coherent arrays of quantum droplets [11–15].

All these achievements correspond to essentially three-
dimensional setups well described by the Gross-Pitaevskii
energy density functional with an additional local LHY term
∝n5/2, where n is the density. However, there are various
reasons to consider other configurations where the n5/2 term
is absent or too weak (low-dimensional geometries, single-
component contact-interacting atoms, etc.) In these cases, an
effective three-body interaction, associated with a n3 term
in the energy density, can become dominant if the leading-
order two-body forces are suppressed. In particular, three-
body forces have been considered in the context of droplet
formation in three dimensions [16–19] and as a means for sta-
bilizing supersolid phases of quasi-two-dimensional dipolar
atoms or molecules [20]. Quite a few recent theory papers
have discussed one-dimensional three-body-interacting sys-
tems, exploring the kinematic equivalence of the three-body
scattering in one dimension and the two-body scattering in
two dimensions (see, for example, Refs. [21–32]).

In this paper we analyze a simple mechanism for the
emergence of an effective three-body interaction. Namely, we
consider bosons interacting with each other by a potential
tuned to a zero crossing near a narrow Feshbach resonance,
where the conversion amplitude from atoms to closed-channel
dimers is small and where the two-body scattering amplitude

is characterized by a large effective range Re. The effective
three-body force appears in this model when one takes into
account the interaction between atoms and closed-channel
dimers, characterized by the coupling strength g12. We find
that the three-body coupling constant g3 in D dimensions is
proportional to RD

e g12 and can thus be enhanced near narrow
two-body zero crossings.

The paper is organized as follows. In Sec. II we introduce
the two-channel model and perform its mean-field analysis.
In the dilute limit the density of closed-channel dimers in the
system scales as RD

e n2 � n and the effective three-body inter-
action emerges simply as the atom-dimer mean-field interac-
tion energy ∝RD

e g12n3. We show that this simple mechanism,
applied to two-dimensional dipoles, generates conditions for
observing supersolid phases predicted in Ref. [20].

In Secs. III and IV we turn to the few-body perspective
and perform a detailed nonperturbative analysis of the two-
body (Sec. III) and three-body (Sec. IV) problems with zero-
range potentials. In particular, the three-body scattering length
near a narrow two-body zero crossing is found for an arbitrary
atom-dimer interaction strength in any dimension.

II. MEAN-FIELD ANALYSIS

We start with the two-channel model described by the
Hamiltonian [33]

Ĥ =
∫

r

{
− ψ̂

†
1 (r)

∇2

2
ψ̂1(r) + ψ̂

†
2 (r)

(
−∇2

4
+ ν0

)
ψ̂2(r)

− α

2
[ψ̂†

1 (r)ψ̂†
1 (r)ψ̂2(r) + H.c.]+

∑
σσ ′

gσσ ′

2
n̂σ (r)n̂σ ′ (r)

}
,

(1)

where ψ̂1 and ψ̂2 are, respectively, the annihilation opera-
tors of atoms and dimers, n̂σ are the corresponding density
operators, ν0 is the detuning parameter, gσσ ′ are interaction
constants, α is the atom-dimer conversion amplitude (without
loss of generality assumed real and positive), and we have set
h̄ and atom mass equal to 1. Hereafter,

∫
r denotes

∫
dDr.
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In the mean-field description of (1) we assume pure atomic
and molecular condensates ψ̂σ = √

nσ with the same phase
(which corresponds to the energy minimum for α > 0) [33].
We arrive at the energy density

E/LD = ν0n2 − αn1
√

n2 +
∑
σσ ′

gσσ ′nσ nσ ′/2, (2)

which we minimize with respect to n2 (or n1) keeping the total
density n = n1 + 2n2 constant. For positive ν0 and small n the
dimer population behaves quadratically in n,

n2 =
(

αn

2ν0

)2(
1 + 4g11ν0 − 2g12ν0 − 3α2

ν2
0

n

)
+ O(n4),

(3)
and the energy density reads

E

LD
=

(
g11

2
− α2

4ν0

)(
n2 − α2

ν2
0

n3

)
+ g12α

2

4ν2
0

n3 + O(n4).

(4)
The two-body zero crossing occurs at the detuning ν0 =

α2/2g11, where the first term in the right-hand side of Eq. (4)
vanishes. One can then see that the residual three-body energy
shift originates from the direct mean-field interaction of atoms
with dimers. It equals g12n1n2 ≈ g3n3/3! with

g3 = 6g12g2
11/α

2 = 3g12RD
e . (5)

The effective volume RD
e = 2g2

11/α
2 introduced in Eq. (5)

characterizes the closed-channel population. Indeed, the den-
sity of dimers can be written as

n2 ≈ RD
e n2/2, (6)

meaning that each pair of atoms is found in the closed-channel
dimer state with probability (Re/L)D.

If gσσ ′ are of the same order of magnitude ∼g, the expan-
sion (4) is in powers of RD

e n, which we assume small. Then,
at the zero crossing the three-body term gives the leading
contribution to the energy density ∼gn2(RD

e n)1 and we neglect
subleading terms such as, for instance, the dimer-dimer inter-
action ∼g22α

4n4/ν4
0 ∼ gn2(RD

e n)2. On the other hand, it may
be interesting to keep a small but finite effective two-body
interaction geff = g11 − α2/2ν0 ∼ g(RD

e n) � g, so that it can
compete with the three-body term. It is also useful to note
that the effective two-body interaction depends on the colli-
sional momentum as geff (k) = geff (0) − RD

e k2 (see [35] and
Sec. III). However, if k � √

gn, the corresponding effective-
range correction gives a contribution to (4) much smaller than
gn2(RD

e n)1. We thus conclude that on this level of expansion
we reduce (1) to the model of scalar bosons with local
effective two-body and three-body interactions.

A. Application to two-dimensional dipoles

Having in mind supersolid phases, which require a three-
body repulsive force [20], let us perform the same mean-field
analysis in the case of two-dimensional dipoles oriented per-
pendicular to the plane. Instead of pointlike interactions char-
acterized by the momentum-independent constants gσσ ′ we
now assume momentum-dependent pseudopotentials [20,34]

Ṽσσ ′ (|k − k′|) = gσσ ′ − 2πdσ dσ ′ |k − k′|, (7)

where k and k′ are the incoming and outgoing relative mo-
menta and d1 and d2 are dipole moments of atoms and dimers,
respectively. The pseudopotential (7) is an effective potential
valid only for the leading-order mean-field analysis at low
momenta. Its coordinate representation

Vσσ ′ (r − r′) =
∫

d2q

(2π )2
Ṽσσ ′ (q)eiq(r−r′ ) (8)

has the long-distance asymptote dσ dσ ′/r3 with the characteris-
tic range r∗

σσ ′ = 2μσσ ′dσ dσ ′ , where μ11 = 1/2 and μ12 = 2/3
are the atom-atom and atom-dimer reduced masses, respec-
tively.

Obviously, for homogeneous condensates the momentum-
dependent part of (7) plays no role and our previous analy-
sis holds. Namely, we arrive at the energy density E/L2 =
geff n2/2 + g3n3/6, where geff = g11 − α2/2ν0 is tuned to be
small and g3 is given by Eq. (5). Let us now assume that
the atomic and dimer condensates are spatially modulated
with a characteristic momentum k (in the supersolid phase
the modulation is periodic). Then, the most important new
terms in Eqs. (2) and (4) are the kinetic energy of the atomic
component ∼nk2 and the momentum-dependent part of the
atom-atom interaction ∼ − r∗

11kn2. Minimizing their sum with
respect to k gives a contribution εmod ∼ −r∗2

11 n3 to the en-
ergy density and the optimal modulation momentum kmin ∼
r∗

11n [20]. One can check that other momentum-dependent
terms are subleading. For instance, the kinetic energy of
dimers ∼n2k2 and the momentum-dependent atom-dimer in-
teraction ∼r∗

12knn2 carry an additional factor R2
en � 1. It

is important to mention that the density of dimers satisfies
Eq. (6) locally, i.e., n2(r) ≈ R2

en2(r)/2. Deviations from this
relation, which follows from minimizing the first two terms in
the right-hand side of Eq. (2), are energetically too costly. A
change of n2 by, say, a factor of two compared to the optimal
value would cost ∼g11n2 
 gn2(R2

en) in the energy density.
This analysis leads us to the model of two-dimensional

dipoles characterized by an effective two-body pseudopoten-
tial Ṽ (k) = geff − 2πd2

1 k and local three-body term g3δ(r1 −
r2)δ(r2 − r3). The mean-field phase diagram of this model
has been worked out in Ref. [20]. It has been shown that
the stability of the system with respect to collapse is ensured
by the repulsive three-body interaction term compensating
the effectively attractive εmod, which also scales as n3. The
supersolid stripe, honeycomb, and triangular phases are pre-
dicted when these two terms are comparable and geff < 0.
To give a concrete example, the four-critical point where the
three supersolid phases meet with one another and with the
uniform phase (this is also the point where the roton minimum
touches zero) is characterized by g12R2

e = 2(πr∗
11)2 and nR2

e =
|geff |/g12.

B. Inelastic losses

Collisions of atoms with closed-channel dimers can lead
to the relaxation to more deeply bound molecular states. The
rate of this process in a unit volume is given by αrn1n2,
where αr is the relaxation rate constant. In our model this
corresponds to the atom loss rate ṅ = −(3/2)αrRD

e n3, and
we see that this effective three-body loss gets enhanced with
increasing Re in the same manner as the elastic three-body
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interaction (5). In fact, the atom-dimer relaxation can be math-
ematically modeled by allowing g12 to be complex. Shotan
and co-workers [35] have measured the three-body loss rate
constant near a two-body zero crossing in three dimensions.
They argue that this quantity is proportional to R4

e . Here we
claim a slightly different scaling (∝R3

e), valid when Re is much
larger than the van der Waals range.

For Feshbach molecules of the size of the van der Waals
length αr is typically of the same order of magnitude as
g12. The lifetime of the sample is thus comparable to the
time scale associated with the elastic three-body energy shift.
There are, however, ways of overcoming this problem. For
dipoles oriented perpendicular to the plane in the quasi-two-
dimensional geometry inelastic processes are suppressed by
the predominantly repulsive dipolar tail. For instance, for Dy
the atom-dimer dipolar length r∗

12 can reach about 50 nm
depending on the magnetic moment of the closed-channel
dimer. The confinement of frequency ω = 2π × 100 kHz for
this system gives the oscillator length

√
h̄/2μ12ω ≈ 21 nm.

Under these conditions one expects a noticeable reduction
of the relaxation rate [36–38]. This mechanism may work
also for dipolar molecules where larger values of r∗

12 can be
reached.

A different approach to this problem is to consider closed-
channel dimers which are weakly bound and have a halo
character, i.e., well extended beyond the support of the po-
tential. A specific way of generating three-body interactions
in this manner has been proposed by one of us in Ref. [17];
two atoms in state 1 collide and both go to another internal
state 1′ where they form an extended molecular state. The
effective three-body force is then due to a repulsive mean-field
interaction between atoms 1′ and a third atom in state 1. In this
case, the relaxation is slow since the dimer is not “preformed.”

III. REGULARIZED MODEL AND TWO-BODY PROBLEM

We now go back to the model (1), try to analyze it from the
few-body viewpoint, and characterize the three-body interac-
tion beyond the mean-field result (5) (also trying to determine
its validity regime). Clearly, at some point the strength of
the background atom-atom interaction becomes a relevant
parameter (not just the ratio g11/α). One also observes that the
pointlike interaction and conversion terms in Eq. (1) lead to
divergences and have to be regularized in dimensions D > 1,
which necessitates an additional parameter (a short-range or
high-momentum cutoff).

In order to regularize the model (1) we use the delta-shell
pseudopotential representation [39,40] with a finite range r0.
Namely, we rewrite Eq. (1) as

Ĥ =
∫

r
−ψ̂

†
1 (r)

∇2

2
ψ̂1(r) + ψ̂

†
2 (r)

(
−∇2

4
+ ν0

)
ψ̂2(r)

+
∑
σσ ′

gσσ ′

2

∫
r

∫
y
δ̃r0 (y)n̂σ (r + y/2)n̂σ ′ (r − y/2)

− α

2

∫
r

∫
y
δ̃r0 (y)[ψ̂†

1 (r + y/2)ψ̂†
1 (r − y/2)ψ̂2(r) + H.c.],

(9)

where δ̃r0 (y) = δ(|y| − r0)/SD(r0) is the normalized delta
shell with S1(r0) = 2, S2(r0) = 2πr0, and S3(r0) = 4πr2

0 . The
range r0 should be understood as the smallest length scale in
our problem. It does not enter in the final formulas and it is
just a convenient way to regularize the problem without using
zero-range pseudopotentials, which have different forms in
different dimensions. In the one-dimensional case r0 can be
set to zero from the very beginning, but we keep it finite in
order to use the same formalism for the cases with different
D. Note also that we do not intend to consider effects of
scattering with angular momenta l �= 0. This is to say that, as
r0 is decreased, the coupling constants gσσ ′ and α are tuned to
reproduce desired (physical) Re and aσσ ′ only for the s-wave
channel. Then, in the limit r0 → 0, the terms gσσ ′ δ̃r0 (y) and
αδ̃r0 (y) are too weak to induce any scattering for l > 0.

A stationary two-body state with zero center-of-mass mo-
mentum and l = 0 in the two-channel models (1) or (9) is
represented by∫

c

∫
y

(y)ψ̂†

1 (c + y/2)ψ̂†
1 (c − y/2) |0〉 +

∫
c
φψ̂

†
2 (c) |0〉 ,

(10)

where |0〉 is the vacuum state. Acting on (10) by the operator
Ĥ − E , and requiring that the result vanish, we get the coupled
Schrödinger equations at energy E ,[−∇2

y − E + g11δ̃r0 (y)
]

(y) = αδ̃r0 (y)φ/2, (11)

(ν0 − E )φ = α
(r0), (12)

which, upon eliminating the closed-channel amplitude φ,
become [−∇2

y − E + geff (E )δ̃r0 (y)
]

(y) = 0, (13)

with

geff (E ) = g11 + 1

2

α2

E − ν0
. (14)

The zero crossing condition at zero energy thus reads

ν0 = α2/2g11. (15)

We also introduce the effective range by the formula

RD
e = α2/2ν2

0 > 0, (16)

which characterizes the small-E asymptote geff (E ) =
geff (0) − RD

e E + O(E2) (cf. [35]). At the crossing Eq. (16)
is consistent with our earlier definition of Re introduced
in Eq. (5). As we have mentioned, RD

e is also related
to the closed-channel occupation. Indeed, from the
normalization integral of Eq. (10) one finds that the
closed-channel to open-channel probability ratio equals
|φ|2/ ∫

y 2|
(y)|2 = |φ|2/[2LD|
(r0)|2], where we have used
the fact that at the crossing 
(y) = 
(r0). On the other
hand, from Eq. (12) one obtains |φ|2 = 2RD

e |
(r0)|2 for
|E | � |ν0|, which gives the result claimed in Sec. II. Namely,
the probability for two atoms to be in the closed-channel
dimer state equals (Re/L)D.

Eventually, we will need to express our results in terms of
the scattering lengths aσσ ′ and the effective range Re rather
than in terms of the bare r0-dependent quantities gσσ ′ , α, and
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ν0. Relations between gσσ ′ and aσσ ′ are obtained by solving
the scattering problem at zero collision energy and by looking
at the long-distance asymptote of the two-body wave function.
Namely, the zero-energy Schrödinger equation reads[−∇2

y + 2μσσ ′gσσ ′ δ̃r0 (y)
]

(y) = 0. (17)

In one dimension the (unnormalized) solution is


(y) =
{

1, |y| < r0,

1 + μσσ ′gσσ ′ (|y| − r0), |y| > r0,
(18)

from which we see that

aσσ ′ = r0 − 1/μσσ ′gσσ ′ . (19)

In the limit r0 → 0 we recover the usual relation gσσ ′ =
−1/μσσ ′aσσ ′ . In two dimensions the solution of Eq. (17) reads


(y) =
{

1, |y| < r0,

1 + μσσ ′gσσ ′ ln(|y|/r0)/π, |y| > r0
(20)

and one has

μσσ ′gσσ ′ = π/ ln(r0/aσσ ′ ). (21)

In three dimensions


(y) =
{

1, |y| < r0,

1 − μσσ ′gσσ ′/2π |y| + μσσ ′gσσ ′/2πr0, |y| > r0,

(22)
from which we obtain

1/aσσ ′ = 2π/μσσ ′gσσ ′ + 1/r0. (23)

We now analyze conditions for having two-body bound
states at the two-body zero crossing, in particular, having
in mind the three-body recombination to these states when
considering the three-body problem. We just note that so-
lutions of Eq. (13) at distances |y| � 1/

√|E | in differ-
ent dimensions are given, respectively, by Eqs. (18), (20),
and (22) with σ = σ ′ = 1 and with g11 substituted by
geff (E ). We then match these asymptotes with the decaying
solutions 
 (D=1)(y) ∝ exp(κ|y|), 
 (D=2)(y) ∝ K0(κ|y|), and

 (D=3)(y) ∝ exp(−κ|y|)/|y|, where κ = √−E . This match-
ing procedure gives the following equations for the determi-
nation of κ (γ ≈ 0.577 is the Euler constant):

(κRe)2(a11/Re ) − κRe = 2, D = 1, (24)

(κRe)2 ln(κa11eγ /2) = 2π, D = 2, (25)

(κRe)3 − (κRe)2(Re/a11) = 4π, D = 3. (26)

Analyzing these equations we find that in one dimension there
is no two-body bound state, if a11 < 0 (or g11 > 0). In higher
dimensions we always have a bound state, but it becomes
deep in the limit of small positive a11 (E ∝ −1/a2

11). In
principle, the case of a weak repulsive background atom-atom
interaction can also be realized by a finite-range repulsive
potential (in the mean-field spirit of Sec. II). Then, the dimer
states given by Eqs. (24)–(26) are spurious, consistent with
the fact that the zero-range theory can no longer be used at
such high momenta.

IV. THREE-BODY PROBLEM

Similar to Eq. (10) a stationary state of three atoms with
zero center-of-mass momentum can be written in the form∫

c

∫
x

∫
y

(x, y)ψ̂†

1 (c−x/2
√

3 − y/2)ψ̂†
1 (c − x/2

√
3+y/2)

× ψ̂
†
1 (c + x/

√
3) |0〉 +

∫
c

∫
x
φ(x)ψ̂†

2 (c − x/2
√

3)

× ψ̂
†
1 (c + x/

√
3) |0〉 , (27)

where c is the center-of-mass coordinate and the relative
Jacobi coordinates are

x = (2r1 − r2 − r3)/
√

3,

y = r3 − r2. (28)

Let us introduce operators P̂+ and P̂− which exchange the first
atom with the second and the third, respectively. Acting by
these operators on an arbitrary function F (x, y) results in

P̂±F (x, y) = F (−x/2 ∓
√

3y/2,−
√

3x/2 ± y/2). (29)

The open-channel wave function 
(x, y) is invariant with
respect to these permutations.

The coupled Schrödinger equations for 
 and φ read[−∇2
x − ∇2

y − E + g11(1 + P̂+ + P̂−)δ̃r0 (y)
]

(x, y)

= α(1 + P̂+ + P̂−)δ̃r0 (y)φ(x)/2, (30)[−∇2
x − ν0 − E + g12δ̃r0 (

√
3x/2)

]
φ(x) = α
(x, r0), (31)

where 
(x, r0) in the right-hand side of Eq. (31) denotes
the projection on the s-wave channel in the coordinate y,
i.e., the angular average 〈
(x, r0ŷ)〉ŷ. The difference between

(x, r0ŷ) and 
(x, r0), which accounts for non-s-wave scat-
tering channels, vanishes in the limit r0 → 0 and we will
thus make the replacement δ̃r0 (y)
(x, y) → δ̃r0 (y)
(x, r0) in
Eq. (30). Then, it is convenient (the reason will become clear
below) to introduce an auxiliary function f (x) such that


(x, r0) = − f (x)/g11 + αφ(x)/2g11. (32)

We now eliminate 
 from Eqs. (30) and (31) in favor of f and
thus derive coupled equations for f and φ. To this end we note
that with the use of (32) Eq. (30) becomes(−∇2

x − ∇2
y − E

)

(x, y) = (1 + P̂+ + P̂−)δ̃r0 (y) f (x).

(33)

Equation (33) can now be solved with respect to 
 by using
the Green function G(2D)

E of the 2D-dimensional Helmholtz
operator in the left-hand side (see, for example, Ref. [41]).
This procedure gives


(x, r0) = 
0(x, 0) +
∫

x′

{
G(2D)

E

[√
(x − x′)2 + r2

0

]

+
∑
±

G(2D)
E (

√
x2 ± xx′ + x′2)

}
f (x′), (34)

where 
0(x, y) is any solution of (−∇2
x − ∇2

y −
E )
0(x, y) = 0. In Eq. (34) we have already taken the limit
r0 → 0, where it exists. With the use of Eq. (34) the function

042707-4



THREE-BODY INTERACTION NEAR A NARROW TWO-BODY … PHYSICAL REVIEW A 100, 042707 (2019)


(x, r0) can now be eliminated from Eqs. (32) and (31). Here
we explicitly write down the resulting coupled equations for
f and φ at the two-body zero crossing (ν0 = α2/2g11) and at
zero energy (E = 0, 
0 = 1):

L̂ f (x) + f (x)/g11 = φ(x)/
√

2RD
e − 1, (35)

[−∇2
x + g12δ̃r0 (

√
3x/2)

]
φ(x) = −

√
2/RD

e f (x), (36)

where L̂ is the integral operator in the right-hand side of
Eq. (34) with E = 0. We will use the following forms of the
zero-energy Green functions:

G(2)
0 (ρ) = − ln(ρ/Re )/2π, (37)

G(4)
0 (ρ) = 1/4π2ρ2, (38)

G(6)
0 (ρ) = 1/4π3ρ4. (39)

Equations (35) and (36) conserve angular momentum and
parity. We will be interested in the case of positive parity
(for D = 1) and zero angular momentum (for D > 1) so
that f (x) = f (x) and φ(x) = φ(x). Note also that if g12 = 0,
the solution of Eqs. (35) and (36) is f (x) = 0 and φ(x) =√

2RD
e , indicating the absence of two-body and three-body

interactions.
The quantity that we want to extract from solving Eqs. (35)

and (36) is f̃ (0) = ∫
x f (x), which is proportional to the three-

body scattering amplitude. Indeed, at large hyperradii ρ =√
x2 + y2 Eq. (34) gives 
 ≈ 1 + 3 f̃ (0)G(2D)

0 (ρ) or, explic-
itly,


 =

⎧⎪⎪⎨
⎪⎪⎩

1 − 3 f̃ (0) ln(ρ/Re )/2π ∝ ln(ρ/a3), D = 1,

1 + 3 f̃ (0)/4π2ρ2 ∝ 1 − S3/ρ
2, D = 2,

1 + 3 f̃ (0)/4π3ρ4 ∝ 1 − ϒ3/ρ
4, D = 3,

(40)

where we have introduced the three-body scattering length
a3 in one dimension, surface S3 in two dimensions, and
hypervolume ϒ3 in three dimensions:

a3 = Re exp[2π/3 f̃ (0)], D = 1, (41)

S3 = −3 f̃ (0)/4π2, D = 2, (42)

ϒ3 = −3 f̃ (0)/4π3, D = 3. (43)

It is useful to note that for D = 2, 3 the three-body potential
g3δ(

√
3x/2)δ(y) with [42]

g3 = −3(
√

3/2)D f̃ (0) (44)

treated in the first Born approximation would produce the
same scattered wave as Eqs. (40). Equations (42), (43),
and (44) relate the three-body coupling constant g3 to the
three-body scattering surface and hypervolume. The corre-
sponding contribution to the energy density of a three-body-
interacting condensate equals g3n3/6 in the weakly interacting
regime, which is defined by |S3|n � 1 in two dimensions and
by |ϒ3|n4/3 � 1 for D = 3. The quantity g3/L2D gives the
energy shift for three (condensed) atoms in a large volume
LD. By solving the three-body problem nonperturbatively we

calculate the exact g3, which can then be compared to the
mean-field result given by Eq. (5).

The relation between a3 and the three-body energy shift
in the case D = 1 is slightly more subtle. Pastukhov [30] has
recently shown that the ground-state energy density of a three-
body-interacting one-dimensional Bose gas can be expanded
in half-integer powers of the small parameter

g3(n) =
√

3π/ ln(1/a3n) � 1, (45)

with the leading-order term equal to E/L = g3(n)n3/6. Al-
though g3 given by Eq. (45) depends on n, one can replace 1/n
by another density-independent length scale l . If this scale is
not exponentially different from 1/n, the two small parameters
are equivalent since they differ only by a higher-order term
∼g2

3. By computing a3 we can thus compare Eqs. (5) and (45)
which we expect to approach each other in the limit Re/a12 →
0 (at fixed n). Equivalently, one can say that in this limit
Eq. (5) predicts the leading exponential dependence of the
one-dimensional three-body scattering length

a3 ∝ exp

(
π√

3

μ12a12

Re

)
= exp

(
2π

3
√

3

a12

Re

)
(46)

leaving, however, the preexponential factor unknown.
Returning to the task of determining f̃ (0) from Eqs. (35)

and (36) we note that the three-body problem in hand admits
a zero-range description parametrized by a11, a12, and Re

(see, however, Sec. IV C). Indeed, the sum L̂ f (x) + f (x)/g11

in Eq. (35) is well behaved in the limit r0 → 0 since the
singularity of L̂ f (x) gets canceled by the r0-dependent term in
1/g11 [see Eqs. (21) and (23)]. The parameter r0 thus drops out
from Eq. (35), g11 being conveniently eliminated in favor of
a11. As far as Eq. (36) is concerned, one can just substitute the
interaction term g12δ̃r0 (

√
3x/2) by the Bethe-Peierls boundary

conditions at x → 0:

φ(x) ∝ |x| − 2a12/
√

3, D = 1, (47)

φ(x) ∝ ln(
√

3x/2a12), D = 2, (48)

φ(x) ∝ 1 − 2a12/
√

3x, D = 3. (49)

In other words, Eq. (36) is equivalent to

−∇2
xφ(x) = −

√
2/RD

e f (x), (50)

supplemented by the boundary conditions (47)–(49).
From now on, for brevity, we choose to measure all dis-

tances in units of Re. The function f̃ (0) then depends on a11

and a12 (measured in units of Re) and its dimension is clear
from Eq. (40).

The idea of solving Eqs. (35) and (47)–(50) is to eliminate
φ by inverting the Laplacian in Eq. (50) and then deal with
a single integral equation for f . We perform this procedure
in momentum space [the Fourier transform is defined by
F̃ (p) = ∫

x F (x)e−ipx] where Eq. (50) formally transforms into
p2φ̃(p) = −√

2 f̃ (p). Note, however, that we can always add
to φ(x) a general solution of the Laplace equation −∇2

xφ =
0, possibly singular at the origin. The solution of Eq. (50)
in momentum space is thus −√

2 f̃ (p)/p2 plus any linear
combination of δ(p) and 1/p2. The freedom of choosing the
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corresponding coefficients is removed by Eq. (35) and the
boundary conditions (47)–(49). The passage to momentum
space in Eq. (35) is realized by rewriting the Fourier-space
version of the operator

(L̂ + 1/g11) f̃ (p)

=
(

2√
3

)D−2 ∑
±

∫
f̃ (q)

p2 ± pq + q2

dDq

(2π )D

+ f̃ (p)

⎧⎪⎨
⎪⎩

1/2|p| − a11/2, D = 1,

− (1/2π )ln(pa11eγ /2), D = 2,

− p/4π + 1/4πa11, D = 3.

(51)

We now proceed to reformulating the boundary condi-
tions (47)–(49) in momentum space. To this end let us first
study the large-x behavior of φ(x) and f (x) and check that
these functions indeed possess well-defined Fourier trans-
forms. When two atoms are far away from the third one (large
x), the function φ is approximately proportional to 
 due to
Eq. (12), which is equivalent to having small f in Eq. (32).
Thus the large-x asymptotic behavior of φ(x) is given by
Eq. (40) and, by calculating the second derivative of these
asymptotes and using Eq. (50), we obtain the large-x scaling
f (x) ∝ x−2D. We conclude that the passage to momentum rep-
resentation is straightforward for D > 1, where f (x) and φ(x)
are well behaved. By contrast, in one dimension φ(x) ∝ ln |x|
should be understood in the generalized sense by using a limit
of a series of Fourier-transformable functions. In particular,
we can use the relation K0(

√
ε|x|) ≈ − ln

√
ε|x|eγ

2 valid for
small ε > 0 and define a generalized Fourier transform of
ln |x| as

− π

|p| = lim
ε→+0

[
− π√

p2 + ε
− 2πδ(p) ln

√
εeγ

2

]
. (52)

An immediate application of this formalism is the reformula-
tion of the Bethe-Peierls boundary condition (47) in momen-
tum space. Namely, for small x we have

φ(x) =
∫

φ̃(p)
d p

2π
− |x|

2
lim

p→∞ p2φ̃(p) + o(x), (53)

where the integral is convergent, the singularity φ̃(p) ∝ 1/|p|
being understood in the sense of Eq. (52). Comparing Eq. (53)
with (47) and denoting C = limp→∞ p2φ̃(p) gives us the
Bethe-Peierls boundary condition in momentum space∫

φ̃(p)

C

d p

2π
= a12√

3
. (54)

Repeating the same procedure in two dimensions Eq. (48)
transforms into∫ [

φ̃(p)

C
− 1

p2 + σ

]
d2 p

(2π )2
= 1

2π
ln

a12
√

σeγ

√
3

, (55)

where σ is any positive number. In the case D = 3, Eq. (49)
becomes ∫ [

φ̃(p)

C
− 1

p2

]
d3 p

(2π )3
= −

√
3

8πa12
. (56)

The task of reformulating our problem in momentum space is
thus over.

We now write the solution of Eq. (50) in the form

φ̃(p) =
√

2(2π )Dδ(p) + C − √
2 f̃ (p)

p2
. (57)

Equation (57) is consistent with the definition of C (which is
still unknown) and the coefficient in front of δ(p) is dictated
by Eq. (35) and by the fact that the operator (51) does not
give rise to a delta function. We now eliminate φ̃(p) by
substituting Eq. (57) into Eqs. (35) and (54)–(56) and after
simple manipulations we obtain the following results.

A. One dimension

In one dimension we arrive at

f̃ (0) = 1

a12/
√

3 + I (1)(a11)
, (58)

where the function I (1)(a11) = ∫
χ (p)−1

p2
d p
2π

is defined through
the solution of√

3

2

∑
±

∫
χ (q)

p2 ± pq + q2

dq

2π

+
(

1

2|p| + 1

p2
− a11

2

)
χ (p) = 1

p2
, (59)

C = √
2 f̃ (0), and f̃ (p) = f̃ (0)χ (p). Substituting Eq. (58)

into Eq. (41) a3 factorizes into (we restore the dimensions
here)

a3 = Re exp

(
2π

3
√

3

a12

Re

)
exp

[
2π

3
I (1)

(
a11

Re

)]
, (60)

consistent with Eq. (46) in the limit of small Re/a12.
Let us now discuss the function I (1). For large a11 (weak

atom-atom interaction) this function can be expanded in pow-
ers of

√−1/a11. In order to see this we rescale the momentum
p = √−1/a11z and rewrite Eq. (59) in the form

χ (z) = 1

1 + z2/2
− 1√−a11

z2

1 + z2/2

×
[√

3

2

∑
±

∫
χ (y)

z2 ± yz + y2

dy

2π
+ χ (z)

2|z|

]
, (61)

which we then solve iteratively. In particular, the first iteration
gives χ (z) = 1/(1 + z2/2) and provides the leading order
term I (1) ≈ −√−a11/8. The second iteration results in

I (1) = −
√

−a11

8
+ 9 + 5

√
3π + 27 ln(−a11e−2γ /2)

36π
+ o(1).

(62)

The solid and dashed lines in Fig. 1 show, respectively, the real
and imaginary parts of I (1) as a function of −1/a11 (= g11/2)
obtained numerically. The dotted lines indicate the real and
imaginary parts of the large-a11 asymptote (62).

For negative a11 the solution is real and ImI (1) ≡ 0.
By contrast, for a11 > 0 the function χ (p) is characterized by
simple poles at p = ±(κ + i0), where κ > 0 is defined by
Eq. (24) [this is also the point where the term in round
brackets in Eq. (59) vanishes]. These poles correspond to the
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FIG. 1. Functions ReI (1) (solid) and ImI (1) (dashed) characteriz-
ing the dependence of the effective three-body interaction on a11 in
one dimension [see Eqs. (58) and (40)]. a11 is measured in units of Re.
The dotted curves correspond to the large-a11 asymptote [Eq. (62)].
For a11 → ±0 one has I (1) ≈ −0.03.

three-body recombination to a dimer state, which, as found in
Sec. III, exists only for positive a11. One sees that I (1) and,
therefore, f̃ (0) become complex reflecting the three-body
loss. Technically, as one passes from positive to negative
−1/a11, the choice of the correct branch of the square root
and logarithm in Eq. (62) is ensured by keeping −1/a11 just
below the real axis.

B. Two dimensions

The solution in the two-dimensional case can be written as

f̃ (0) = 2π

ln(a12eγ /
√

3) + 2π I (2)(a11)
, (63)

where I (2)(a11) = ∫
χ (p)−1/(p2+1)

p2
d2 p

(2π )2 and χ satisfies

∑
±

∫
χ (q)

p2 ± pq + q2

d2q

(2π )2

+
(

1

p2
− 1

2π
ln

a11 p eγ

2

)
χ (p) = 1

p2
. (64)

The three-body scattering surface is proportional to f̃ (0)
[see Eq. (42)] and the mean-field result (5) is recovered for
weak attractive or repulsive atom-dimer interactions (small or
large a12). As in the one-dimensional case we see that the
dependence on a12 is analytic and for the complete solution
of the problem one needs to know only I (2)(a11).

For a weak atom-atom background interaction (small or
large a11), introducing the small parameter λ = 1/ ln(1/a11),
we can proceed iteratively in exactly the same manner as
in the one-dimensional case. Namely, using the momentum
rescaling p = √

λz one can see that to the leading order
χ (z) ≈ 1/(1 + z2/2π ) and after two iterations we have

I (2) = ln(2πλ)

4π
+ λ

ln(Cλ)

8π
+ o(λ), (65)

where C ≈ 0.013.
In Fig. 2 we plot the real (solid) and imaginary (dashed)

parts of I (2) versus λ together with the asymptote (65) (dotted).

FIG. 2. Real and imaginary parts of I (2) in the two-dimensional
case. We use the same notations as in Fig. 1.

In the two-dimensional case ImI (2) is always finite since there
is always a dimer bound state available for the recombination
(see Sec. III). However, for small positive λ the dimer is
exponentially deep and small (its energy is proportional to
1/a2

11 = e−1/λ) so that the recombination in this limit is not
captured by the power expansion Eq. (65).

Note that for small λ the characteristic momentum involved
in the solution χ (p) is

√
λ. Therefore, the asymptotic expan-

sion (65) is also valid if, instead of the zero-range atom-atom
interaction, we have a potential of a finite but sufficiently
small range �1/

√
λ = √| ln(1/a11)|, characterized by the

same scattering length a11. In particular, one can have a purely
repulsive potential which does not lead to a dimer state in our
problem.

C. Three dimensions

In three dimensions we have

f̃ (0) = 1

−√
3/8πa12 + I (3)(a11)

, (66)

where I (3)(a11) = ∫
χ (p)

p2
d3 p

(2π )3 with χ satisfying

2√
3

∑
±

∫
χ (q)

p2 ± pq + q2

d3q

(2π )3

+
(

1

p2
− p

4π
+ 1

4πa11

)
χ (p) = 1

p2
. (67)

Here we also manage to separate the dependencies on the
atom-dimer and atom-atom interactions. The mean-field solu-
tion (5) is retrieved for a12 → 0. Calculating I (3) is, however,
more subtle than in the low-dimensional cases. Indeed, small
hyperradii effectively correspond to high collision momenta
and energies where the two-body scattering length is approx-
imated by its background value a11. Thus, at ρ � a11, we
deal with the Efimovian three-boson system which requires a
three-body parameter or a cutoff momentum. Mathematically,
this can be seen from Eq. (67) at momenta p 
 1/a11, where
the dominant terms are the integral and −pχ (p)/4π . The
corresponding large-momentum behavior of χ (p) is a linear
combination of Efimov waves p±is0−2 with s0 ≈ 1.00624 [43].
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The coefficients in this linear combination are fixed by intro-
ducing an external (three-body) parameter, phase, or momen-
tum. Namely, one can set

χ ∝ sin[s0 ln(p/p0)]

p2
(68)

as the asymptotic boundary condition for p 
 1/a11. Accord-
ingly, the quantity I (3) is, in fact, a function of a11 and the
three-body parameter p0. However, for small a11 the leading-
order contribution to I (3) is universal, i.e., independent of
p0. Indeed, for small a11 and momenta p � 1/|a11| Eq. (67)
reduces to (1/p2 + 1/4πa11)χ (p) = 1/p2. The correspond-
ing solution χ = 1/(1 + p2/4πa11) is characterized by the
typical momentum

√
a11 � 1/a11 and leads to

I (3) ≈
√

a11/4π. (69)

In order to estimate the next-order term we match χ (p) with
the Efimov wave (68) at momentum p ∼ 1/|a11| obtaining a
contribution to I (3) of the order of a2

11.
It makes sense to study the case of larger a11 (�Re) within

our zero-range model, if we deal with a zero crossing near
a narrow Feshbach resonance (large Re) which, in turn, lies
in the vicinity of a broader Feshbach resonance (large a11).
At the same time it is interesting to have a significant atom-
dimer interaction (large a12) such that the two terms in the
denominator of Eq. (66) are comparable. Then, in order to
find the effective three-body force we also need to know
the three-body and inelasticity parameters (or, equivalently,
the real and imaginary parts of p0), which could be known
from the Efimov loss spectroscopy near the broad resonance.
Given the large number of parameters in this problem we just
give a prescription for calculating I (3). Namely, one has to
solve Eq. (67) with the boundary condition (68) at p → ∞
also requiring χ ∝ 1/(p − κ − i0) near the pole given by
Eq. (26).

V. DISCUSSION AND CONCLUSIONS

In this article we have expanded the idea that the bosonic
model with a Feshbach-type atom-dimer conversion (1) near
a two-body zero crossing can be reduced to a purely atomic
model with an effective three-body interaction, which strongly
depends on the atom-dimer conversion amplitude. As a par-
ticular example, we show that this mechanism of generating
three-body forces can be used for stabilizing supersolid phases
of two-dimensional dipoles.

Sections III and IV have been devoted to constructing
a zero-range regularized version of the model (1) with a
minimal set of parameters (a11, a12, and Re). We have solved
this model nonperturbatively in the two-body and three-body
cases in all dimensions at the two-body zero crossing. For-
mulas (58), (63), and (66) give analytic dependencies of the
three-body scattering amplitude on a12 in different dimen-
sions. The dependence on a11 is found numerically and also
analytically for weak atom-atom background interactions. In
the three-dimensional case, our three-body zero-range model
is Efimovian and requires an additional three-body parameter.
We find, however, that for small |a11|/Re, effects associated
with the Efimov physics are subleading.

These results show that for comparable and weak atom-
dimer and atom-atom interactions (characterized by g12 and
g11, respectively), the three-body interaction is mostly influ-
enced by g12, consistent with the mean-field result (5). How-
ever, the convergence is not always uniform. For example, in
the two-dimensional case, one can simultaneously decrease
g12 and g11, keeping both terms in the denominator of Eq. (63)
comparable to (or even canceling) each other (resulting in a
diverging three-body scattering surface). In the same spirit,
we can use the nonperturbative three-dimensional formula
Eq. (66) and predict a three-body resonance at

√
3Re/8πa12 ≈√

a11/4πRe � 1.
Inelastic three-body events manifest themselves through

the appearance of an imaginary part of f̃ (0), which, in turn,
comes from the complex I (D) or complex atom-dimer scatter-
ing length a12. The former reflects the three-body recombina-
tion to a dimer state and the latter the relaxation process in
collisions of atoms with closed-channel dimers.

Several proposals on how to observe elastic three-body
interactions experimentally are based on the following
ideas. A repulsive three-body force could stabilize a sys-
tem with attractive two-body interactions and make it self-
trapped [16]. The structure and energies of few-body bound
states, detectable spectroscopically, are also influenced by
these forces [22,24–26]. Collective-mode frequency shifts in
a trapped gas could be another experimentally observable
signature of three-body interactions [32].
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