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Observation of resonant scattering between ultracold heteronuclear Feshbach molecules
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We report the observation of a dimer-dimer inelastic collision resonance for ultracold Feshbach molecules
made of bosonic sodium and rubidium atoms. This resonance, which we attribute to the crossing of the
dimer-dimer threshold with a heteronuclear tetramer state, manifests itself as a pronounced inelastic loss peak
of dimers when the interspecies scattering length between the constituent atoms is tuned. Near this resonance, a
strong modification of the temperature dependence of the dimer-dimer scattering is observed. Our result provides
insight into the heteronuclear four-body system consisting of heavy and light bosons and offers the possibility of
investigating ultracold molecules with tunable interactions.
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I. INTRODUCTION

Feshbach resonances (FRs), which occur when the energy
threshold of two colliding atoms is tuned to coincide with
the energy of a bound state in another scattering channel,
have been widely used in ultracold atom systems [1,2]. In the
vicinity of a FR, the interaction between two atoms can be
changed almost at will by tuning the strength of an external
magnetic field. In addition, FRs can also be used to convert
atom pairs into weakly bound Feshbach molecules (FMs).
For instance, for two-component quantum degenerate Fermi
gases, long-lived FMs can be created by sweeping the mag-
netic field across a FR. This technique has been the workhorse
for the study of the BEC-BCS crossover physics, which has
deep connections with high-Tc superconductivity and a myriad
of other exotic many-body phenomena.

Feshbach molecules can also be created out of ultracold
bosons. The resulting dimers are prone to inelastic losses due
to the absence of Pauli blocking [3–5] and thus much less
studied. However, it was pointed out for single-species bosons
[6,7] that these dimers have intriguing scattering properties
near unitarity that are connected with elusive weakly bound
tetramer states. By varying the strength of an external mag-
netic field, the dimer-dimer scattering threshold can be tuned
to be energetically degenerate with one of the tetramer states,
causing Feshbach-like resonances. Around these resonances,
the dimer-dimer scattering length can be tuned from positive
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to negative values, although the atom-atom scattering length
is always positive [6,7].

Weakly bound tetramer states are of great interest in the
context of few-body physics in connection with the celebrated
three-body Efimov effect [8–11] and its extension to systems
with more particles [12,13]. With identical bosons, signa-
tures of four-body resonances were observed through atom
losses [14,15]. In the homonuclear Cs2 gas, Feshbach-like
loss resonances were observed in a regime where a narrow
Cs-Cs g-wave resonance sits on top of a broad Cs-Cs s-wave
resonance [16]. Moreover, a loss minimum, rather than a
resonance, was reported in the halo-dimer regime [17]. For
a heteronuclear mixture consisting of light bosons (L) and
heavy bosons (H), the situation is more complex since there
may exist two distinct heteronuclear trimers (LH2 and L2H)
and three distinct tetramers (L3H, L2H2, and LH3) [18–22].
This heteronuclear scenario is almost entirely unexplored,
except for a 41K87Rb dimer experiment where no prominent
loss features were detected [23].

Figure 1 shows a schematic energy spectrum of the Na-Rb
system based on microscopic calculations (see the Appendix).
A prominent feature of the homonuclear Efimov scenario is
the existence of a universal scaling factor λ that governs
the size and other properties of a series of three-body states
[8–10]. The heteronuclear Efimov scenario [10,24], where
the Rb-Rb and Na-Na scattering lengths vanish, is governed
by two such scaling factors, one for the “Efimov favored”
NaRb2 system and one for the “Efimov unfavored” Na2Rb
system, λNaRbRb = 37 and λNaNaRb = 5.1 × 108, respectively.
These large scaling factors make it experimentally demanding
if not impossible to observe three-atom resonances that are
associated with three-body Efimov states on the a < 0 side.
However, on the a > 0 side, the critical scattering length
associated with two NaRb molecules being energetically
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FIG. 1. Schematic few-body energy diagram of the Na-Rb sys-
tem (see the Appendix). The binding energies for one and two NaRb
dimers, the NaRb2 and Na2Rb trimers, and one of the tetramers,
Na2Rb2, are shown. The blue shaded area above zero energy is the
atomic scattering continuum, while the yellow and gray shaded areas
represent the dimer-dimer and atom-dimer scattering continuum,
respectively. The observed resonance for NaRb + NaRb at a∗

dd is
marked by the diamond. The atom + dimer resonances for Rb +
NaRb at a∗

ad,Rb and Na + NaRb at a∗
ad,Na are marked by the solid and

dotted red circles, respectively. The red square and triangle indicate
the thresholds of the rearrangement reactions NaRb + NaRb →
NaRb2 + Na and NaRb + NaRb → Na2Rb + Rb, respectively. The
corresponding scattering lengths (not marked) are areaction

dd,Na and areaction
dd,Rb .

On the a < 0 side, the “Efimov favored” NaRb2 and the “Efimov
unfavored” Na2Rb trimers intersect the three-atom continuum at a−

Rb

and a−
Na.

degenerate with one of the Na2Rb2 four-body states (denoted
by a∗

dd in Fig. 1) and the critical scattering lengths associated
with an atom and a dimer being degenerate with one of the
two Efimov trimers (denoted by a∗

ad,Rb for Rb + NaRb and the
NaRb2 trimer, and by a∗

ad,Na for Na + NaRb and the Na2Rb
trimer, respectively) are more accessible experimentally.

This paper investigates dimer-dimer collisions experimen-
tally with an ultracold sample of 23Na87Rb FMs [25,26] (23Na
and 87Rb will be denoted by Na and Rb hereafter). Tuning
the two-body scattering length a between Na and Rb atoms
on the a > 0 side via an interspecies Feshbach resonance, we
observed a dimer-dimer loss resonance and attributed it to the
crossing of the dimer-dimer threshold and a Na2Rb2 tetramer
state. Near this resonance, we observed a strong modification
of the Wigner threshold law with the dimer-dimer collision
rate depending nonuniversally on temperature.

The organization of this paper is as follows. The experi-
mental details for the sample preparation and loss rate fitting
are given in Sec. II. In Sec. III, we observe an inelastic
resonance in a sample of NaRb Feshbach molecules. The
temperature-dependent behavior of the loss rate is studied at
three different scattering lengths in Sec. IV. Finally, Sec. V
presents the conclusions. Theoretical calculations are rele-
gated to the Appendix.

II. EXPERIMENTS

A. Sample preparation

We start the experiment from an ultracold mixture of Na
and Rb atoms both in their lowest hyperfine Zeeman level.

The interspecies s-wave scattering length is tuned using the
Feshbach resonance located at the magnetic-field strength
B0 = 347.64 G [25,27]. To create FMs, we start at B = 355
G and then sweep across the resonance to a final B field of
335.62 G to do the magnetoassociation. Since the FMs have
a vanishingly small magnetic dipole moment near the final
B field, the residual Na and Rb atoms can be removed with
a strong magnetic-field gradient pulse without affecting the
FMs [25,27]. Following this procedure, we routinely create
pure molecular samples of up to 104 NaRb FMs. The in-
terspecies scattering length a is then controlled by changing
the magnetic-field strength between 335.62 and 347.48 G,
corresponding to binding energies of the FMs between about
2π × 22 MHz and 2π × 19 kHz. These binding energies are
comparable to or smaller than the van der Waals energy of
2π × 29.8 MHz. For detection, the magnetic field is swept
reversely across the resonance to dissociate the FMs. The
resulting Na atoms are probed using standard absorption
imaging methods. The trap frequency that the FMs feel,
measured from the sloshing motion, is ω̄ = 2π × 76(1) Hz;
no dependence on the magnetic-field strength was detected.
The typical sample temperature T is measured to be 343(30)
nK by adding time-of-flight expansion before dissociating
the molecules for detection. The typical initial peak density,
calculated from the measured T and ω̄ and number of FMs, is
2 × 1011 cm−3.

B. Loss rate measurement

We measure the loss rate by recording the time evolution
of the molecule number after ramping B from 335.62 G to
the desired field strength. In addition to the loss of molecules,
an increase of the temperature is observed. The heating is
characteristic of inelastic collisions due to the preferential
removal of FMs from the highest density part of the sample
[28,29].

In principle, the observed losses can be caused by several
possible inelastic processes. Two colliding NaRb dimers can
form either a Na2Rb or a NaRb2 trimer, with the fourth
atom carrying away the released binding energy. Alterna-
tively, one of the dimers can relax into a more deeply bound
state, with the other dimer being dissociated. Both processes
contribute, in principle, to two-body dimer loss [18]. Unfor-
tunately, our measurements cannot distinguish whether one
of these processes is dominant or whether both contribute
appreciably. Near the magnetic-field strengths at which the
loss of dimers is maximal, the magnitude of the dimer-dimer
scattering length add is expected to be large [6,7]. In this
regime, the three-dimer recombination may be enhanced in
the same manner as three-atom recombination near an atomic
Feshbach resonance. Without a priori assumption, it is not
clear which, if any, of these processes dominates the loss of
dimers from the molecular sample. However, a fit of the data
with maximal loss to a three-body loss model [29] leads to
a rate coefficient on the order of 2 × 10−20 cm6 s−1. This
value is orders of magnitude larger than the maximum value
of 5.8(1.0) × 10−23 cm6 s−1 permitted by the unitary limit
[16,30]. It is thus nonphysical to designate three-dimer recom-
bination as the main loss mechanism. Although we cannot rule
out that two- and three-body losses occur simultaneously, we
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FIG. 2. Inelastic collisions of pure NaRb FMs. Symbols in (a)–
(c) show experimentally determined loss (left column) and heating
(right column) curves of the FM sample at three different magnetic-
field strengths, with (a) and (c) taken far from the observed loss peak
and (b) very close to it. The red solid curves are fits to the two-body
loss model, which is used to extract βdd.

conclude that the dimer-dimer loss is dominated by two-body
processes.

In order to obtain the two-body dimer-dimer loss rate
coefficient βdd, we fit the number and temperature evolution
simultaneously to two coupled rate equations:

dN

dt
= −βddγ

N2

T 3/2
,

dT

dt
= βddγ N

1/4 + h0

T 1/2
. (1)

Here γ = ( ω2M
4πkB

)3/2 is a constant with M = mRb + mNa the
molecular mass and kB the Boltzmann constant. The h0 term
arises from the momentum dependence of βdd, i.e., the varia-
tion of βdd over the thermal distribution [28].

Several examples are shown in Figs. 2(a)–2(c). The red
solid curves are from fitting to the coupled two-body rate
equations [Eq. (1)]. Note that samples with nearly the same
initial temperatures are used in this measurement. Unfortu-
nately, because of the heating, the temperature T and thus βdd

are actually not constant during the course of the collision.
However, the function of βdd vs T is unknown. To mitigate
this problem, we decided to treat βdd as a constant in the
fitting since during the relatively short hold time of 60 ms
the temperature increases are typically less than 50% and βdd

should not change dramatically. In measuring the temperature
dependence of βdd (Sec. IV), even shorter hold times of about
25 ms are used to limit the temperature increase to less than

30%. We note that this treatment inevitably limits the energy
resolution of our measurement to the temperature change
during the hold time. The energy resolution for the data shown
in Fig. 4 is 150 nK, while that of Fig. 5 is shown as the
horizontal error bars.

The coupled rate equations assume a Gaussian distribution
for a thermalized sample in a harmonic trap. However, even
at the loss minimum near 347.38 G, βdd is still quite large,
namely, βdd = 3.7(4) × 10−10 cm3 s−1. Loss rates this large
most probably leave the molecules insufficient time to reach
equilibrium. This effect, which is neglected in our analysis,
could introduce a large systematic error into βdd. Unfortu-
nately, we do not currently have a good way to estimate this
possible systematic error.

For the conversion of B and a, we use a general expression
of two overlapping s-wave resonances [31]:

a = abg

(
1 − �

B − B0

)(
1 − �1

B − B1

)
, (2)

with the background scattering length abg = 66.8a0, the reso-
nant magnetic-field strength B0 = 347.62 G and B1 = 478.83
G, and the resonance width � = 5.20 G and �1 = 4.81 G as
measured by radio-frequency association spectroscopy [27].

The precise determination of a is essential for the analysis
and for connecting experiment and theory. Presently, the B-to-
a-conversion is limited by two factors. First, the parameters
entering into Eq. (2) have uncertainties [25]. This can lead
to systematic shifts for all values of a. Second, because of
the relatively small abg and �, the magnetic field needs to
be tuned rather close to B0 to obtain large a. This implies
that the short-term magnetic-field stability of about ±7 mG
translates into a non-negligible uncertainty of a for magnetic-
field strengths near B0. For the smallest |B − B0| considered
in this paper, i.e., for B = 347.480(7) G, Eq. (2) yields a =
2320(98)a0.

It is worth mentioning that for the magnetic-field strengths
considered the Rb-Rb and Na-Na scattering lengths are
approximately constant, aRbRb = 100.4a0 [32] and aNaNa =
54.5a0 [33]. As will be discussed in the Appendix, the fact
that these scattering lengths are finite and positive has an
appreciable effect on the critical scattering length values at
which the tetramer and trimers hit the dimer-dimer and atom-
dimer thresholds. The universal or semiuniversal physics ex-
pected at large a [19,20,24,34] could then be substantially
modified. While such modification is well understood in
the 6Li-133Cs Fermi-Bose system [35,36], where only one
intraspecies scattering length is nonzero, a quantitative theory
for the heteronuclear Bose-Bose case that we are dealing with
has not yet been developed.

III. RESULTS: DIMER-DIMER RESONANCE

The experimentally determined magnetic-field-dependent
βdd is shown in Fig. 3. With the B-to-a-conversion, the a-
dependent βdd shown in Fig. 4 displays a clear resonance
when the Na-Rb scattering length a is around 600a0. Ac-
cording to the energy diagram in Fig. 1, following the
change of a, two NaRb FMs can intersect with the weakly
bound Na2Rb2 tetramer at a = a∗

dd, as well as the het-
eronuclear trimers plus another atom, i.e., NaRb2 + Na
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FIG. 3. Dimer-dimer loss rate coefficient βdd vs magnetic-field
strength B. The position of the interspecies atomic Feshbach reso-
nance is marked by the vertical dashed line. The red curve serves as
a guide to the eye.

at a = areaction
dd,Na and Na2Rb + Rb at a = areaction

dd,Rb . However,
crossings with the trimers will just open two-body reaction
channels which should not show up as resonances with line
shapes as we are observing [6,7]. Combined with the fact
that this dimer-dimer resonance is observed at relatively small
Na-Rb scattering length, we attribute the loss feature near
600a0 to the Na2Rb2 tetramer, i.e., a four-body state.

We are not aware of calculations of the line shape for loss
of dimers consisting of heteronuclear bosons. Using an empir-
ical fit to a Gaussian profile with linear background [37], we
find that the resonance position is located at a∗

dd = 650(15)a0.
This is nearly 50% larger than the value of 420a0 for the
resonance tied to the weakly bound tetramer state predicted
by our finite-range model. The fact that both the experimental
data and the theoretical model exhibit a dimer-dimer reso-
nance, albeit at somewhat different scattering lengths, is very
encouraging. The fact that the agreement is, at present, at the
qualitative and not at the quantitative level is not surprising
given that the experiment operates at finite temperature and
that the finite-range model makes a number of simplifying
assumptions regarding the four-body dynamics.

For the scattering of homonuclear bosonic FMs, which
features two dimer-dimer resonances tied to two weakly
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FIG. 4. The filled circles show the dimer-dimer loss rate coeffi-
cient βdd as a function of a for NaRb Feshbach molecule collisions
for a sample with T = 343(30) nK. The solid line shows the fit result.
All scattering lengths are calculated using the B-to-a conversion
given in Eq. (2).
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FIG. 5. Temperature dependence of βdd for a = 301a0 (squares),
a = 596a0 (triangles), and a = 1599a0 (circles). The black line is
the mean of βdd for the 301a0 data. The red and blue lines show
power-law fits to the data for the other two scattering lengths. The
horizontal error bars show the temperature uncertainty introduced by
the heating during the hold time.

bound tetramers, D’Incao et al. [6] calculated the loss line
shape. In this case, there exists one rearrangement reaction
(two dimers go to a trimer and an atom), which lies very
close to the resonance associated with the extremely weakly
bound (second) tetramer state [6]. In contrast, our theoretical
model for the heteronuclear case supports only one Na2Rb2

tetramer state but there exist two rearrangement reactions.
Despite these differences, our observed dimer-dimer loss line
shape is, in the vicinity of a∗

dd, very similar to that calculated
for the resonance associated with the more strongly bound
(first) tetramer state for homonuclear bosonic FMs, which is
also located at relatively small scattering length [6]. As in the
homonuclear case, βdd decreases to a local minimum that is
located at around a = 1200a0 and then increases again ap-
proximately linearly till the largest experimentally accessible
scattering length of a = 3000a0 is reached.

Our theoretical model suggests that the NaRb + NaRb →
Na2Rb + Rb rearrangement reaction occurs at scattering
lengths a that are experimentally accessible (see the Ap-
pendix). However, the experimental data provide no clear
evidence for the existence of a loss maximum that could be
attributed to this rearrangement reaction. This, however, may
not be a surprise as this newly opened two-body reaction
channel modifies the inelastic collision cross section in a dif-
ferent manner from the tetramer resonance [6,7]. In addition,
as discussed in the homonuclear case [6], finite-temperature
effects can further smear out signatures of this reaction. In
future experiments, we may look at the production of atoms
together with the loss of FMs to detect the threshold of the
rearrangement reactions.

IV. RESULTS: TEMPERATURE-DEPENDENT BEHAVIOR

Next we measure the temperature dependence of βdd for
different a, as shown in Fig. 5. We focus on three cases:
far away from the FR, near the resonance, and near the
loss minimum. For 301a0 (black squares), where the dimer
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is deeply bound with a binding energy of about 1 MHz,
βdd is nearly temperature independent with an average value
of 5.1(8) × 10−10 cm3/s. This temperature independence is
in accordance with the Wigner threshold law. However, the
measured βdd is larger than the calculated rate of 3.0(1) ×
10−10 cm3/s following the universal model [38] with the C6

coefficient of the NaRb-NaRb van der Waals interaction [39].
We have not yet investigated the reason for this discrepancy,
but we note that a similar deviation was also observed for
collisions between ground-state KRb molecules in the Wigner
threshold regime [40].

At a = 596a0, which is very close to the loss resonance,
βdd decreases with increasing temperature according to the
power law βdd ∝ T −0.42(12). At a much larger scattering length
of 1599a0, near the loss minimum, where the binding energy
of the dimer is only 20 kHz, the extracted βdd obeys a trend
of βdd ∝ T −0.21(6). These non-Wigner threshold law behaviors
can be qualitatively explained by the near threshold effect
studied in Ref. [41]. The Wigner threshold law holds when
the collision energy is smaller than the smallest energy scale
in the system. In the current case, this energy scale is set by
the difference between the binding energy of two dimers and
that of the tetramer. Near the dimer-dimer resonance, when
this difference becomes smaller than the collision energy, the
Wigner threshold law will be violated. Similar behavior was
predicted to occur for the homonuclear case [6,7].

V. CONCLUSION

To conclude, we have studied inelastic collisions between
ultracold heteronuclear NaRb FMs and observed a resonance
tied to a Na2Rb2 tetramer state. This paper is directly con-
nected to the current interest in extending the Efimov scenario
from homonuclear to heteronuclear, and from three- to higher-
body cases, which eventually may lead to the quantitative
understanding of a large class of few-body problems. While
three-body Efimov resonances were already observed in sev-
eral mixed-species systems [35,37,42–47], it has been realized
that the few-body physics in mixtures is qualitatively differ-
ent from that in homonuclear systems. Additional studies of
bosonic and fermionic mixtures in the three- and higher-body
sectors are thus needed to develop a solid understanding of
how Efimov physics manifests itself in cold atom mixtures.
The present paper responded to this need and provided valu-
able information on the heteronuclear four-body sector, which
had been studied poorly up to now.

Dimer-dimer resonances have many interesting applica-
tions. Just as atom-atom FRs allow one to control the effective
atom-atom interaction strength, the dimer-dimer resonance
observed in this paper can be used to control the effective
interaction strength between two weakly bound NaRb FMs.
Scanning the B field strength across the resonance at a∗

dd, the
dimer-dimer scattering length add should change from positive
to negative [6,7]. Another interesting question is whether it
is possible to create tetramers by magnetoassociation starting
with a pure cloud of dimers in much the same way as dimers
are being produced with atomic FRs. Although they have not
yet been observed, the two rearrangement reactions may be
useful in producing trappable Efimov trimers [6].
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APPENDIX: THEORETICAL FRAMEWORK

1. Overview of the light-heavy Bose-Bose mixture

It is useful to introduce the relevant system parameters.
The two-body system parameters are the mass ratio κ; the
light-light, heavy-heavy, and light-heavy scattering lengths
(denoted by aLL, aHH, and a); and the light-light, heavy-heavy,
and light-heavy van der Waals lengths. Either the scattering
lengths at which the trimers hit the three-atom threshold or the
binding energies at unitarity can be used to define the three-
body parameters. For homonuclear systems, it was found
that the three-body parameter is, with about 15% accuracy,
determined by the van der Waals length, i.e., the three-body
parameter was found to be determined, to a good approxi-
mation, by two-body parameters [48–50]. References [24,51]
suggested that this notion could be extended to heteronuclear
three-body van der Waals systems, in which the identical par-
ticles are either bosons or fermions; unfortunately, however,
the emergent universality appeared to be rather complicated.

Recently, it was suggested that a zero-range theory based
on the inter- and intraspecies two-body scattering lengths
alone predicts a subset of the 133Cs2-6Li properties on the
negative interspecies scattering length side qualitatively [36].
Further, it was noticed that there exists a “lower” and an
“upper” Efimov branch for this system [36]. Application of
this model to the positive interspecies scattering length side
(see Appendix A2) predicts that the atom-dimer scattering
length a∗

ad,Na at which the lowest Na2Rb Efimov trimer in the
“upper” Efimov branch merges with the Na-NaRb atom-dimer
threshold is larger than the atom-dimer scattering length a∗

ad,Rb
at which the lowest NaRb2 Efimov trimer in the upper Efimov
branch merges with the Rb-NaRb atom-dimer threshold. The
circles in Fig. 1 of the main text mark the scattering lengths
at which enhanced losses due to the energetic degeneracy
of the trimers and the NaRb dimer should be observable
experimentally.

In the four-body sector, resonant loss features associated
with processes that involve Na2Rb2, Na3Rb, and NaRb3

should, in principle, be observable. The latter two tetramers,
Na3Rb and NaRb3, are expected to be tied to the Na2Rb
and NaRb2 trimers, respectively. At unitarity, the existence
of one LH3 tetramer tied to each LH2 trimer was predicted
for a range of mass ratios, including the Rb-Na mass ratio of
3.78 [22]. This tetramer is expected to exist on the positive
interspecies scattering length side till the tetramer energy hits
the LH + H + H or LH2 + H thresholds. Moreover, near the
dimer + atom + atom threshold, a new sequence of effective
three-body Efimov states consisting of a tightly bound light-
heavy dimer and two atoms has been predicted to exist for
mass ratios 30 and 50 [19]. Whether such effective three-body

042706-5



WANG, YE, GUO, BLUME, AND WANG PHYSICAL REVIEW A 100, 042706 (2019)

Efimov states exist for much smaller mass ratios is presently
unknown. Last, whether Na3Rb tetramers—attached to the
so-called Efimov unfavored Na2Rb trimer—exist has, to the
best of our knowledge, not yet been studied.

In this paper, we focus on the Na2Rb2 tetramer, which can
be probed experimentally via collisions between two NaRb
dimers in an ultracold molecular NaRb sample. Theoretically,
this four-body system is particularly interesting as it contains
the NaRb2 and Na2Rb trimer subsystems. Thus, it is a priori
not clear if the Na2Rb2 tetramer is, at least predominantly,
associated with one of the two sub-Efimov trimers. Our
finite-range low-energy Hamiltonian, which is constructed to
roughly reproduce the energies of the Na2Rb and NaRb2

trimers obtained within the zero-range framework (see Ap-
pendix A3 for details), predicts the existence of one Na2Rb2

tetramer that lies below the NaRb2 trimer and, roughly, traces
the energy of this trimer (see Fig. 1 of the main text for a
schematic). The critical scattering length a∗

dd is found to be
larger than the critical scattering length a∗

ad,Rb. The next two
subsections present the zero-range model for the three-body
system (Appendix A2) and the finite-range model, which
treats the three- and four-body sectors (Appendix A3).

2. Three-body system with zero-range two-body interactions

In our first set of calculations, the NaRb2 system is
treated in the adiabatic hyperspherical approximation [52–54]
with two-body zero-range inter- and intraspecies interactions.
Figure 6 shows the two lowest effective adiabatic potential
curves as a function of the hyper-radius R for a fixed Rb-Rb
scattering length and various interspecies scattering lengths
a, namely, a/aRbRb = 100, 4, 2, and 1.7. The hyper-radius R
is defined as R2 = d−2(r13)2 + d2(r13,2)2, where r13 denotes

1 10 100
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FIG. 6. Effective adiabatic hyperspherical potential curves U (R)
for the NaRb2 system with zero-range interactions. The scattering
length ratios considered are a/aRbRb = 100 (black), 4 (green), 2
(blue), and 1.7 (red), from top to bottom for both the solid and
the dashed lines. The potential curves shown by dashed and solid
lines correspond to the lower Efimov branch and the upper Efimov
branch, respectively. The dashed lines approach the Rb2 dimer
energy of −κ−1Escale = −0.2645Escale at large R. The solid lines
approach the NaRb dimer energy of −(1 + κ−1)(aRbRb/a)2Escale/2 =
−0.6323(aRbRb/a)2Escale at large R.

the distance between the Na atom (atom 3) and one of the
Rb atoms (atom 1) and r13,2 denotes the distance between
the center of mass of the 13 subunits and the second Rb
atom (atom 2). The mass scale d is defined as d2 = μ13,2/μR,
where μ13,2 = (mRb + mNa )mRb/(2mRb + mNa ) is the reduced
mass associated with the Jacobi distance r13,2 and μR is the
hyper-radial mass [μ2

R = m2
RbmNa/(2mRb + mNa )]. Figure 6

scales the hyper-radius by aRbRb and the energy by Escale =
h̄2/[mNa(aRbRb)2].

The lowest adiabatic potential curve (dashed lines) ap-
proaches the Rb2 dimer energy at large R for all a and negative
infinity as R goes to zero, indicating that the Hamiltonian
needs to be supplemented by a three-body parameter to avoid
the Thomas collapse. The three-body states that “live” in these
potential curves are referred to as belonging to the first or
lower Efimov branch. The second lowest potential curve (solid
lines), in contrast, approaches the NaRb dimer energy at large
R for all a. This NaRb dimer threshold lies above the Rb2

threshold for the a considered; it crosses the Rb2 threshold at
a = 1.546aRbRb, i.e., at an interspecies scattering length that is
somewhat smaller than those considered in Fig. 6. The solid
lines exhibit a minimum around R ≈ 3–4aRbRb and approach
positive infinity as R goes to zero. The three-body states that
live in these potential curves are referred to as belonging to
the second or upper Efimov branch. The repulsive small-R
behavior implies that one can, within the adiabatic hyper-
spherical approximation, calculate the NaRb2 energies for the
zero-range interaction model based solely on the two-body
scattering lengths.

We calculate the three-body energies in the second lowest
adiabatic potential curves and search for the scattering length
at which the NaRb2 trimer energy is equal to the NaRb dimer
energy, i.e., we search for the scattering length ratio a/aRbRb

at which the adiabatic potential curves shown by solid lines
in Fig. 6 cease to support a three-body bound state. We find
that this occurs at a = a∗

ad,Rb ≈ 1.72aRbRb or, plugging in
the Rb-Rb scattering length for the experimentally relevant
resonance, at a∗

ad,Rb ≈ 173a0.
It should be kept in mind that the adiabatic hyperspherical

approximation is, as the name indicates, an approximation.
Inclusion of the adiabatic correction changes the critical scat-
tering length prediction by about 5%, i.e., we find a∗

ad,Rb ≈
1.81aRbRb (we note that the percentage corrections are larger
for the critical scattering lengths associated with excited
states). While the relatively small change upon inclusion of
the adiabatic correction may be interpreted as suggesting that
the adiabatic hyperspherical approximation makes quantita-
tive predictions, we cautiously note that these values cannot,
since we are dealing with excited states, be interpreted as
lower and upper bounds [55]. In principle, the entire set of
adiabatic potential curves and associated channel couplings
should be taken into account. Such a calculation is, however,
not pursued here. One of the reasons is that the zero-range
approximation itself needs to be extended to account for finite-
range effects. Our premise is that the adiabatic hyperspherical
framework provides physical insights as well as estimates for
the critical scattering lengths that can be used to qualitatively,
and possibly semiquantitatively, explain aspects of the exper-
imental results.
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In addition to the critical scattering length a∗
ad,Rb associated

with the lowest NaRb2 trimer state of the second Efimov
branch, we used the adiabatic potential curves to calculate
other critical scattering lengths. The next three higher-lying
trimers hit the atom-dimer threshold at a/aRbRb ≈ 29, 1250,
and 47 000, yielding for the scattering length ratios approxi-
mately 1/17 for the lowest two states, 1/43 for the second-
and third-lowest states, and 1/38 for the next pair of states.
These values suggest that the finite value of the Rb-Rb scatter-
ing length has a profound effect on the scattering length ratios
on the positive interspecies scattering lengths side. Qualita-
tively, this can be understood by realizing that the lowest
trimer state at the atom-dimer threshold has three “active”
interactions with approximately equal scattering length (the
scaling factor for three resonant interactions is λ = 16.12)
while the higher-lying states at the atom-dimer threshold
resemble more and more the situation where only two inter-
actions are “active” (recall, the scaling factor for two resonant
interactions is λNaRbRb = 37).

For completeness, we also report the scattering lengths for
the two lowest states for which the trimers hit the three-atom
threshold on the negative interspecies scattering length side.
The values are a−

Rb ≈ −118aRbRb and −4085aRbRb, yielding
a ratio of 1/34.6 and suggesting that the experimental ob-
servation of the first three-atom loss feature may already
require rather good magnetic-field control. In addition, there
may exist three-atom loss features that are associated with
three-body states that live in the lower Efimov branch; these
are not considered here.

We also treated the Na2Rb system in the adiabatic hyper-
spherical approximation. For the upper Efimov branch (this
is the branch for which the corresponding adiabatic hyper-
spherical potential curves approach the NaRb dimer energy
at large R), the lowest trimer hits the atom-dimer threshold
at a∗

ad,Na ≈ 2.8aRbRb and the three-atom threshold at a−
Na ≈

−40300aRbRb. Combining the NaRb2 and Na2Rb results, the
adiabatic hyperspherical framework predicts a∗

ad,Na/a∗
ad,Rb ≈

2.8/1.72 ≈ 1.63. We note that the critical scattering length
a∗

ad,Na depends quite sensitively on corrections beyond the
adiabatic hyperspherical approximation, suggesting that it is
quite possible that the ratio a∗

ad,Na/a∗
ad,Rb is larger than 1.63.

The description of the three-body system could be made
more quantitative by constructing a Hamiltonian that employs
finite-range two-body model interactions with the correct
scattering lengths and van der Waals tails. While this is a
worthwhile avenue to pursue, solving the corresponding four-
body Schrödinger equation is a rather challenging task that is
not pursued here. Instead, the next section develops a simple
finite-range framework for which the four-body Schrödinger
equation can be solved fairly straightforwardly.

3. Finite-range low-energy model

To treat the Na2Rb2 and NaRb3 tetramers, we employ a
finite-range model that excludes both Rb2 dimers and Na2

dimers. As a consequence, the model describes the NaRb2

and Na2Rb trimers that live in the upper Efimov branch but
not those that live in the lower Efimov branch.

The model assumes that each Rb-Na pair interacts through
an attractive two-body Gaussian potential with fixed range

r0 and variable depth v0; the depth v0 is adjusted to dial
in the desired value of the interspecies scattering length a.
In addition, each Na-Rb-Rb triple interacts through a purely
repulsive Gaussian three-body potential with range R0 and
height V0,Rb [20] (note this three-body interaction potential
is distinct from the effective adiabatic potentials discussed
in Appendix A2). Similarly, each Na-Na-Rb triple interacts
through a purely repulsive Gaussian three-body potential with
the same range R0 and height V0,Na. Throughout, the range
R0 is fixed. The height V0,Rb, which serves to set the energy
scale of the NaRb2 trimer, is also fixed and chosen such that
the interspecies scattering length a at which the NaRb2 trimer
energy hits the atom-dimer threshold is a few times larger than
r0 and R0; this separation of scales ensures that the results
are, to a good approximation, independent of the details of the
model potentials. The height V0,Na, in turn, is varied. For each
fixed V0,Na, the NaRb2 trimer and Na2Rb2 tetramer energies
are calculated as a function of a and the critical scattering
lengths a∗

ad,Rb and a∗
dd are determined. The strategy is then

to choose the “best” V0,Na such that the ratio a∗
ad,Rb/a∗

ad,Na is
roughly the same as that for the zero-range model. The critical
scattering length a∗

dd obtained in this manner is a prediction
of this low-energy model Hamiltonian. Note that the critical
scattering length at which the NaRb2 trimer and the NaRb3

tetramer become unbound is independent of V0,Na.
The idea behind the finite-range low-energy interaction

model is that the repulsive Rb-Rb scattering length is ac-
counted for, in an effective manner, by a purely repulsive
three-body potential that introduces a repulsive short-range re-
pulsion in the adiabatic potential curve for the NaRb2 system.
Similarly, the repulsive Na-Na scattering length is accounted
for, again in an effective manner, by a purely repulsive three-
body potential that introduces a repulsive short-range repul-
sion in the adiabatic potential curve for the Na2Rb system.
Adjusting V0,Na while keeping V0,Rb fixed then allows one to
“dial in” the desired relative strengths of these short-range
repulsions. We refer to this model as a low-energy model since
the deeper-lying Na2 and Rb2 thresholds are not accounted for
at all, excluding, e.g., the possibility that the Na2Rb2 tetramer
breaks up into Na2 and Rb2.

We solve the time-independent Schrödinger equation for
the low-energy Hamiltonian by a basis set expansion ap-
proach, namely, we use explicitly correlated Gaussian basis
functions with nonlinear parameters that are optimized semis-
tochastically [56,57]. Figure 7 shows the three- and four-
body energies—with the threshold energies subtracted—for
our finite-range model. Pluses show the energy difference
ENaRb2 − ENaRb as a function of r0/a while triangles show
the energy difference ENaRb2 − 2ENaRb as a function of r0/a,
where ENaRb2 is the lowest NaRb2 trimer energy of our model
Hamiltonian. The points at which these energy differences
vanish are the critical scattering length values. On the negative
scattering length side, this is the critical scattering length
a−

Rb, and, on the positive scattering length side, these are
the critical scattering lengths a∗

ad,Rb (solid circle in Fig. 1 of
the main text) and areaction

dd,Na , corresponding to the square in
Fig. 1 of the main text (i.e., the scattering length at which
the rearrangement reaction NaRb + NaRb → NaRb2 + Na is
expected to be enhanced). The model predicts the scattering
length ratio areaction

dd,Na /a∗
ad,Rb ≈ 8 (in the zero-range model, this
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FIG. 7. Three- and four-body energies, relative to various thresh-
olds, calculated using the low-energy finite-range Hamiltonian as
a function of 1/a. The pluses show the energy difference �E =
ENaRb2 − ENaRb; on the positive a side, the energy difference is
zero at a = a∗

ad,Rb. The circles show the energy difference �E =
ENa2Rb − ENaRb; on the positive a side, the energy difference is
zero at a = a∗

ad,Na. The triangles show the energy difference �E =
ENaRb2 − 2ENaRb; on the positive a side, the energy difference is zero
at the critical scattering length where the rearrangement reaction
NaRb + NaRb → NaRb2 + Na is enhanced. The squares show the
energy difference �E = ENa2Rb2 − 2ENaRb; on the positive a side, the
energy difference is zero at a = a∗

dd. The low-energy Hamiltonian
predicts a∗

dd > a∗
ad,Rb. The energy differences are scaled by ESR =

h̄2/(2μNaRbr2
0 ), where μNaRb is the reduced mass of the NaRb dimer.

ratio is about 10 in the hyperspherical approximation and 7
if the adiabatic correction is included) and a ratio of about
20 for the atom-dimer resonance positions of the two lowest
states (recall, the zero-range model, treated in the adiabatic
approximation, yielded ≈17). These comparisons show that
our finite-range model reproduces the NaRb2 trimer properties
on the positive scattering length side predicted by the zero-
range model quite well.

Our potential model predicts, in agreement with Ref. [22],
the existence of exactly one NaRb3 tetramer state. The energy
of this state is not shown in Fig. 7. Within our numerical
accuracy, the NaRb3 tetramer becomes unbound at the same
interspecies scattering length as the NaRb2 trimer.

TABLE I. Summary of the calculated few-body resonances in the
Na-Rb system. The results in the column labeled “zero range” are
obtained using the zero-range two-body interaction model introduced
in Appendix A2 while those in the column labeled “finite range”
are obtained using the finite-range low-energy model introduced in
Appendix A3.

Resonances Zero range Finite range

a∗
ad,Rb 173a0

a∗
ad,Rb,1 2941a0 3460a0

a∗
ad,Na 281a0

a∗
dd ≈420a0

areaction
dd,Na 1730a0 1384a0

a−
Rb ≈ −11 850a0

a−
Na ≈ −4.05 × 106a0

Next we consider the Na2Rb trimer and Na2Rb2 tetramer,
the energies of which depend, within our model, on the
three-body height V0,Na. The circles in Fig. 7 show the energy
difference ENa2Rb − ENaRb for the height V0,Na of the repulsive
Na-Na-Rb potential chosen such that a∗

ad,Na is about three
times larger than a∗

ad,Rb. For this model Hamiltonian, the
energy difference ENa2Rb2 − 2ENaRb (squares in Fig. 7) goes
to zero at a = a∗

dd ≈ 2.45a∗
ad,Rb. If V0,Na is chosen such that

a∗
ad,Na is about two times larger than a∗

ad,Rb, we find a =
a∗

dd ≈ 2.17a∗
ad,Rb (recall, the zero-range model in the adiabatic

approximation predicts a∗
ad,Na/a∗

ad,Rb = 1.63; the actual value,
however, is—as discussed in Appendix A2— expected to be
somewhat larger). This shows that a∗

dd depends, if expressed
in terms of a∗

ad,Rb, less strongly on the value of V0,Na than
a∗

ad,Na, suggesting that the Na2Rb2 tetramer properties are
primarily determined by the properties of the NaRb2 trimer.
Our calculations suggest that a∗

dd is larger than a∗
ad,Rb. We

cannot determine unambiguously whether a∗
dd is greater or

smaller than a∗
ad,Na, primarily because the zero-range pre-

diction for a∗
ad,Na depends sensitively on whether or not the

adiabatic correction is included. Our potential model, using
what we consider reasonable values for V0,Na, predicts the
existence of exactly one Na2Rb2 tetramer state. The calculated
resonance positions for the zero-range and finite-range models
are summarized in Table I.
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