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Convergent close-coupling calculations of positron scattering on H−
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The convergent close-coupling method has been applied to positron scattering by the hydrogen negative ion.
Convergence of the cross sections is achieved and internal consistency of the method is verified using both the
single- and two-center approaches. Calculations were performed using accurate target wave functions obtained
with the multicore approach. Obtained results for Ps formation and breakup cross sections are compared with
previous calculations.
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I. INTRODUCTION

Positron (e+) collisions with the hydrogen negative ion
(H−) are particularly interesting due to the large cross section
for creating positronium (Ps), a bound electron-positron state.
Positrons are the most accessible antimatter particles with a
wide range of practical applications [1,2]. The H− ion is a
unique system with just one bound state [3] and plays an
important role in astrophysics [4,5].

Positron scattering by H− has been studied by various
theoretical methods over the past few decades. Rudge [6]
calculated breakup from H− by electron and positron impact
within the first Born approximation (FBA). Chaudhuri [7]
applied the FBA to calculate cross section of Ps formation
in the ground state. Ghosh and Sinha [8,9] calculated single
and double ionization of H− by positron impact using the
Coulomb-distorted eikonal approximation.

The most comprehensive study of the e+-H− collision
system to date has been performed by McAlinden and co-
workers [10] using the R-matrix close-coupling approach
(RCCA), which included 22 states (combination of eigen- and
pseudostates) of Ps and the ground state of H−. They reported
cross sections of breakup and Ps formation in the ground and
a few excited states.

Other theoretical studies have investigated bound states of
the e+-H− system [11–13]. Apart from finding the value of
binding energies, another interesting question under debate
was whether the e+-H− bound system is of a molecular type
where the positron forms Ps with one of the electrons and then
binds to H, or atomic type where the positron orbits the H−
ion. Analyses of its wave functions have indicated that the
bond is of a molecular type [14,15]. However, other studies
have concluded it is more of atomic type [16,17].

No experimental study of the e+-H− collision system
has been undertaken due to challenges in preparing the H−
target. However, the recent progresses in positron scattering
experiments combined with increased interest in this system
by the Ps-beam experiments [18] and antihydrogen production
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studies [19] warrant more detailed theoretical studies of the
e+-H− collisions.

In this paper we present application of the convergent
close-coupling (CCC) method to the e+-H− collision system.
The CCC method has been successfully applied to light and
heavy projectile scattering from atomic and molecular tar-
gets [20–23] including positron scattering from two-electron
atomic targets, namely, helium [24], magnesium [25], and
metastable helium [26]. The negative charge of the H− tar-
get presents an additional challenge [27] for calculations of
rearrangement matrix elements. To that end we have recently
developed a method [28] of calculating Ps-formation matrix
elements that can be straightforwardly applied to charged
targets.

II. METHOD

Formalism of the CCC method for the e+-H− collision
system is quite similar to the positron-helium case given in
detail in Refs. [24,26]. Here we give only a brief description.

The nonrelativistic Hamiltonian for the e+-H− system can
be written as

H = H0 + 1

r0
− 1

r1
− 1

r2
+ 1

|r1 − r2|
− 1

|r0 − r1| − 1

|r0 − r2| , (1)

where

H0 = − 1
2∇2

0 − 1
2∇2

1 − 1
2∇2

2 (2)

is the free Hamiltonian of the positron and two electrons, posi-
tions of which are given by vectors r0, r1, and r2, respectively.

The total scattering wave function � for the system satis-
fies the Schrödinger equation

(H − E )� (r0, r1, r2) = 0, (3)

where E is the total energy.
The positron-atom scattering system has two centers, one

associated with the target atom and the other with Ps. The
CCC approach to positron scattering is based on the expan-
sion of the total wave function � in terms of states of all
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asymptotic channels

� ≈
Nα∑

α

Fα (r0)ψα (r1, r2) +
Nβ∑

β

{Gβ (R01)φ1s(r2)ψβ (ρ01)

+ Gβ (R02)φ1s(r1)ψβ (ρ02)}, (4)

where the indices α and β denote a full set of quantum
numbers of the target and Ps states, respectively. The first term
corresponds to expansion in terms of target wave functions ψα

with expansion coefficients Fα . The second term corresponds
to expansion in terms of the Ps states ψβ with coefficients
Gβ . The Nα and Nβ are the numbers of the atomic and Ps
states, respectively. The function φ1s describes the residual
electron in H with assumption that it is left in the ground state
after Ps formation. The vector R0 j = (r0 + r j )/2 indicates the
positions of the Ps center relative to the proton and ρ0 j =
r0 − r j is the relative coordinate of Ps, j = 1, 2.

The target wave functions ψα are calculated using the
configuration interaction expansion

ψα =
∑

ab

Cα
ab

∑

la,ma,lb,mb

Clm
lama lbmb

φa(r1)φb(r2). (5)

The configuration interaction coefficients

Cα
ab = −1la+lb−lCα

ba

ensure antisymmetry of the wave functions and are obtained
by diagonalizing the target Hamiltonian [29]. The single-
particle basis functions φ are taken as

φa(r1) = 1

r
Rnala (r)Ylama (r̂), (6)

where Ylama are the spherical harmonics and Rnala are ra-
dial basis functions which are taken as the square-integrable
orthogonal Laguerre functions.

Using expansion (4), the Schrödinger equation (3) for
the total wave function is transformed into momentum-space
coupled-channel equations for the transition matrix elements,
from which cross sections of various transitions can be
obtained [24,30].

The single-center method, with Nα > 0 and Nβ = 0, is
relatively straightforward as it only involves evaluation of
direct transition matrix elements. Ps formation is not explicitly
included, but may be treated to convergence together with
ionization (real or virtual) by positive energy atomic pseu-
dostates of large orbital angular momentum [31]. The two-
center calculations of the e+-H− present a few computational
challenges. One is that the calculations of Ps-formation matrix
elements are particularly involved due to two-center integrals
that contain the radial Coulomb wave functions. We apply the
recently reported method of calculating Ps-formation matrix
elements [28] that simplifies the calculations and facilitates
its application to charged targets.

Another challenge in the two-center approach to the e+-H−
collision system is calculations of matrix elements for Ps →
Ps transitions including electron exchange between the Ps and
the residual H atom. In this work we ignore such electron-
exchange effects. The Ps → Ps transitions are secondary
channels in the e+-H− collision system and therefore electron
exchange between Ps and H is not expected to have a crucial
effect on the integrated cross sections. This expectation is

backed by our previous successful calculations of positron
scattering from two or more electron targets (He [24], Mg
[25], and H2 [22]), where we also have omitted electron
exchange between Ps and residual ions in calculations of
the Ps-Ps transition matrix elements. The single-center CCC
approach using fully symmetrized target wave functions does
properly incorporate electron exchange. Therefore, by com-
paring the two- and single-center CCC results we can check
the validity of the approximations as well as internal consis-
tency [31] of the CCC method.

III. RESULTS

H− is a two-electron system with only one bound state.
The measured breakup (H− → e−-H) energy is 0.7542 eV
[32]. In this study of the e+-H− collisions we consider only
the following main reaction channels:

elastic: e+-H− → e+-H−,

breakup: e+-H− → e+-e−-H,

Ps formation: e+-H− → Ps-H.

Other reactions such as a direct annihilation and breakup
with excitation (of the residual hydrogen) are negligible for
the energy range we consider. Because the H− is a charged
target, the angle-integrated elastic-scattering cross section is
infinite. However, breakup and Ps-formation cross sections
should have finite values, except near zero collision energies
where the latter is predicted to have 1/E behavior [5].

The CCC method can be applied to the positron scattering
problem within the single- and two-center approaches allow-
ing for an internal consistency check of the method [31]. The
single-center approach (Nα > 0 and Nβ = 0) is applicable to
this system above the breakup threshold and can produce
electron-loss (sum of breakup and Ps formation) cross sec-
tions. The two-center approach (Nα > 0 and Nβ > 0) allows
calculations of the Ps-formation and breakup cross sections
explicitly. By internal consistency we mean that the electron-
loss cross section in the one-center calculation should be the
same as the sum of Ps-formation and breakup cross sections
arising in the two-center calculations.

The CCC method relies on convergence of observables
of interest as a function of the increasing number of states
(Nα and Nβ) included in the multichannel expansion given
in Eq. (4). For simplicity of presentation, we show the con-
vergence study of the results separately for the single- and
two-center approaches. The convergence studies are important
in indicating the uncertainties associated with the calculations.

A. Single-center calculations

The single-center calculations are performed with differ-
ent total number of target pseudostates, calculated as Nα =∑lmax

l Nl , by increasing the values of Nl for each l � lmax.
For simplicity we set the basis size for each value of orbital
momentum as Nl = N0 − l . To further simplify the conver-
gence studies, we set the value of N0 to 25. We have verified
that N0 = 25 was sufficient to achieve a good convergence of
cross sections for each given value of lmax. This allows us to
concentrate on the convergence rate when the value of lmax
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TABLE I. Single-electron energies (in eV) of H− used in the
calculations.

�����n
l

s p d f

1 −0.736
2 0.021 0.024
3 0.084 0.071 0.036
4 0.190 0.143 0.092 0.032
5 0.344 0.242 0.171 0.072
6 0.549 0.371 0.276 0.127
7 0.813 0.535 0.410 0.197
8 1.145 0.738 0.577 0.286
9 1.559 0.988 0.783 0.395
10 2.072 1.295 1.033 0.528

is systematically increased. The following list describes the
basis types and their notations.

(a) A basis with lmax = 0, Nα = 25 is denoted
as CCC(250, 0).

(b) A basis with lmax = 1, Nα = 49 is denoted as
CCC(251, 0).

(c) A basis with lmax = 3, Nα = 94 is denoted
as CCC(253, 0).

(d) A basis with lmax = 5, Nα = 135 is denoted as
CCC(255, 0).

(e) A basis with lmax = 7, Nα = 172 is denoted as
CCC(257, 0).

These bases produce accurate representation of the bound
state of H− and a sufficiently dense discretization of the
continuum. Table I shows the lowest single-electron energies
of pseudostates with n � 10 and orbital angular momenta
values l � 3. The bound-state energy is 0.736 eV, which is
within 2.4% of the experimental value of 0.754 eV [32]. The
positive-energy state spectrum is dense at lower energies but
gets more sparse for higher energies.

Dipole polarizability obtained by summing over the pseu-
dostate spectrum is 215.14 and compares well with the value
of αd = 206.149 obtained in accurate calculations of Bhatia
and Drachman [33].
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FIG. 1. Convergence of the electron-loss cross sections calcu-
lated within the single-center approach.

Since the target is charged, the integrated elastic scattering
cross section is infinite. Therefore, in the absence of any target
excited states, only measurable cross sections are breakup and
Ps-formation ones, the sum of which is called the electron-loss
cross section. In the single-center CCC method the electron-
loss cross section is calculated as a sum of the cross sections
for excitation of the positive-energy pseudostates.

The electron-loss cross sections calculated with different
basis sizes are shown in Fig. 1. The cross sections rise rapidly
from lmax = 0 to lmax = 1 at all energies. From lmax = 1 to
lmax = 3 a noticeable change is found only below 3 eV impact
energies. The results for lmax = 3 are only slightly different
from those for lmax = 5 near the threshold. Good agreement of
the results for lmax = 5 and lmax = 7 indicate that convergence
with increasing lmax has been achieved.

B. Two-center calculations

The two-center calculations are performed with the fixed
number of H− states, Nα = 27, which has 10s, 9p, and 8d
pseudostates and convergence is checked by increasing the
number of included Ps states. Ps states are generated with
the basis size of Nl = 5 − l and the first three states closely
represent the 1s, 2s, and 2p eigenstates while others are
pseudostates and n > 3 pseudostates have positive energies.

The following list describes the two-center basis types and
their notations.

(a) A basis with Nα = 27, Nβ = 1 is denoted
as CCC(102, 1).

(b) A basis with Nα = 27, Nβ = 3 is denoted as
CCC(102, 3).

(c) A basis with Nα = 27, Nβ = 6 is denoted
as CCC(102, 6).

(d) A basis with Nα = 27, Nβ = 9 is denoted as
CCC(102, 9).

In addition to the above models, we also performed calcu-
lations with two more different models where the target wave
functions are obtained in the frozen-core model. The first
one is labeled as FC CCC(102, 6) and is used to check how
the accuracy of the target wave functions affect the results.
It includes the same number of basis states as in the model
CCC(102, 6), but differs in the accuracy of the target wave
functions. The second is labeled as FC CCC(1s,18) and is
used to compare with the RCCA calculations of McAlinden
et al. [10] employing similar basis and target wave function.
It includes the target ground state obtained within the frozen-
core model and 18 Ps pseudostates (up to 7s̄, 7p̄, and 7d̄ states)
obtained with the basis size of Nl = 7 − l . In these frozen-
core models the target bound state energy is −0.362 eV,
which is the same as in the RCCA [10] calculations.

Cross sections of Ps formation in bound states obtained
with different Ps-basis types are shown in Fig. 2. The results
of the CCC(102, 1) model, which has only the ground state
of Ps, are lower than the others. Adding 2s and 2p states of
Ps changes the results substantially, indicating the importance
of Ps formation in these states. Further addition of Ps pseu-
dostates, some of which have positive energy, has slightly
reduced the values of the cross sections. This is expected
behavior of bound-state cross sections due to coupling to
positive-energy pseudostates. Almost identical results of the
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FIG. 2. Convergence of the two-center CCC calculations for the
Ps-formation cross section.

CCC(102, 6) and CCC(102, 9) models indicate that conver-
gence has been achieved.

Figure 3 presents an electron-loss cross section obtained
with the two-center expansions. The result of the CCC(102, 1)
basis has a minima at the breakup energy threshold and is
lower than other calculations. By adding Ps formation in 2s
and 2p states the results have changed substantially at lower
energies and the minima at the threshold have disappeared.
Further addition of Ps pseudostates has only increased the
cross section values at above 2 eV. Again, good agreement
between the CCC(102, 6) and CCC(102, 9) results show con-
vergence of the cross sections.

Comparison of the electron-loss cross sections obtained
with the single- and two-center CCC methods is shown in
Fig. 4. Good agreement between the two results confirm
the internal consistency of the theory. A small difference
just above the breakup threshold is expected due to slow
convergence of the single-center results near the threshold.

This is related to a low number of open target-based pseu-
dostates at low energies. Therefore, the single-center CCC for
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FIG. 3. Convergence of electron-loss cross sections calculated
within the two-center CCC approach.
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FIG. 4. Comparison of single- and two-center CCC calculations
for electron-loss cross sections. The two-center CCC results for
the contributions of Ps formation and breakup are also shown for
comparison.

positron scattering is usually accurate at a few eV above the
threshold.

The two-center CCC results for the electron-loss cross
sections are calculated as a sum of the Ps formation and
breakup cross sections. Between 0 and 3 eV the Ps formation
is the main contributor and the breakup becomes the domi-
nant contributor afterwards. Low value of the breakup cross
sections near the breakup threshold is likely due to Ps being
formed readily from slow moving electron and positrons.

Note that in the two-center calculations we have ignored
electron exchange between Ps and H while evaluating the
Ps-Ps transition matrix elements. However, close agreement
of the single- and two-center results indicates that exchange
terms in the Ps → Ps channels are small.

C. Comparison with the RCCA results
and experimental data for electron impact

The RCCA method applied to the e+-H− collision system
by McAlinden and co-workers [10] was the most comprehen-
sive study to date. The RCCA calculations were performed
using a two-center expansion which included 22 states (com-
bination of eigen- and pseudostates) of Ps and the ground
state of H−. The wave function of H− was obtained with
the frozen-core type approach using only s functions which
produced the single-electron detachment energy of 0.362 eV.
In the scattering calculations, this energy was replaced by the
correct ground-state energy of H− in order to have the correct
threshold energies.

Figure 5 compares various CCC-calculated cross sections
for Ps formation in bound states with the RCCA results of
McAlinden et al. [10]. Agreement between the two-center
results marked as CCC(102, 6) and the RCCA is only in the
shape and the energy dependence (1/E ) of the Ps-formation
cross sections at low energies. The FC CCC(1s,18) com-
pares better with the RCCA results, thereby indicating the
importance of the better accuracy of the ground state obtained
in the full CI calculations. The remaining difference can be
attributed to different target and Ps wave functions used.
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FIG. 5. Comparison of two-center results for total cross section
of Ps formation in bound states.

Our calculations, not presented here, with different fall-off
parameters of Ps pseudostate wave functions have shown that
Ps-formation cross sections are very sensitive to a change in
Ps pseudostates when the target positive-energy pseudostates
are not included. When the latter are included, as in the present
CCC two-center calculations, the results are less sensitive to
Ps-basis parameters.

Comparison of the results from the CCC(102, 6) calcula-
tions with FC CCC(102, 6) shows how the quality of the target
ground-state wave function affects the Ps-formation cross
sections. At impact energies below 5 eV the frozen-core target
wave function results FC CCC(102, 6) are considerably higher
than the CCC(102, 6) results obtained with the accurate target
ground-state wave function. But above 5 eV the difference
between the two models gradually disappears.

Note that the Ps bases used in the RCCA and present
calculations are somewhat different due to different ways
used in obtaining them. However, the first three Ps states are
sufficiently close to eigenstates in both cases. Therefore, in
Fig. 6 we compare results for the sum of the cross sections
for Ps formation in 1s, 2s, and 2p states. Results of the FC
CCC(1s,18) model are lower than the RCCA results but both
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FIG. 6. Sum of cross sections of Ps formation in 1s, 2s, and
2p states.
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FIG. 7. Breakup cross sections for positron impact (present
CCC, RCCA [10], and FBA [6]) and electron impact (experiment).
The experimental data are due to Fritioff et al. [34], Peart et al.
[35], Andersen et al. [36], Walton et al. [37], Dance et al. [38], and
Tisone and Branscomb [39]. The CCC results for Ps formation are
also shown for comparison.

have a similar shape. The two-center CCC results are also in
good agreement with the RCCA ones. This agreement is quite
surprising considering the different models and particularly
different target wave functions used in the calculations. In this
case, the FC CCC(102, 6) results are only slightly lower than
the CCC(102, 6) results.

As seen in Fig. 5, the Ps-formation cross section falls off
fast as impact energy increases. Therefore, at high enough
energies, where Ps formation and electron exchange can be
ignored, positrons should scatter similar to electrons. To check
this, in Fig. 7 we compare the CCC, RCCA [10], and FBA
[6] results for positron-impact breakup cross sections with
experimental data for electron impact. The electron-impact
measurements have been conducted over the past few decades
starting in the early 1960s [34–39]. There are substantial
differences between the different measurements. The CCC
results for Ps formation are also presented for comparison. At
energies above 50 eV, where Ps formation becomes negligible,
the CCC results for positron impact are in good agreement
with the measurements of Peart et al. [35] and Dance et al.
[38]. At lower energies positron-induced breakup cross sec-
tions are much higher than for electrons due to the target
having a negative charge that attracts positrons and repels
electrons. The FBA calculations of Rudge [6] significantly
overestimate the breakup cross sections below 50 eV high-
lighting the importance of close-coupling effects.

IV. SUMMARY

The CCC method has been applied to positron scattering
from H−. Convergence of results both in the single- and two-
center approaches has been demonstrated. Electron exchange
between the Ps and H atoms was neglected in calculations
of the Ps-Ps matrix elements appearing in the two-center
approach. Excellent agreement between the single- and two-
center CCC results confirms the internal consistency and
also justifies the validity of the approximation used in the
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two-center CCC method. Comparison with the 22-state
RCCA method shows some minor discrepancies which are
attributed to differences in the methods and radial basis wave
functions used in the calculations. The importance of the
quality of the target ground-state wave function has been
found to affect mostly the breakup cross sections, while Ps-
formation cross sections are less sensitive provided there are
a sufficient number of target pseudostates.
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