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Multireference quantum chemistry protocol for simulating autoionization spectra:
Test of ionization continuum models for the neon atom
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In this paper we present a protocol to evaluate partial and total Auger decay rates combining the restricted
active space self-consistent field electronic structure method for the bound part of the spectrum and numerically
obtained continuum orbitals in the single-channel scattering theory framework. Additionally, the two-step picture
is employed to evaluate the partial rates. The performance of the method is exemplified for the prototypical
Auger decay of the neon 1s −13p resonance. Different approximations to obtain the continuum orbitals, the
partial rate matrix elements, and the electronic structure of the bound part are tested against theoretical and
experimental reference data. It is demonstrated that the partial and total rates are most sensitive to the accuracy
of the continuum orbitals. For instance, it is necessary to account for the direct Coulomb potential of the ion for
the determination of the continuum wave functions. The Auger energies can be reproduced quite well already
with a rather small active space. Finally, perspectives of the application of the proposed protocol to molecular
systems are discussed.
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I. INTRODUCTION

Ionization triggered by photon absorption occurs along two
pathways. In direct photoionization, the energy is transferred
to an ejected electron. Alternatively, the system can be first put
into a metastable state by a resonant excitation and afterwards
decay via an autoionization mechanism. Autoionization can
be approximately understood as a two-step process [1], in
which the decay can be considered independently from the
excitation process and interferences between direct and au-
toionization are neglected. For example, let us consider an
atomic species, such as a neon atom that is prepared in a
highly excited state |�i〉 above the continuum threshold at
E = 0 eV (Fig. 1). This state spontaneously decays into the
continuum state |�α〉 consisting of the discrete state |�+

f 〉 of
the ion and the emitted electron, |ψα〉, carrying the excess
energy εα = Ei − E f . The system’s electronic structure is
thus encoded into the kinetic-energy spectrum of the ionized
electrons. Photoelectron spectroscopy (PES) and autoioniza-
tion spectroscopy (AIS) map bound states to the continuum,
which makes them less sensitive to selection rule suppression
and more informative than spectroscopies involving optical
transitions between bound states [2–4].

Autoionization processes, predominantly Auger decay [5]
but also interatomic Coulombic decay (ICD) [6] and electron
transfer mediated decay (ETMD) [7], are particularly interest-
ing on their own. Due to their correlated nature, they not only
probe but also initiate or compete with intricate ultrafast elec-
tronic and nuclear dynamics (see, e.g., [8–12]). Additionally,
they provide the main channel for the decay of core vacancies
[13] and play a key role in biological radiation damage,
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creating highly charged cations while a cascade of highly
reactive low-energy electrons is emitted [11,14–17]. Further,
in free-electron laser experiments operating with ultrashort
intense x-ray pulses, autoionization after multiple photoion-
ization induces the Coulomb explosion of the target, which
limits the achievable spectroscopic and temporal resolution
[18]. Due to this wealth of applications, autoionization and
especially the local Auger effect have been studied extensively
both theoretically and experimentally since their discovery by
Meitner [5] and description by Wentzel [1].

Remarkably, AIS simulations of molecular systems remain
challenging today, although the fundamental theory has been
known for decades [19–21]. For atoms, methods combining
highly accurate four-component multiconfigurational Dirac-
Fock (MCDF) calculations with multichannel scattering the-
ory are publicly available [22], whereas no such general
purpose code exists for molecules. The main complication
of the molecular case lies in the construction of molecular
continuum states |�α〉. The approaches to the simulation of
AIS published during the last decades can be classified into
two families—those that circumvent the continuum orbital
problem and those that treat the continuum orbital explicitly.

The first family consists of the following approaches.
The simplest method that allows one to assign experimen-
tal AIS is to evaluate the energetic peak positions [23–25].
Additionally, simple estimates for the partial decay rates can
be obtained based on an electron population analysis [26].
More advanced approaches rely on an implicit continuum
representation with Stieltjes imaging [27], a Green’s-function
operator [28,29], or a propagator formalism [30,31]. From this
group, the Fano-Stieltjes algebraic diagrammatic construction
(Fano-ADC) method [32] has been used to evaluate Auger,
ICD, and ETMD decay rates of van der Waals clusters [33],
first row hydrides [34], and the [Mg(H2O)6]2+ cluster [11].
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FIG. 1. Autoionization scheme for the neon atom. The core
vacancy state |�i〉 with energy Ei (red/dark gray) decays isoenerget-
ically into the continuum state |�α〉 (black) composed of the ionic
bound state |�+

f 〉 with energy E f (blue/gray) and the continuum
orbital |ψα〉 of the outgoing electron with the excess energy εα . States
that do not contribute to the process are depicted in light gray; the
singly ionized continuum is denoted by the color gradient/shaded
area.

Therein, the continuum is approximately represented with
spatially confined basis functions. However, the description of
Auger electrons with kinetic energies of several hundred elec-
tronvolts requires large basis sets leading to computationally
demanding simulations.

The second family, relying on an explicit representation
of the continuum wave function, consists of the following
approaches. The one-center approximation uses atomic con-
tinuum functions centered at the vacancy-bearing atom to
describe the outgoing electron in the evaluation of partial
decay rates [35–38]. This approximation can be applied on
top of high-level electronic structure methods [39]. It is also
applied in the XMOLECULE package [40,41], which is based
on very cost efficient electronic structure calculations and
atomic continuum functions. This allows for the evaluation of
ionization cascades but may limit the applicability for strongly
correlated systems, e.g., systems possessing a multiconfig-
urational character. Further, the influence of the molecular
field may be taken into account perturbatively [42,43] or in
a complete manner with, e.g., the single-center approach,
where the whole molecular problem is projected onto a single-
centered basis [44–49].

Finally, multichannel scattering theory methods that com-
bine finite multicentered basis sets with the appropriate
boundary conditions to represent the molecular continuum
have been developed [50] and applied to the AIS of a variety
of small systems [50–52]. For instance, the recently developed
XCHEM approach [53] has been applied to simulate PES and
AIS of atoms [54] and small molecular systems [55]. These
techniques represent the most general and accurate quantum-
mechanical treatment of the problem, thus potentially serving

as a high-level reference, although connected to substantial
computational effort.

Summarizing, most of the above-mentioned methods have
been applied only to simple diatomics, first row hydrides,
halogen hydrides, and small molecules consisting of not more
than two heavy atoms. Studies of larger molecular systems,
such as tetrahedral molecules, small aldehydes, and amides
[56,57]; solvated metal ions [11]; and polymers [58] are very
scarce. In fact, the FANO-ADC [32,33] and the XMOLECULE

[40,41] approaches are the only publicly available tools that
allow one to simulate AIS for a variety of systems without
restricting the molecular geometry. Further, both methods are
not suited to treat systems possessing multiconfigurational
wave functions. This puts studies of some chemically inter-
esting systems having near degeneracies, e.g., transition-metal
compounds, or of photodynamics in the excited electronic
states, e.g., near conical intersections, out of reach. To keep
up with the experimental advancements, the development of a
general purpose framework to evaluate autoionization decay
rates (Auger, ICD, and ETMD) for molecular systems is
warranted. Such a framework should be kept accessible, trans-
ferable, and easy to use; i.e., it should be based on widespread
robust and versatile quantum chemistry (QC) methods.

Here, we present a protocol that combines multiconfigura-
tional restricted active space (RAS) self-consistent field (SCF)
(RASSCF) bound-state wave functions with single-centered
numerical continuum orbitals in the single-channel scatter-
ing theory framework [59]. We have chosen the RASSCF
approach since it is known to yield reliable results for core-
excited states [60], needed in the simulation of x-ray ab-
sorption [61,62], resonant inelastic scattering [63,64], and
photoemission spectra [65–67], suggesting its application to
AIS.

Although the ultimate goal is to investigate molecules,
this proof-of-concept paper focuses on the simulation of the
prototypical neon 1s −13p Auger electron spectrum (AES) to
calibrate the approach, since highly accurate reference data
are available from both theory [68] and experiment [69–72].
Special attention is paid to the representation of the radial
continuum waves, which is investigated herein by a thorough
test of different approximations. Note that our implementation
allows one to calculate molecular AIS as well as PES, which
will be presented elsewhere.

We commence this paper with an introduction to the
underlying theory and further give important details of our
implementation. The paper continues with the computa-
tional details and the benchmark of our results against the-
oretical and experimental references. Finally, we conclude
the discussion and present perspectives for the molecular
application.

II. THEORY

The approach for the calculation of partial autoionization
rates consists of the following approximations.

(1) The two-step model [1] is employed; i.e., excitation
and decay processes are assumed to be decoupled and in-
terference effects between photoionization and autoionization
are neglected (Fig. 1). Within this approximation, the partial
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autoionization rate for the decay i → α reads [19]

�iα = 2π |〈�α|H − Ei|�i〉|2. (1)

Atomic units are used throughout, unless explicitly stated
otherwise.

(2) We require that all bound-state wave functions have the
form of configuration interaction (CI) expansions in terms of
N-electron Slater determinants:

|�〉 =
∑

j

Cja
†
j1,σ1

· · · a†
jN ,σN

|0〉. (2)

The a†
i,σi

are the usual fermionic creation operators in the spin-
orbital basis {ϕi,σi}. In this paper, multiconfigurational bound-
state wave functions for the unionized and ionized states |�i〉
and |�+

f 〉 are obtained with the RASSCF or restricted active
space second-order perturbation theory (RASPT2) method.
However, the presented protocol can employ any CI-like QC
method.

(3) The limit of weak relativistic effects is assumed; thus,
the total spins S and S+ and their projections onto the quanti-
zation axis M and M+ of the bound un-ionized and ionized
systems are good quantum numbers. Further, S and M are
conserved during the autoionization process.

(4) The single-channel scattering theory framework is em-
ployed, disregarding interchannel coupling as well as correla-
tion effects between the bound and outgoing electrons.

(5) The continuum orbitals are treated as spherical waves,
subject to the spherically averaged potential Vf (r) of the ionic
state |�+

f 〉. Hence, the continuum orbitals have the form

ψα,σ (r, ϑ, φ) = 1

r
w

f k
l (r)Y m

l (ϑ, φ)ζ (σ ), (3)

with spherical harmonics Y m
l (ϑ, φ) being the angular part and

ζ (σ ) being the spin function. For brevity, ζ (σ ) is generally
omitted and present only when needed. The composite chan-
nel index α = ( f , l, m, k) contains the index of the ionized
state f , the orbital and magnetic quantum numbers l and m,
and the wave number k = √

2εα of the continuum orbital. This
notation uniquely identifies the total energy Eα = E f + εα and
the continuum orbital and bound state for each channel |�α〉.
Generally, indices i and f always refer to bound states of the
un-ionized and ionized species and α denotes decay channels.

The radial part w f k
l (r)/r is determined by solving the radial

Schrödinger equation:[
d2

dr2
+ 2

(
k2

2
− Vf (r)

)
− l (l + 1)

r2

]
w

f k
l (r) = 0. (4)

With the assumptions 1–5, the N-electron ionized contin-
uum states with conserved total spin and projection of the
un-ionized states, S and M, can be written as

|�α〉 =
S+∑

M+=−S+

∑
σ=− 1

2 , 1
2

CS,M
S+,M+;σ

∣∣ϒσM+
α

〉
, (5)

where σ is the spin projection of the outgoing electron. The
Clebsch-Gordan coefficients CS,M

S+,M+;σ = 〈S, M|S+, M+; 1
2 , σ 〉

couple the channel functions |ϒσM+
α 〉. These are constructed

by inserting an additional electron with the continuum orbital

|ψα,σ 〉 into the bound ionic state with spin projection M+,
retaining the antisymmetry:∣∣ϒσM+

α

〉 = a†
α,σ |�+

f ,M+〉. (6)

Note that in contrast to the continuum state |�α〉, which is an
eigenstate of S2 and Sz, the |ϒσM+

α 〉 are not eigenfunctions of
S2, but only of Sz.

III. DETAILS OF THE IMPLEMENTATION

A. Model potentials

We commence with the discussion of different approxima-
tions to the potential Vf (r) in Eq. (4), which are central for the
quality of the free-electron function. In this paper, we have
used the following models:

V free = 0, (7a)

V eff(r) = −Zeff

r
, (7b)

V scr
f (r) = −Z f (r)

r
, (7c)

V J
f (r) = −Z

r
+ Jf (r), (7d)

V JX
f (r) = −Z

r
+ Jf (r) + X S

f (r). (7e)

In words, we use (a) no potential; (b) an effective Coulomb
potential with a fixed charge Zeff; (c) the screened Coulomb
potential of an ionic state f with the charge Z f (r) varying
with distance; (d) the nuclear, −Z/r, and spherically averaged
direct potential of the ionic state, Jf (r); and (e) the potential
of approach (d) augmented with Slater’s exchange term X S

f (r)
[73]. Details on the definition of Z f (r), Jf (r), and X S

f (r) are
given in Appendix A.

B. Continuum orbitals

The solutions to the radial Schrödinger equation, Eq. (4),
using the potentials (7a)–(7e) can be understood as follows: In
approach (a), assuming a free particle, we completely neglect
any influence of the ion onto the outgoing electron. Here, the
radial part of ψα,σ (r, ϑ, ϕ) corresponds to spherical Bessel
functions jl (kr) [74]:

ψ free
α,σ (r, ϑ, φ) =

√
2

π
k jl (kr)Y m

l (ϑ, φ)ζ (σ ). (8)

The prefactor
√

2
π

k ensures the correct normalization,

〈ψα,σ |ψα′,σ ′ 〉 = δll ′δml m′
l
δσσ ′δ(εα − εα′ ), (9)

which is exact only for the free-particle approach, and approx-
imate for all other potentials, due to the long-range Coulomb
distortion.

An effective Coulomb form [approach (b)] is the simplest
approach to approximately account for the ionic potential. It
has the advantage that the solutions to Eq. (4) are still ana-
lytically available in the form of regular Coulomb functions
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Fl [74]:

ψeff
α,σ (r, ϑ, φ) =

√
2

πk

Fl (η, kr)

r
Y m

l (ϑ, φ)ζ (σ ), (10)

with η = −Zeff/2k.
Approaches (c)–(e) employ numerically obtained poten-

tials according to Eqs. (7c)–(7e) and thus require a numerical
solution of the radial Schrödinger equation (4). It is done using
Numerov’s method and the numerically obtained radial waves
are scaled so as to satisfy the asymptotic boundary conditions:

w
f k
l (r → 0) = nrl+1, (11a)

w
f k
l (r → ∞) =

√
2

πk

[
cos δ

f
l (k)Fl (η, kr)

+ sin δ
f
l (k)Gl (η, kr)

]
. (11b)

The scaling factors and phase shifts δ
f
l (k) are obtained

by matching the numerical solutions and their first deriva-
tives with a linear combination of the regular and irregular
Coulomb functions Fl and Gl (see [74]). This matching is
carried out in the asymptotic region, where the potential is
well approximated by the Coulomb potential of the ions’ net
charge Vf (r) ≈ −Znet/r.

Since the screened Coulomb potential model, Eq. (7c),
is an ad hoc assumption based on the simple idea that the
nuclear charge is screened by the integrated electron density,
the applicability of this model needs to be tested. In turn,
approaches (d) and (e), employing the spherically averaged
direct Coulomb and exchange terms according to Eqs. (7d)
and (7e), in a sense correspond to the Hartree and Slater-Xα

levels of accuracy, respectively.
The continuum orbitals obtained by any of these methods

are not orthogonal to the bound orbitals, which is in contrast
to the behavior that an exact continuum orbital would possess.

C. Continuum matrix elements

Using the decomposition of the continuum states in terms
of channel functions in Eq. (5) and separating the Hamil-
tonian into its one- and two-electron parts H = ∑

u hu +∑
u<v 1/ruv , the partial decay rate becomes

�iα = 2π

∣∣∣∣∣∣
∑

M+,σ

CS,M
S+,M+;σ

[∑
u

〈
ϒσM+

α

∣∣hu

∣∣�i
〉

+
∑
u<v

〈
ϒσM+

α

∣∣ 1

ruv

∣∣�i
〉 − Ei

〈
ϒσM+

α

∣∣�i
〉]∣∣∣∣∣

2

. (12)

Here, u and v are electron indices, hu contains the electronic
kinetic-energy and electron-nuclei attraction terms, and 1/ruv

is the electron repulsion.
The expressions for the overlap and one- and two-electron

matrix elements in Eq. (12) are obtained by using Löwdin’s-
Slater determinant calculus [75]. Here one has to take into
account that the un-ionized and ionized bound states are
obtained in separate SCF calculations. Consequently, they
have different sets of Norb spin orbitals {ϕi} and {ϕ+

i } that are
not mutually orthogonal. The spin coordinates are implicitly
assumed to be assigned as introduced in Eq. (2). Then, the

respective creation and annihilation operators are a†
i , ai and

(a+
i )†, a+

i .
With this, the overlap integral in Eq. (12) can be rearranged

into the overlap of the continuum orbital and the Dyson orbital
(DO) |�M+

iα 〉: 〈
ϒσM+

α

∣∣�i
〉 = 〈

ψα,σ

∣∣�M+
iα

〉
. (13)

The DO is generally defined as the N − 1 particle overlap of
the un-ionized and ionized states |�i〉 and |�+

f ,M+〉 that are
associated with the channel α and can be expressed in second
quantization form as a linear combination of the spin orbitals
{ϕs} of the un-ionized species, with the coefficients φM+

α,s :

∣∣�M+
iα

〉 =
Norb∑
s=1

〈�+
f ,M+ |as|�i〉︸ ︷︷ ︸

φM+
α,s

|ϕs〉. (14)

Staying on this route, the one- and two-electron transition
matrix elements in Eq. (12) can be expressed as∑

u

〈
ϒσM+

α

∣∣hu

∣∣�i
〉 = 〈

ψα,σ

∣∣h∣∣�M+
iα

〉 + 〈
ψα,σ

∣∣�̃1,M+
iα

〉
(15)

and

∑
u<v

〈
ϒσM+

α

∣∣ 1

ruv

∣∣�i
〉 =

Norb∑
q=1

〈
ψα,σ ϕ+

q

∣∣ 1

r12

∣∣�M+,q
iα

〉
+ 〈

ψα,σ

∣∣�̃2,M+
iα

〉
. (16)

Here, |�M+,q
iα 〉 is the two-electron reduced transition density

∣∣�M+,q
iα

〉 =
Norb∑

s1 	=s2

〈
�+

f ,M+
∣∣(â+

q

)†
âs1 âs2

∣∣�i
〉∣∣ϕs1ϕs2

〉
, (17)

and |�̃n,M+
iα 〉 are the one- and two-electron conjugated Dyson

orbitals for n = 1 and 2, respectively [see Eqs. (B3) and (B4)].
A simpler formulation of the non-orthogonal (NO) terms
proposed in [76] is not used herein, because in practice it is
not always strictly equivalent to our approach (see Sec. II of
Supplemental Material [77] for details).

The strong orthogonality (SO) approximation, i.e., the
assumption that the overlaps of the continuum and all un-
ionized orbitals are zero, 〈ψα,σ |ϕi,σi〉 = 0, implies that the
overlap integrals between the continuum and the ordinary
and conjugated Dyson orbitals in Eqs. (13), (15), and (16)
vanish. Since the evaluation of the conjugate DOs can be
quite involved, SO approximation substantially simplifies the
computation.

A similar effect is achieved by using the Gram-Schmidt
(GS) orthogonalization to project the orbitals of the ion-
ized system out of the continuum functions and enforce
〈ψGS

α,σ |ϕ+
i,σi

〉 = 0. This approach has been tried before, e.g., in
[44], and will be tested herein as well.

In the following, we will use the labels SO, NO, and GS
to indicate that the overlap terms in Eqs. (13), (15), and (16)
have been neglected (SO) or fully included (NO) and that
GS orthogonalized continuum functions have been used to
evaluate the partial rates including the NO terms as well.
Further, we also compare the results of the “full” Hamiltonian
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TABLE I. QC setups and number of states used in the state-
averaged RASSCF calculations.

States
QC Basis set Active space Ne/Ne+ X2C

I [7s6p3d2 f ] RAS(8; 1, 1) 41/132 No
II [22s6p3d2 f ]-rcc RAS(8; 1, 1) 41/132 Yes
III [9s8p5d4 f ] RAS(26; 1, 1) 131/420 No

coupling against the popular choice to account only for the
two-electron terms in Eq. (12), denoting them as H and r−1

coupling, respectively. The combination of matrix elements
corresponding to each approach is detailed in Appendix B.

To sum up, the present paper reports on the influence
of different combinations of the introduced approximations
to the potentials, transition matrix elements, and continuum
orbitals on the partial Auger decay rates of the exemplary
neon 1s −13p resonance. As a shorthand notation for the
combination of the different approximations we will use the
(coupling)-(potential)-(nonorthogonality) notation, where ap-
plicable. For instance, H-V JX

f (r)-NO denotes partial rates ob-
tained using the H coupling, with radial waves corresponding
to the V JX

f (r) potential and including the overlap terms.

IV. COMPUTATIONAL DETAILS

A. Quantum chemistry for bound states

The wave functions of the bound neutral and ionic states
have been obtained in separate state-averaged RASSCF cal-
culations with a locally modified version of MOLCAS 8.0 [78].
To prevent mixing of different angular momentum basis func-
tions into one orbital, the “atom” keyword has been employed.
The QC schemes used to evaluate the bound states |�i〉 and
|�+

f 〉 are presented in Table I. The RAS formalism is a flexible
means to select electronic configurations. Therein, the AS is
subdivided into three subspaces RAS1, RAS2, and RAS3.
The RAS notation that is used throughout the paper is to be
understood as follows. In all spaces, the 1s orbital forms the
RAS1 subspace and the 2s and 2p orbitals build up the RAS2
one. The occupation of the 2s and 2p orbitals in RAS2 is not
restricted, while only h electrons may be removed from RAS1.
Finally the RAS3 subspace contains v virtual orbitals that
can be occupied by at most p electrons. Thus, we can herein
uniquely specify each AS as RAS(v; h, p). The ASs used in
this paper are as follows: RAS(8; 1, 1), containing 3s, 3p, 4s,
and 4p orbitals in the RAS3; RAS(26; 1, 1), enlarging RAS3
by the 3d , 4d , 5s, 5p, 6s, and 6p orbitals; and RAS(33; 1, 1),
adding the 4 f orbitals. The number of configurations possible
with each AS is shown in Table II. For all QC schemes (see
Table I) all states are included in the RASSCF procedure for

TABLE II. Maximum number of configurations for each AS.

RAS RAS(8; 1, 1) RAS(26; 1, 1) RAS(33; 1, 1)

Ne 41 131 166
Ne+ 197 629 797

the Ne wave functions, while the core excited states have been
excluded for the calculations of Ne+.

Atomic natural orbital (ANO) type basis sets have been
employed using a (22s17p12d11 f ) primitive set. It was con-
structed by supplementing the ANO exponents for neon [79]
in each angular momentum with eight Rydberg exponents
generated according to the scheme proposed by Kaufmann
et al. [80]. The contractions were then obtained with the
GENANO module [81] of OPENMOLCAS [82] using density
matrices from state averaged RASSCF calculations for Ne
and Ne+ with the RAS(33; 1, 1) AS. All 166 possible states
for Ne have been taken into account, but for Ne+ the core
excited manifold has been excluded, leading to 532 states.
To get the final basis set, the sets obtained for Ne and Ne+

have been evenly averaged. In this paper, we use the fol-
lowing contractions: [7s6p3d2 f ], obtained by the procedure
described above; [9s8p5d4 f ], corresponding to [7s6p3d2 f ]
supplemented with Rydberg contractions that resulted from
the GENANO procedure using the “rydberg” keyword; and
[22s6p3d2 f ]-rcc, similiar to [7s6p3d2 f ] but with uncon-
tracted s functions and scalar relativistic corrections according
to the exact two component decoupling (X2C) scheme [83]
(see Supplemental Material [77]).

All energies have been corrected using the single state
RASPT2 method [84] with an imaginary shift of 0.01 a.u. To
be consistent with the basis set generation, scalar relativistic
effects have only been included for QC II. The RAS state
interaction [85] module of MOLCAS was used to compute
the biorthonormally transformed orbital and CI coefficients
[86] for the atomic and ionic states: {ϕi}, {Cj} → {ϕ̃i}, {C̃j}
such that 〈ϕ̃+

i |ϕ̃ j〉 = δi j , while the total wave functions remain
unchanged. This biorthonormal basis is used in the evaluation
of the Dyson orbitals [Eqs. (14), (B3), and (B4)] and two-
electron reduced transition densities [Eq. (17)].

B. Matrix elements in the atomic basis

The matrix elements between bound orbitals occurring in
Eqs. (12), (15), and (16) are evaluated by transforming the
orbitals to the atomic basis and calculating the atomic basis
integrals with the LIBCINT library [87]. The most time con-
suming part in the computation of the partial decay rates using
Eq. (12) is the estimation of the two-electron continuum-
bound integrals. Transforming the two-electron reduced tran-
sition densities and the orbitals to the atomic basis {χi} and
neglecting the spin integration, the two-electron continuum-
bound integrals used in the practical evaluation of Eq. (16)
read as

〈αa|bc〉 =
∫

ψ∗
α (r1)χb(r1)

[∫
χ∗

a (r2)χc(r2)

r12
)dr3

2

]
︸ ︷︷ ︸

fac (r1 )

dr3
1.

(18)
The function fac(r1) is similar to an atomic nuclear attraction
integral and is evaluated as a function of r1 using the LIBCINT

library [87]. An important point is to exploit the fact that the
kinetic energy of the continuum electron is only encoded in its
radial part. Transforming to spherical coordinates r → (r,�)
centered at the origin of the outgoing electron allows one to
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separate off the radial integration:

〈αa|bc〉 =
∫ ∞

0
rw f k

l (r)

×
[∫

�

Y m
l (�)χb(r(r,�)) fac(r(r,�))d�

]
︸ ︷︷ ︸

Fabc (r)

dr.

(19)

The angular integral in Fabc(r) is determined numerically by
using the adaptive two-dimensional integration routine CUHRE

from the CUBA 4.2 library [88]. To reduce the number of points
at which Fabc(r) is evaluated, an adaptive spline interpolation
is used, which was developed by us and implemented in
our code. Therein, the grid spacing is adjusted such that the
absolute error estimate of the interpolation is kept lower than
10−6 a.u. on each region with a different spacing. Note that
the Fabc(r) are determined only once, while the final radial in-
tegration in Eq. (19) needs to be evaluated for every transition
i → α. The radial integration in Eq. (19) is carried out using
the Simpson rule. For the one-electron continuum-bound in-
tegrals that are needed in the evaluation of the one-electron
matrix elements in Eq. (12), an analogous approach has been
implemented. This protocol has been developed aiming for the
application to molecular systems. Hence, it does not exploit
that the atomic orbitals are eigenstates of angular momentum
operators, which would be usual in a purely atomic approach.

V. RESULTS AND DISCUSSION

Here, we perform a thorough benchmark of the approaches
to evaluate AES presented in Sec. II on the exemplary Auger
decay of the neon 1s −13p resonance. First, in Sec. V A, we
compare the AES modeled with our protocol against data ob-
tained from an atomic MCDF calculation [68], which serves
as a high level theoretical reference. Second, in Sec. V B, we
undertake the comparison to experimental results. The com-
parison against both theory and experiment is needed since
no uniform and highly resolved experimental data covering
the full energy range discussed herein have been published to
date.

A. Benchmark of theoretical models

Panel (a) of Fig. 2 shows neon AESs, resulting from the
autoionization of the 1s −13p states, obtained using bound-
state wave functions from QC scheme I (see Table I) with
radial waves corresponding to the spherically averaged direct-
exchange potential V JX

f (r) [Eq. (7e)]. The partial rates have
been evaluated using the full H coupling as well as the
approximate r−1 coupling in Eq. (12). Further, the nonorthog-
onality of the continuum and bound orbitals was accounted
for by including the overlap terms, NO [see Eqs. (13), (15),
and (16)]. A spectrum employing r−1 coupling at the MCDF
level, obtained by Stock et al. [68] with the RATIP package
[22], serves as a theoretical benchmark. Therein, the atomic
structure was obtained with a configuration space including
single-electron excitations from the 1s, 2s, and 2p to the np
up to n = 7 and 3d orbitals. The four-component continuum

orbitals have been obtained as distorted waves within the
potential of the respective ionized atomic state.

All spectra have been constructed by assigning a Gaussian
line shape with a full width at half maximum (FWHM) of
γ = 0.1 eV to each channel:

AES1s−13p(ε) =
∑

α

�1s−13pαG(ε − εα, γ ), (20)

where G(ε, γ ) = √
ln 2/(πγ ) exp(−4 ln 2ε2/γ 2), ε is the ki-

netic energy of the emitted electrons, and εα = E1s−13p − E f

is the Auger electron energy of the channel |�α〉. The spectra
were normalized to the peak height at 811.5 eV, and shifted
globally by −5.35 eV (QC I) and −2.45 eV (MCDF) such
that the peak at 811.5 eV is aligned to the experimental data
taken from Kivimäki et al. [69] (see Fig. 4). In addition, the
dominant continuum orbital angular momentum contribution
to the intensity is indicated for each peak. This shows that
the regions 743–765, 765–800, and 800–825 eV correspond
almost exclusively to the emission of s, p, and d waves,
respectively, with the exception that the peaks at 803 and
808 eV lie in the d region but are due to s-wave emission.
Hence, we will refer to these regions as s, p, and d , rather
than using the energies, in what follows.

It is evident from Fig. 2(a) that the normalized AESs
obtained for the H and r−1 couplings are almost indistin-
guishable in the s and d regions. In contrast, the features
in the p region at 771 and 776 eV are enhanced by 10%,
while the small bands in the range 783–788 eV are reduced
by about 40%, if the H coupling terms are included. The
overall effect on the spectrum, however, is still rather small
and neglecting the contributions beyond the r−1 coupling in
the partial rate evaluation seems to be justified in this case.
The comparison with the MCDF data in the d region shows
that the Auger energies and relative intensities are overall
quite well reproduced by our approach. Only the intensities of
two small satellite peaks at 803 and 809 eV are overestimated
and three tiny features around 805.5–807.5 eV are not present
when using our approach. The latter deficiency can be safely
attributed to the smaller configuration space employed in
the QC I scheme as compared to the one used to obtain
the MCDF results in [68]. Looking at the s and p regions,
the Auger energies from the QC model I become slightly but
increasingly blueshifted with respect to the MCDF ones at the
lower-energy flank of the spectrum. The intensities in turn are
considerably overestimated by factors of about 5 and 2 for the
s and p regions, respectively. Note that very similar spectra
are obtained if the RASPT2 energy correction is not used (see
Supplemental Material [77] Fig. S1).

Panels (b) and (c) of Fig. 2 show the integrated decay
rates for the s, p, and d regions evaluated using QC model
I with the r−1 (b) and H (c) couplings, comparing different
approaches to compute the partial decay rates. The respective
spectra are given in Supplemental Material [77] Figs. S2–S7.
The rates were obtained for all combinations of potential
models in Eqs. (7a)–(7e) with the different nonorthogonality
approaches SO, NO, and GS for the continuum orbitals. Since
no absolute rates for the MCDF results are available, these
have been scaled to the total decay rate obtained using the
r−1-V JX

f (r)-NO treatment. The data in panels (b) and (c) show
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FIG. 2. (a) Neon 1s−13p AES obtained with the r−1 and H couplings and the NO approach using continuum orbitals generated by the
V JX

f (r) potential are shown in comparison to the MCDF results reported by Stock et al. [68]. All spectra are broadened using a Gaussian profile
with an FWHM of 0.1 eV, normalized to the peak at 811.5 eV, and shifted globally to align the 811.5-eV peak with experimental data [69].
The spectra from panel (a) correspond to the NO histograms of the V JX

f (r) potential in panels (b) and (c). The vertical lines at the bottom of
panel (a) indicate the predominant continuum orbital angular momentum (l) contribution to each peak. (b), (c) Auger decay rates integrated
over the given energy ranges corresponding to distinct l contributions. The decay rates have been evaluated based on QC model I for the
r−1 (b) and H (c) couplings. The radial continuum functions correspond to the depicted potentials. Nonorthogonality of the continuum and
bound orbitals was treated with the SO, NO, and GS approaches (see text). The MCDF data have been scaled such that the total decay rate
matches the one obtained for the r−1-V JX

f (r)-NO approach. For reference, the experimentally determined total rate of 8.08 ± 1.1 × 10−3 a.u.
(0.22 ± 0.03 eV) [89] is depicted as a horizontal dashed line. The gray region indicates the experimental uncertainty.

that the decay rates corresponding to the s, p, and d spectral
regions converge for both couplings as the quality of the
potential is increased from the free-particle approximation
V free to the spherically averaged direct-exchange potential
V JX

f (r). The s : p : d ratio obtained from the MCDF spectrum,

however, is not matched. Our approaches systematically over-
estimate the decay rates due to the s and p channels, in line
with the mismatch of intensities unveiled in panel (a).

Prominently, using the approximate r−1 coupling together
with the NO overlap terms leads to an overestimation of the
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s and p regions with respect to the SO results by an order
of magnitude for V free and −1/r, and by factors of 4 and 3
for −6/r. In contrast, employing the SO approximation or
GS orthogonalized continuum orbitals results in more realistic
decay rates. Here, the GS rates reproduce the SO ones for the
d region but are considerably smaller in the s and p regions.
However, when either of the more physically sound potentials
V scr

f (r), V J
f (r), or V JX

f (r) is used, the choice of the nonorthog-
onality treatment has only a weak influence on the integrated
decay rates. This characteristic is due to the continuum-bound
orbital overlaps that decrease if more realistic potentials are
chosen, causing the NO overlap terms in Eqs. (13), (15),
and (16) as well as the effect of the GS orthogonalization to
become negligible. Adding to this, the general insensitivity of
the d region to the nonorthogonality treatment is explained by
the fact that the overlap of the d continuum waves with the
bound orbitals vanishes independently of the potential model.
The overlap integrals are given in Supplemental Material [77]
Table S1.

Generally, the inclusion of the H coupling, Fig. 2(c),
yields mostly smaller total decay rates and less pronounced
differences between the SO, NO, and GS results. The SO
decay rates are usually the largest when H coupling is applied,
while the NO and GS ones are smaller, underestimating the s
and p regions for V free, −1/r, and −6/r, with respect to SO.
Noteworthy, the huge overestimation due to the combination
of r−1 coupling and NO terms is mitigated completely. The
reason is that the NO contribution to the matrix element is
determined by cancellation effects between different one- and
two-electron NO terms rather than their individual magnitude.
Neglecting the one-electron contributions in r−1 coupling
prohibits this error cancellation, leading to the immense over-
estimation observed for V free, −1/r, and −6/r. Similarly, the
agreement between the GS and NO results for these potentials
is not because the effect of the GS orthogonalization is minute,
but again due to the cancellation.

We conclude the discussion of this figure with the obser-
vation that the total rates obtained with the V J

f (r) and V JX
f (r)

potentials reproduce the experimentally observed decay rate
[89]. Independent of the chosen approach, the best match
is obtained with the V J

f (r) potential, whereas the V JX
f (r)

potential leads to slightly underestimated total rates, which
can be attributed to the inclusion of the attractive exchange
term, Eq. (A5). Similarly, we assign the considerable underes-
timation of the total decay rates by the V scr

f (r) potential to the
fact that it is more attractive in the core region than V JX

f (r) (see
Fig. 3). The −6/r potential yields total rates and spectra that
are in approximate agreement with those obtained for V J

f (r)
and V JX

f (r) apart from the case when r−1 coupling and the NO
terms are used (spectra in Supplemental Material [77] Figs.
S2–S7). Notably, the total rates obtained in H coupling with
the effective potentials V free and −1/r agree well with the
experimental reference. However, despite the good agreement
in the total rates the spectra for these approaches deviate in
the p region considerably from the ones obtained for the more
accurate potentials (see Supplemental Material [77] Figs. S5–
S7), indicating that this agreement is rather accidental.

To shed light on the influence of different potentials on
the total decay rates and spectra obtained with QC model

I, H coupling, and the NO approach, potentials, radial con-
tinuum functions, and spectra are presented in Fig. 3. Panel
(a) contains the normalized AESs obtained using the po-
tentials −1/r, −6/r, V scr

f (r), and V JX
f (r). The spectra have

been shifted vertically for the sake of clarity. Shifts and
broadening parameters are the same as in Fig. 2(a). The d
region is represented very well with all potential models,
with the exclusion that the satellite bands at 803 and 808 eV
are barely present when using the −1/r potential. In contrast,
the relative intensities of the s and p regions of the spectra
are strongly affected by the choice of the potential. Here, the
p region consists of two peak groups with different character.
Using the V JX

f (r) results as a reference for this discussion, the
peaks around 771 and 776 eV are overestimated by 30% with
V scr

f (r), almost reproduced with −6/r and underestimated by
a factor of 4 when using −1/r. In contrast, the bands between
783 and 788 eV behave in an inverse manner. Namely, they
are underestimated by 50% with V scr

f (r) and overestimated
by 50% and a factor of 4 with −6/r and −1/r, respectively.
This behavior of the screened and the effective Coulomb
potentials is caused by the fact that V scr

f (r) is more attractive
and −1/r as well as −6/r are less attractive than V JX

f (r),
as depicted in panels (b)–(d). This trend is solely dictated
by the potential but not the coupling or nonorthogonality
treatment; note the exception of the r−1-NO combination
(see Supplemental Material [77] Figs. S2–S7). Finally, in
the s region, the tighter potential results in larger intensities:
−1/r and −6/r lead to an underestimation by an order of
magnitude and 35%, respectively, whereas V scr

f (r) yields an
overestimation by 25%.

For each region, the radial waves and respective potentials,
including the angular momentum term, are shown in panels
(b)–(d) corresponding to the characteristic peaks denoted in
panel (a). Note that the V free and V J

f (r) cases are very similar
to the −1/r and V JX

f (r) ones, respectively, and have been
excluded from the discussion of this figure. The respective
spectra are given in Supplemental Material [77] Fig. S7. One
might understand the differences in the sensitivity of the s,
p, and d spectral regions to the potential by comparing the
short-range behavior of the radial waves w

f k
l (r)/r [Eq. (11a)]

with the electron density that is sharply peaked in the core
region. This suggests that the matrix elements in Eq. (12) are
very sensitive to the description of the continuum orbitals in
this region. It is well known that only the s waves have a con-
siderable contribution at the core, since the radial functions
tend to zero as rl . In fact, the effective radial potential at the
core is dominated by the angular momentum term for l > 0,
meaning that the influence of the present potential models on
the total rates should decrease with increasing l . Regarding
the relative changes of the integrated decay rates within each
region, this is true for H and r−1 coupling, when the NO
overlap terms are included, irrespective of whether the GS
orthogonalization is used in addition or not [Figs. 2(b) and
2(c)]. However, under the SO approximation for r−1 coupling,
the p spectral region is more sensitive to variations in the
potential model than the s region. In fact, for the s waves it is
seen that only the potentials V scr

f (r) and V JX
f (r) lead to similar

radial waves, the slight differences being due to the fact
that the screening model is too attractive in the core region.
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FIG. 3. (a) Neon 1s−13p AES evaluated using QC scheme I, H coupling, and the NO nonorthogonality treatment with radial continuum
functions corresponding to the given potentials. The spectra are normalized to the peak at 811.5 eV, broadened using a Gaussian FWHM of
0.1 eV, and shifted globally by −5.35 eV. In addition, they have have been shifted vertically by 2.0 [V scr

f (r)], 4.0 (−6/r), and 6.0 (−1/r) units
to enhance the visibility. (b–d) Effective radial potentials (dashed) and continuum functions (solid) corresponding to the dominant angular
momentum contribution l = 0, 1, 2 of the peaks (b)–(d) in panel (a) are shown together with the spherically averaged electron densities ρ f (r)
of the respective ionized states. The colors of the radial waves and potentials correspond to the spectra shown in panel (a). At the positions
indicated by the arrows in panels (b)–(d), the radial waves correspond to (top to bottom) V scr

f (r), V JX
f (r), −6/r, and −1/r. In the region of

potential minima, the effective potentials are ordered (from top to bottom) as −1/r, −6/r, V JX
f (r), and V scr

f (r).

Notably, these slight deviations lead to an underestimation of
the total decay rates obtained with the V scr

f (r) potential by
about 25% in comparison to those obtained for V JX

f (r) (see
Fig. 2), underlining the sensitivity of the total decay rates to
the choice of the model potential.

The effective Coulomb potential −1/r provides a qualita-
tively incorrect description in both the core and outer regions,
whereas the −6/r potential leads to a sort of compromise in
accuracy. It describes the core region much better than the
−1/r potential but as a tradeoff has an incorrect asymptotic
behavior in the valence region. For all but the r−1-NO ap-
proaches this suffices to predict spectra that are in qualitative
agreement with the ones obtained for V JX

f (r), whereas using
the −1/r potential is only justified for the main features of
the d region (see Supplemental Material [77] Figs. S2–S7). If
one is interested in the full spectrum, one should use a model
taking into account the electronic potential of the ionized core,
such as V scr (r), V J

f (r), or V JX
f (r).

Summarizing the discussion up to this point, it seems that
satisfactory total decay rates and AESs are only obtained
with the potentials V J

f (r) and V JX
f (r). Further, employing r−1

coupling and the SO approximation seems to be very well jus-
tified for these models and we will use these in the comparison
against experimental data below. Generally, special caution
has to be taken with the inclusion of the NO overlap terms for
simple potential models. While the results obtained using H
coupling greatly profit from error cancellation, this is not the
case for r−1 coupling, where the NO terms strongly emphasize
the deficiencies of an approximate potential. In addition, it
remains to be clarified whether these cancellation effects are
a general feature or a peculiarity of the neon 1s −13p AES.

B. Comparison to experimental data

In this section, the comparison of our theoretical results to
the experimental data in the full spectral range is presented. In
addition, to unravel the influence of the underlying QC onto
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FIG. 4. Comparison of experimental and theoretical neon
1s−13p AES obtained based on the QC schemes I–III with the
r−1-V JX

f (r)-SO method. The spectra obtained with QC I, II, and III
have been shifted by −5.35, −4.75, and −5.18 eV, respectively, to
align the peak at 811.5 eV with the experimental data in panel (a). To
account for the different line shapes of the experimental spectra that
have been digitalized from [69] (a) and [70] (b), broadening with a
Gaussian FWHM of 0.25 and 0.77 eV was used in panels (a) and (b),
respectively. Further, the spectra have been normalized individually
to the peaks at 811.5 eV (a) and 776 eV (b).

the AES, we discuss spectra obtained with the QC schemes
I–III as described in Table I. The QC model II, which is
more sophisticated than QC I, contains an uncontracted s basis
and accounts for scalar relativistic effects, whereas QC III
employs an active space larger than in QC I.

To the best of our knowledge, no experimental Auger
emission spectrum of the neon 1s −13p resonance that covers
the full spectral range presented in Figs. 2 and 3 has been
published to date. Hence, in Fig. 4 the spectra obtained with
the QC models I–III and the r−1-V JX

f (r)-SO approach are
compared against experimental data taken from Kivimäki
et al. [69], for the d region (a), and Yoshida et al. [70], for the s
and p regions (b). Note that the H-V JX

f -NO approach does not
lead to a considerable improvement of the agreement with the
experimental data, as shown in Supplemental Material [77]
Fig. S9. The spectra have been shifted by −5.35, −4.75, and

−5.18 eV for QC models I, II, and III to align the peaks at
811.5 eV. In panel (a), the spectra have been broadened using
a Gaussian profile with an FWHM of 0.25 eV, corresponding
to the line shape of the peak at 806.5 eV in the experimental
spectrum. Further, in panel (b) a Gaussian FWHM of 0.77 eV
was chosen to represent the shape of the high-energy flank
of the asymmetric peak at 778.5 eV in the experimental
spectrum. Additionally, the spectra have been normalized to
the heights of the main peaks at 811.5 eV (a) and 776 eV (b).
Finally, the experimental data have been recorded at angles of
54.7◦ (a) and 56◦ (b) to the polarization vector. Data for these
angles have been chosen to rule out anisotropy effects, which
makes the comparison with our angle integrated spectra easier.

Panel (a) shows that the agreement between the experi-
mental and the theoretical spectra is fairly good. In fact, the
relative energetic positions and intensities of the main peaks
are reproduced quite well. However, smaller satellite peaks at
803 and 808.2 eV are blueshifted by about 0.5 eV. Generally,
the agreement between theory and experiment is worse for the
smaller features, although an unambiguous assignment is still
possible. Using the uncontracted s basis and including scalar
relativistic effects in QC II does not influence the resulting
spectrum. In turn, the larger active space incorporated in the
QC scheme III leads to a better reproduction of some tiny
features at 806.4, 807.5, and 808.8 eV. The blueshifts of the
peaks already present with QC I and II are not affected, when
employing QC III.

The comparison of the spectra covering the s and p regions
with the experimental data is shown in panel (b). Here,
the overall agreement is worse than in panel (a) concerning
both the relative intensities and energetic positions of the
peaks. Regarding the offset in energies, the low-energy part
corresponds to transitions to the highest excited states of
the ionic manifold, the energies of which are progressively
overestimated. This is a typical situation when a smaller part
of the electron correlation is recovered for the higher-lying
states. Specifically, the positions of the peaks around 783
and 788 eV are reproduced well by all methods, while the
intensity of the former, small peak is overestimated. Further,
the peaks at 771 and 776 eV are redshifted by about 2 eV,
and the relative intensity of the former is overestimated by
approximately 30% (QC I and II) and 15% (QC III). Finally,
the peaks at 745 eV and around 751 eV, corresponding to the
s region, are redshifted by 5 eV (QC I–III) and 4 eV (QC
I and II) or 5 eV (QC III), respectively. The intensities of
these peaks are overestimated by about 30% with respect to
the experimental data. Hence, in the s and p regions, our
results agree better with the experimental reference than with
the MCDF spectrum. The total decay rates, however, are not
visibly altered by the choice of either of the QC schemes I, II,
or III (see Supplemental Material [77] Fig. S8).

To wrap up this discussion, we conclude that the RASSCF
and RASPT2 electronic structure method combined with the
r−1-V JX

f -SO approach to construct continuum orbitals and
evaluate the transition matrix elements provides Auger ener-
gies and intensities for the decay of the neon 1s −13p reso-
nance of a similar quality as those obtained in [68] with the
MCDF approach. In particular, a straightforward assignment
of experimental results is possible. Further, the inclusion of
scalar relativistic effects into the one-component electronic
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structure of the bound states has no notable influence on
the spectra, while a large active space is necessary only to
reproduce minor satellite features.

VI. CONCLUSIONS AND OUTLOOK

In this paper, we have demonstrated an approach to the
evaluation of autoionization rates on the example of the Auger
decay from the neon 1s −13p resonance. The suggested proto-
col is based on the RASSCF and RASPT2 methods to evaluate
the bound-state wave functions and energies, supplemented by
a single-channel scattering model for the outgoing electron.
Here, the single-center approximation is introduced to reduce
the continuum orbital problem to the radial dimension by
averaging over the angular structure of the ionized electron
density. To model the true radial potential, six different mod-
els, V free, −1/r, −6/r, V scr

f (r), V J
f (r), and V JX

f (r), have been
discussed. Further, three different ways to account for the
nonorthogonality of the continuum and bound orbitals, SO,
NO, and GS, as well as the effect of using complete, H,
or approximate, r−1, coupling in the partial rate evaluation
have been investigated. All combinations of these sum up to
36 different variants to evaluate partial autoionization rates
for an underlying bound-state QC calculation and have been
implemented in a stand-alone program.

Here we compared all these approaches with respect to
their ability to reproduce the experimental [69,70] as well
as theoretical AES obtained at the fully relativistic MCDF
level [68]. The applied quantum chemistry protocol allows
for a fairly good reproduction of the transition energies if
compared to the theoretical reference and experiments. How-
ever, intensities are more difficult to reproduce. Here, the
quality of the continuum orbital was shown to be the most
important issue as it strongly influences the obtained AESs.
Especially the core part of the ionic potential is of importance
for AES. The effect of the potential is closely connected to
the angular momentum of the outgoing electron as it governs
the extent of the continuum orbital into the core region. For
instance, we found that the d region of the spectrum is rather
insensitive to the choice of the model potential, whereas the
s and p regions require one to use one of the potentials
V scr

f (r), V J
f (r), and V JX

f (r). Still, the MCDF intensities can
only be reproduced in the d region of the spectrum, while
they are overestimated in the s and p parts. Further, the
free-particle model and the asymptotic Coulomb potential
−1/r fail to reproduce the complete spectrum. Interestingly,
inclusion of the NO terms in addition to using r−1 coupling
in the SO approximation does not in general lead to improved
spectra, but rather strongly emphasizes the deficiencies of the
V free, −1/r, and −6/r potentials. Due to pronounced error
cancellation, however, this is diminished to a large extent
if the H coupling is used with the NO terms. Remarkably,
the effective −6/r potential yields qualitative agreement with
the spectra obtained using the more accurate potentials for
all approaches but the aforementioned combination of r−1

coupling and NO terms. In contrast, the spectra obtained with
V scr

f (r), V J
f (r), and V JX

f (r) are weakly affected by the choice
of both the coupling and nonorthogonality treatment. Since
it remains unclear whether the cancellation effects observed

when using H coupling with the NO terms are a general
feature, or a peculiarity of the neon AES, the NO terms should
only be employed with caution. Generally, they should only
be used if the descriptions of the potential and radial waves
are sufficiently accurate. When dealing with approximate
potentials, however, our results suggest to employ the SO or
GS approaches, that seem to be less sensitive to the quality of
the continuum orbital. In addition, due to the computational
simplicity, the SO approximation could be preferred.

The comparison with experimentally obtained spectra us-
ing the r−1-V JX

f (r)-SO approach demonstrated the ability of
the present method to accurately predict the neon 1s −13p
AES, allowing a straightforward assignment of the experi-
mental data. Interestingly, the general structure of the spec-
trum can be already reproduced quite well using a rather small
active space, and is not sensitive to the inclusion of scalar rela-
tivistic effects. The best agreement with the experimental data
is achieved by using a larger active space, including additional
excitations to 3d , 5s, 5p, 6s, and 6p orbitals together with
the spherically averaged direct exchange potential V JX

f (r). In
addition our approach not only reproduces the experimentally
measured AESs but the total decay rates of the neon 1s −13p
resonance as well, when the potentials −6/r, V J

f (r), and
V JX

f (r) are used. Since using the screened charge potential
V scr

f (r) leads to notably underestimated absolute rates and
is not computationally cheaper than using either V J

f (r) or
V JX

f (r), providing a better accuracy, the latter two should be
preferred.

Molecular systems can be treated with the presented
method as well; however, in this case the molecular continuum
has to be approximated by a single-centered spherically sym-
metric model. To keep the errors due to this approximation as
small as possible, our findings suggest to use the r−1 coupling
together with the SO approximation to evaluate molecular
AIS. The potentials should be modeled using either the direct
V J

f (r) or direct-exchange V JX
f (r) variant. The applicability of

these approximations has to be tested for the molecular case.
Currently our code is interfaced to the

MOLCAS/OPENMOLCAS as well as to the GAUSSIAN program
packages, allowing one to evaluate PES and AIS based on
bound-state calculations conducted with the RASSCF and
RASPT2 [65] as well as the linear-response time-dependent
density functional theory method [90]. A paper discussing the
applicability of the present models to treat molecular systems
will follow.
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APPENDIX A: OBTAINING THE MODEL POTENTIALS

For the state-dependent models, Eqs. (7c)–(7e), the central
quantity is the spherically averaged electron density of the
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ionized state:

ρ f (r) = 1

4π

∫ 4π

0
ρ f (r) d�. (A1)

It determines the potentials in the following way. The screened
charge Z f (r) in Eq. (7c) is evaluated as the difference between
the nuclear charge Z and the integrated number of electrons
present in a sphere with radius r around the atom:

Z f (r) = Z −
∫ r

0
ρ f (r′)r′2dr′. (A2)

Further, the direct Coulomb potential of the ionized states
in Eqs. (7d) and (7e) is the electrostatic potential of the

spherically averaged electron density ρ f (r):

Jf (r) = Jf (0) − 4π

r

∫ r

0
dr′

∫ r′

0
r′′ρ f (r′′)dr′′. (A3)

Jf (0) is defined by the asymptotic value of the integral over
r′′ in Eq. (A3):

Jf (0)

4π
= lim

r′→∞

∫ r′

0
r′′ρ f (r′′)dr′′. (A4)

Finally, a radial Slater-type exchange [73],

X S
f (r) = −3

(
3

8π
ρ f (r)

) 1
3

, (A5)

is employed.

APPENDIX B: COUPLING MATRIX ELEMENTS

The total Auger transition matrix element AσM+
iα =

〈ϒσM+
α |H − Ei|�i〉 reads

AσM+
iα = 〈

ψα,σ

∣∣h∣∣�M+
iα

〉 +
r−1 coupling︷ ︸︸ ︷

Norb∑
q=1

〈
ψα,σ ϕ+

q

∣∣ 1

r12

∣∣�M+,q
iα

〉
︸ ︷︷ ︸

SO

+〈
ψα,σ

∣∣�̃1,M+
iα

〉 +
r−1 coupling︷ ︸︸ ︷〈

ψα,σ

∣∣�̃2,M+
iα

〉 −Ei
〈
ψα,σ

∣∣�M+
iα

〉

︸ ︷︷ ︸
NO

. (B1)

Here the contributions corresponding to the SO approximation, the NO terms, and the r−1 coupling have been indicated. If the
GS approach is used, |ψα,σ 〉 is replaced by

∣∣ψGS
α,σ

〉 = ∣∣ψα,σ

〉 − Norb∑
i=1

〈
ϕ+

i,σi

∣∣ψα,σ

〉∣∣ϕ+
i,σi

〉
. (B2)

The conjugated one- and two-electron Dyson orbitals are defined as

∣∣�̃1,M+
iα

〉 =
Norb∑
q,s,t

〈ϕ+
q |h|ϕs〉〈�+

f ,M+ |(a+
q )†asat |�i

〉∣∣ϕt
〉

(B3)

and

∣∣�̃2,M+
iα

〉 =
Norb∑

q1<q2

Norb∑
s1<s2,t

(〈
ϕ+

q1
ϕ+

q2

∣∣ 1

r12

∣∣ϕs1ϕs2

〉 − 〈
ϕ+

q1
ϕ+

q2

∣∣ 1

r12

∣∣ϕs2ϕs1

〉)〈�+
f ,M+ |(a+

q1

)†(
a+

q2

)†
as2 as1 at |�i〉|ϕt 〉. (B4)

Note that the sum of both terms, which occurs when the H coupling is used, takes the simple form∣∣�̃1,M+
iα

〉 + ∣∣�̃2,M+
iα

〉 = E f

∣∣�M+
iα

〉
, (B5)

as demonstrated in [76], if the Hamiltonian eigenvalue equation H|�+
f ,M+〉 = E f |�+

f ,M+〉 is used. However, as detailed in the
Supplemental Material [77] Sec. II, both approaches are strictly equivalent only if the occupied spin orbitals of the bound
ionized and un-ionized wave functions span the same space. This is generally also not fulfilled for RASSCF orbitals if separate
SCF procedures are used to obtain ionized and un-ionized states since the respective transformation properties between orbitals
from different subspaces are lost. Moreover, the formulation of [76] cannot be applied to the r−1 coupling case whereas our
formulation can.
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