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Polarization effects in bound-free pair production

J. Sommerfeldt ,1,2 R. A. Müller ,1,2 A. N. Artemyev,3 and A. Surzhykov1,2

1Physikalisch-Technische Bundesanstalt, D-38116 Braunschweig, Germany
2Technische Universität Braunschweig, D-38106 Braunschweig, Germany

3Institut für Physik und CINSaT, Universität Kassel, D-34132 Kassel, Germany

(Received 18 July 2019; published 24 October 2019)

We present a theoretical study of bound-free electron-positron pair production in the interaction of γ rays
with bare ions. Special attention is paid to the longitudinal polarization of both the emitted positrons and the
produced hydrogenlike ions. To evaluate this polarization we employed exact solutions of the relativistic Dirac
equation and treat the electron-photon coupling within the framework of first-order perturbation theory. Detailed
calculations have been performed for both low- and high-Z ions and for a wide range of photon energies.
The results of these calculations suggest that bound-free pair production can be a source of strongly polarized
positrons and ions.
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I. INTRODUCTION

Owing to the development and construction of novel ac-
celeration facilities such as FAIR in Darmstadt and Gamma-
Factory at CERN [1], new interest arises to study high-
energy ion-ion and ion-photon collisions. One of the most
fundamental processes in these collisions is the creation of
electron-positron pairs. The studies of this e−e+ process have
a long history both in experiment and in theory. For example,
due to its large cross section the creation of free e−e+ pairs has
been extensively studied in ultrarelativistic ion-ion collisions
[2–6]. Bound-free pair production is less probable in the high
energy regime but still plays a significant role in accelerator
physics since it leads to beam loss in heavy-ion colliders
[7,8]. Theoretical analysis of this process can be performed
very conveniently within the framework of the equivalent
photon method by Weizsäcker and Williams [9,10]. In this
approach the analysis of pair production in ion-ion collisions
is traced back to its counterpart in photon-ion interactions.
The investigation of photon induced pair production also
attracts considerable attention since it allows us to gain more
valuable information about light-matter interactions in the
ultrarelativistic regime [11–14].

A large number of theoretical studies of photoinduced
bound-free pair production have been performed during the
last couple of decades [15–20]. Most of these studies have
been focused on the total and angle-differential cross sections
while much less attention has been paid to the polarization
of the positrons and residual hydrogenlike ions. Detailed
analysis of these polarization properties may help us to gain
more insight into electron and positron dynamics in the rel-
ativistic regime. With the advance of positron spectrometers
and storage ring techniques these studies become feasible,
for example, in the FAIR and CERN facilities. In this work,
therefore, we present a theoretical investigation of bound-
free e−e+ pair production in collisions of γ -ray photons
with fully stripped or bare ions. A special emphasis in this
study is placed on the polarization of the produced positrons

and hydrogenlike ions. In order to analyze these polarization
properties we employ the relativistic Dirac equation to de-
scribe electron and positron states and first-order perturbation
theory for the coupling to the electromagnetic field. Based
on this approach, in Sec. II we derive the transition matrix
element which is later used to calculate partial differential
cross sections. By making use of these cross sections, we
obtain the degree of polarization of the positrons and ions.
Evaluation of these degrees of polarization requires high-
demanding computations of free-bound integrals involving
the radial components of the Dirac states. These computations
are discussed in Sec. III. Later in Sec. IV, we show the results
of our calculations for interactions of photons in a wide range
of energies with bare ions. In particular, we have found that
bound-free pair production by circularly polarized light may
lead to the production of strongly polarized positrons and
residual hydrogenlike ions. Our results are finally summarized
in Sec. V. Relativistic units h̄ = c = me = 1 are used in this
paper if not stated otherwise.

II. THEORY

A. Evaluation of the transition amplitude

In relativistic theory, e−e+ pair production can be de-
scribed as the excitation of an electron from the Dirac
negative-energy continuum. The remaining hole in the Dirac
sea corresponds to the produced positron. If during such an
excitation the electron is captured into a bound ionic state,
one talks about bound-free pair production. Analysis of all
properties of this bound-free process can be traced back to the
evaluation of the transition matrix element

Mmsμ f (λ) =
∫

dr ψ†
n f κ f μ f

(r)α · ûλeik·rψ (+)
p,ms

(r), (1)

where the coupling to the electromagnetic field is treated in
Coulomb gauge and within the framework of first-order per-
turbation theory. Evaluation of the matrix element (1) requires
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explicit representations of the initial- and final-state wave
functions, ψ (+)

p,ms
(r) and ψn f κ f μ f (r), as well as the electron-

photon interaction operator R̂ = α · ûλeik·r. The wave function
for the final state is given by the usual bound-electron solution
of the Dirac equation

ψn f κ f μ f (r) =
(

gn f κ f (r)χμ f
κ f (r̂)

i fn f κ f (r)χμ f

−κ f
(r̂)

)
, (2)

where n f is the principal quantum number, κ f is the Dirac
quantum number, and μ f is the projection of the total angular
momentum j f = |κ f | − 1

2 [21,22]. In our work, this projec-
tion is defined with respect to the propagation direction of
the incident light, which is chosen as the z axis. Moreover,
in Eq. (2), gn f κ f (r) and fn f κ f (r) are the large and small radial
components and χ

μ f
κ f denotes the normalized spin-angular

function.
In contrast to the bound-state wave function (2), ψ (+)

p,ms
(r)

describes an electron in the Dirac negative-energy continuum.
In scattering theory it is usually convenient to express this
continuum solution as a decomposition into its partial waves.
The explicit form of this multipole expansion depends on the
choice of the axis along which the spin of the negative contin-
uum electron is quantized. For proper analysis of polarization
effects in e−e+ pair production, this axis has to be taken
along the asymptotic momentum p. In this so-called helicity
representation, the electron wave function reads as

ψ (+)
p,ms

(r) =
∑
κ iμi

ili ei�κi

√
4π (2li + 1)

〈
li0

1

2
ms

∣∣∣∣ jims

〉

×
(

gEκi (r)χμi
κi

(r̂)

i fEκi (r)χμi
−κi

(r̂)

)
D ji

μims
(φ, θ, 0). (3)

Here, ms denotes the electron spin projection onto the propa-
gation direction and li is the orbital angular momentum of the
upper component. Furthermore, D ji

μims (φ, θ, 0) is the Wigner
D function, where φ and θ denote the azimuthal and polar
angle of the electron asymptotic momentum, and

�κi = δκi − arg �(s + iη) − 1

2
πs + (li + 1)

π

2
(4)

is the difference between the asymptotic phases of the Dirac-
Coulomb and free Dirac solutions.

Equation (3) describes an electron with asymptotic mo-
mentum p in the Dirac negative-energy continuum. As already
mentioned above, this wave function can be naturally used
to describe the emitted positron. Namely, within the picture
of the Dirac sea, the creation of an outgoing positron with
energy E+ > 0, momentum p+, and helicity m+ is equivalent
to the excitation of an incoming electron with energy E =
−E+, momentum p = −p+, and helicity ms = m+. The radial
components of such a negative-energy electron in a Coulomb
potential are given by

gEκi (r) = Nκi (|E | − 1)
1
2 (2pr)s−1Re[e−ipreiδκi (s + iη)

× 1F 1(s + 1 + iη, 2s + 1; 2ipr)],

fEκi (r) = Nκi (|E | + 1)
1
2 (2pr)s−1Im[e−ipreiδκi (s + iη)

× 1F 1(s + 1 + iη, 2s + 1; 2ipr)], (5)

with the parameters

p =
√

E2 − 1, η = ζE

p
, δκi = 1

2
arg

(−κi + iη/E

s + iη

)
,

ζ = αZ, s =
√

κ2
i − ζ 2, Nκi = 2

√
p

π
eπη/2 |�(s + iη)|

�(2s + 1)
.

(6)

For more details, see [21,22].
So far, we have considered the initial- and final-state

electron wave functions. The evaluation of the transition ma-
trix element (1) also requires knowledge about the electron-
photon interaction operator R̂ = α · ûλeik·r. It is convenient to
expand this operator in terms of the multipole components of
the electromagnetic field [23]. For light propagating in the z
direction, this expansion reads as

R̂ = α · ûλeikz =
√

2π

∞∑
L=1

1∑
p=0

iL
√

2L + 1
[
(iλ)pα · a(p)

Lλ

]
,

(7)
where a(0)

Lλ and a(1)
Lλ are the magnetic and electric multipole

fields with angular momentum L. Moreover, λ = ±1 is the
photon helicity.

Having discussed all the components of Eq. (1), we can
further evaluate the transition matrix element Mmsμ f (λ). By
inserting the wave functions (2) and (3) into Eq. (1) we find

Mmsμ f (λ) =
∑
κiμi

ili ei�κi

√
4π (2li + 1)

〈
li0

1

2
ms

∣∣∣∣ jims

〉
× D ji

μims
(φ, θ, 0)〈n f κ f μ f |α · ûλeikz|Eκims〉,

(8)

where

〈n f κ f μ f |α · ûλeikz|Eκims〉

= i√
2

[∫
d3r eik·rgn f κ f (r)

(
χ

μ f
κ f

)†
(σx + iλσy) fEκi (r)χμi

−κi

−
∫

d3r eik·r fn f κ f (r)
(
χ

μ f

−κ f

)†
(σx + iλσy)gEκi (r)χμi

κi

]
.

(9)

With the aid of the Wigner-Eckart theorem along with the
multipole expansion (7), and after performing some simple
algebra, we finally obtain

Mmsμ f (λ) =
√

8π2
∑

κiμiLp

ili+Lei�κi

√
2li + 1

2 j f + 1

√
2L + 1

×
〈
li0

1

2
ms

∣∣∣∣ jims

〉
〈 jiμiLλ| j f μ f 〉D ji

μims
(φ, θ, 0)

× (iλ)p〈n f κ f ‖α · a(p)
L ‖Eκi〉. (10)

Here, 〈n f κ f ‖α · a(p)
L ‖Eκi〉 is the so-called reduced matrix

element which is independent of the underlying geometry.
It contains information about the electronic wave functions
and is the central building block from which we calculate all
properties of the process.
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B. Differential cross sections and polarization parameters

In the previous section we discussed the evaluation of the
transition matrix element (1). With the help of this matrix
element we can now analyze the angular and polarization
properties of bound-free pair production. In particular, the
angle-differential cross section of the process is obtained as

dσmsμ f

d�
(λ) = α

4k

∣∣Mmsμ f (λ)
∣∣2

, (11)

where α is the fine-structure constant. Moreover, we have as-
sumed that the incident light has a well defined helicity λ and
the angular momentum projections of the outgoing positron
and bound electron are observed. From cross section (11),
one can evaluate observables for all possible scenarios of pair
production. For example, if the positron spin state remains
unobserved in an experiment, the cross section is obtained
by performing the summation over ms, dσμ f = ∑

ms
dσmsμ f .

If, in contrast, no information about the magnetic sublevel
population of the residual hydrogenlike ions is available, the
cross section reads as dσms = ∑

μ f
dσmsμ f . Finally, if neither

electron nor positron angular momentum projections are de-
tected, we obtain the cross section

dσ

d�
(λ) =

∑
msμ f

dσmsμ f

d�
(λ). (12)

Again, for all scenarios above, we assumed that the incident
light is circularly polarized and hence has a well defined
helicity λ.

By using the differential cross sections introduced in this
section, one can also calculate the degree of longitudinal
polarization of the outgoing positrons and final hydrogenlike
ions. For example, in a realistic experimental scenario in
which the magnetic sublevel population of the ions remains
unobserved, the degree of polarization of the positrons is
given by

Ppos(θ ) =
dσms= 1

2
− dσms=− 1

2

dσms= 1
2
+ dσms=− 1

2

. (13)

Vice versa, the polarization of the hydrogenlike ions along the
z axis reads as

Pion(θ ) =
dσμ f = 1

2
− dσμ f =− 1

2

dσμ f = 1
2
+ dσμ f =− 1

2

, (14)

where we assumed a positron detector that is insensitive to the
spin state.

III. COMPUTATIONAL DETAILS

The evaluation of matrix elements for bound-free transi-
tions has been discussed many times in the literature, not only
in the context of pair production but also for the photoelectric
effect [24,25], radiative recombination [26], or single photon
annihilation [27]. For this reason, we restrict our discussion of
the computational details to just a brief overview. As already
mentioned above, the main building block of our analysis is
the reduced matrix element in Eq. (10) which corresponds to
either an magnetic (p = 0) or electric (p = 1) transition. The

magnetic matrix element can be written as

〈n f κ f ‖α · a(0)
Lλ‖Eiκi〉 = i(I1,L〈κ f ‖[Y L ⊗ σ]L‖ − κi〉

− I2,L〈−κ f ‖[Y L ⊗ σ]L‖κi〉), (15)

while the electric matrix element reads as

〈n f κ f ‖α · a(1)
Lλ‖Eiκi〉

= i

√
L + 1

2L + 1
(I1,L−1〈κ f ‖[Y L−1 ⊗ σ]L‖ − κi〉

− I2,L−1〈−κ f ‖[Y L−1 ⊗ σ]L‖κi〉)

− i

√
L

2L + 1
(I1,L+1〈κ f ‖[Y L+1 ⊗ σ]L‖ − κi〉

− I2,L+1〈−κ f ‖[Y L+1 ⊗ σ]L‖κi〉). (16)

The angular part of these matrix elements is given by the
reduced matrix element of the operator [Y L ⊗ σ]L and can be
calculated analytically using the standard Racah algebra [28].
The radial parts I1,L and I2,L contain the integrals of the radial
components of the electron and positron wave functions along
with the spherical Bessel function of order L. Its numerical
calculation is usually a rather complicated task. However, for
e−e+ pair production in collisions of photons with initially
bare ions, the radial components are known analytically [21].
In this case, the exact solution of the radial integrals can
be given in terms of Gaussian hypergeometric functions [2]
which we calculate numerically using the Arb C library [29].

As seen from Eq. (10) the reduced matrix elements for
various positron and photon multipoles, κi and L, contribute
to Mmsμ f (λ). Since we consider a high energy atomic process
a sufficiently large number of these partial waves have to be
taken into account to achieve convergence of the cross section.
For example, for E+ = 10 mec2 our results contain partial
waves up to |κi| = 140.

IV. RESULTS AND DISCUSSION

A. Differential cross sections

With the help of Eqs. (10)–(14) we are now ready to
investigate e−e+ bound-free pair production in photon-ion
interactions. We start our analysis with the angle-differential
cross sections which we calculate for photons with helicity
λ = +1 colliding with bare hydrogen and lead ions. For both
targets we focus on the capture of the produced electrons
into the ground 1s1/2 ionic state and consider low and high
energy regimes corresponding to positron energies of E+ =
1.5 mec2 and E+ = 10 mec2, respectively. Moreover, we dis-
cuss different “polarization scenarios” in which the angular
momentum projections of either the final hydrogenlike ions
or emitted positrons are observed. In Fig. 1 for example,
we display the differential cross section dσms = ∑

μ f
dσmsμ f

which is obtained upon summation over the final ionic states
but in which the positron helicity is fixed to ms = +1/2 (red
dashed line) or ms = −1/2 (blue dotted line). The sum of the
two helicity contributions dσ = ∑

ms
dσms is displayed by the

black solid line. As seen from the figure, this summed angle-
differential cross section dσ behaves in a rather different way
for light (hydrogen) and heavy (lead) target ions. In particular,
while for Z = 82 the maximum of positron emission is in
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FIG. 1. Differential cross sections for bound-free e−e+ pair production in collisions of photons with helicity λ = +1 and bare hydrogen
(left panels) and lead (right panels) ions. Calculations have been performed for positron energies E+ = 1.5 mec2 (upper panels) and E+ =
10 mec2 (lower panels) and for capture of the electron in the ground ionic state. Moreover, three scenarios are considered in which the spin
projection of the emitted positrons either remains unobserved (black solid line) or is fixed to ms = +1/2 (red dashed line) or ms = −1/2 (blue
dotted line). The photon and positron energies in the legend are rounded to two decimal places.

the forward direction, θ+ = 0◦, it is shifted to higher angles
θ+ for Z = 1. For example, for positrons with energy E+ =
1.5 mec2, the differential cross section dσ has its maximum at
θ+ ≈ 37◦. This behavior has been previously predicted within
the framework of the relativistic Born approximation in which
the outgoing positron is treated as a plane wave [16,24,30,31].
The Born approximation also suggests the drastic suppression
of positron emission in the forward and backward directions
in the low-Z regime; this can be clearly observed in the left
panels of Fig. 1.

The angular distribution of the emitted positrons also de-
pends on their helicity ms. It is particularly easy to see the
effect for the lead target, for which the forward emission
is dominated by positrons with helicity ms = +1/2 while
positrons with ms = −1/2 are most likely emitted under large
angles. This behavior can be understood based on the analysis
of the angular momentum projections for the two ultimate
cases θ+ = 0◦ and θ+ = 180◦, i.e., for propagation of the
positron either parallel or antiparallel to the z axis. For these
two cases the spin projections of the bound-electron and
emitted positron should add up to the helicity of the incident
photon,

λ = μ f + m̃s. (17)

Here, m̃s is not the helicity but the projection of the positron
spin on the z axis. If the electron is captured into the ground
ionic state, its angular momentum projection can be μ f =
±1/2. Therefore, only the combination μ f = +1/2 and m̃s =
+1/2 can compensate the helicity λ = +1; see Eq. (17).
However, as we already mentioned above, m̃s is the projection
of the positron spin on the direction of the incident light,

which is related to the helicity as ms = m̃s = +1/2 for θ+ =
0◦ and ms = −m̃s = −1/2 for θ+ = 180◦.

Until now we have discussed the differential cross section
for bound-free pair production under the assumption that the
spin state of the final hydrogenlike ions remains unobserved.
In order to investigate how the probability of the e−e+ process
depends on the magnetic sublevel population of the resid-
ual ions, we display in Fig. 2 the differential cross section
dσμ f = ∑

ms
dσmsμ f for μ f = +1/2 (red dashed line) and

μ f = −1/2 (blue dotted line). This cross section has been
obtained upon summation over the positron spin states and
for incident photons with helicity λ = +1. Similar to before,
calculations have been performed for hydrogen and lead ions
as well as for positron energies E+ = 1.5 mec2 and E+ =
10 mec2. As seen from the figure, for both energies and targets,
and nearly for all emission angles, the e−e+ process leads
almost exclusively to the production of hydrogenlike ions
with the magnetic quantum number μ f = +1/2. To explain
this effect one has to revisit Eq. (9) in which the matrix
element 〈n f κ f μ f |α · ûλeikz|Eκims〉 is written as the sum of
two integrals. The first integral contains the product of the
upper electron gn f κ f and lower positron fEκi components.
In contrast, the product of the lower electron fn f κ f and up-
per positron gEκi functions can be found under the second
integral. For moderate relativistic energies the contribution
of this second integral to the matrix element is negligible
since both fn f κ f and gEκi are small components. Therefore,
the behavior of the differential cross is mainly determined
by the first term in Eq. (9) which includes the large elec-
tron and positron components. However, the angular part of
this integral (χμ f

κ f )†(σx + iλσy)χμi
−κi

vanishes for μ f = −1/2
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FIG. 2. As in Fig. 1 but for well defined magnetic quantum numbers μ f = +1/2 (red dashed line) and μ f = −1/2 (blue dotted line) of the
bound-state electron while the positron spin state remains unobserved. As before, the black solid line represents the summed partial differential
cross section.

and λ = +1. This matches our observation from Fig. 2 of
the strongly suppressed production of ions with μ f = −1/2.
As seen from Eq. (5), for very high energies |E | 
 1 the
upper and lower components of the positron wave function
become comparable which leads to the enhancement of the
contribution of the second integral in Eq. (9). This integral
does not disappear for λ = +1 and μ f = −1/2 and can result
in a significant contribution of dσμ f =−1/2. As seen from the
lower panels of Fig. 2, this partial cross section even becomes
dominant for a small range of emission angles around θ+ ≈
2.5◦ for Z = 1 and θ+ ≈ 6.5◦ for Z = 82.

The results presented in this section have been obtained
under the assumption that the target nucleus is infinitely
heavy and pointlike. One has to estimate, therefore, how
the nuclear recoil and finite size affect the pair production
cross sections and polarization parameters. The recoil effect
can be accounted for in first order by altering the energy
of the emitted positron according to the laws of energy and
momentum conservation. Calculations with such an adjusted
energy show that the change in the angle-differential cross
section is usually on the subpercent level. Even in the worst
case of backward positron emission for a high photon en-
ergy Eph = 11 mec2 and hydrogen target ions, the change in
the cross section is only around 4%. We furthermore argue
that nuclear size effects do not play a significant role for
bound-free pair production in the parameter regime studied
in the present work since the corresponding effects for the
very similar process of radiative recombination are also on
the subpercent level [32]. The influence of these two effects
is therefore expected to be below the accuracy of modern
positron detectors.

B. Degree of polarization

As we discussed in the previous section, the process of
bound-free pair production is very sensitive to the spin state of
the emitted positrons and residual hydrogenlike ions. In order
to investigate this ms and μ f dependence in detail, it is conve-
nient to analyze not only the partial differential cross sections
but also the degrees of positron and ion polarization, Eqs. (13)
and (14). Similar to before, we start with the emitted positrons,
whose degree of polarization Ppos(θ+) is displayed in Fig. 3.
To be consistent with the results of the previous section,
calculations have been performed for collisions of photons
with helicity λ = +1 with bare hydrogen and lead ions as well
as for positron energies E+ = 1.5 mec2, E+ = 5 mec2, and
E+ = 10 mec2. Moreover, Ppos(θ+) has been obtained under
the assumption that the spin state of the hydrogenlike ions
remains unobserved. As seen from the figure, Ppos(θ+) ≈ +1
for θ+ → 0◦, implying that for the forward emission positrons
are strongly polarized in the direction of propagation. In
contrast, for larger angles θ+ the degree of polarization de-
creases and reaches the value Ppos(θ+) = −1 for θ+ = 180◦;
the effect which can be expected from Eq. (17). The behavior
of Ppos(θ+) between the two ultimate angles θ+ = 0◦ and θ+ =
180◦ strongly depends on the positron energy and charge of
the target ion. For very high relativistic energies, for example,
the creation of positrons with helicity ms = +1/2 remains
dominant in a rather large angular range. This effect is most
pronounced for hydrogen ions and positron energies of E+ =
10 mec2 for which Ppos(θ+) ≈ +1 for 0◦ � θ+ � 178◦.

One may note from Fig. 3 that our results for the degree of
positron polarization differ from those of Agger and Sørensen
[16]. The reason for this disagreement is the choice of the
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FIG. 3. Degree of polarization of the created positrons (13)
for bound-free e−e+ pair production in collisions of photons with
helicity λ = +1 and bare hydrogen (upper panel) and lead (lower
panel) ions. Calculations have been performed for positron energies
E+ = 1.5 mec2 (black solid line), E+ = 5 mec2 (red dashed line), and
E+ = 10 mec2 (blue dotted line) and for capture of the electron into
the ground 1s1/2 ionic state.

axis with respect to which the spin of the created positrons
is quantized. In Ref. [16] this axis was chosen along the
propagation direction of the incident light. However, this
choice is insufficient to analyze the polarization effects in pair
production because for relativistic particles the only direction
along which one can uniquely define polarization is their own
direction of propagation. Therefore, one has to define the
partial differential cross sections in Eq. (13) in the helicity
basis, i.e., with respect to the asymptotic momentum of the
created positrons p+. Such calculations are shown in Fig. 3.

Besides the emitted positrons it is also instructive to ana-
lyze the degree of polarization of the produced hydrogenlike
ions Pion(θ+). It is obtained from Eq. (14), where the magnetic
quantum number μ f is defined with respect to the propaga-
tion direction of the incident light. Predictions for Pion(θ+)
are presented in Fig. 4 for the same set of parameters as
used above for the positron polarization. The figure clearly
indicates that for positron emission in the forward and back-
ward direction the hydrogenlike ions are always produced in
the magnetic substate |1s1/2, μ f = +1/2〉. Moreover, almost
exclusive population of the state with μ f = +1/2 can be
observed for relatively low positron energies (see black solid
line). Only in the strongly relativistic regime, the predominant
population of the sublevel with μ f = −1/2 becomes possible
in a rather restricted range of forward emission angles. For
example for E+ = 10 mec2, the partial cross section dσμ f =−1/2

is dominant for the range 0.2◦ � θ+ � 4.7◦ for Z = 1 and
2.5◦ � θ+ � 10.7◦ for Z = 82. A detailed explanation of this
effect based on the analysis of Eq. (9) was given in the previ-
ous section. The results of our calculations, therefore, indicate
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FIG. 4. Degree of polarization of the residual hydrogenlike ions
(14) for the same parameters as in Fig. 3.

that bound-free pair production by circularly polarized light
may be used to produce hydrogenlike ions with a high degree
of longitudinal polarization.

C. Transformation into the laboratory frame

So far we have considered bound-free pair production
under the assumption that the positron is detected in the rest
frame of the ion. In storage ring experiments, however, the
ions are usually moving with high relativistic velocities. Of
course our theory can be also applied to predict the outcome of
such experiments if an appropriate transformation is applied.
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FIG. 5. Degree of polarization of the created positrons (13) for
bound-free e−e+ pair production in head-on collisions of photons
with helicity λ = +1 and bare lead ions. Calculations have been
performed for a photon energy Eph = 2.30 mec2 and for capture of
the electron into the ground 1s1/2 ionic state. The target ion is moving
with a Lorentz factor of γ = 1.01 (black solid line) or γ = 2.00 (red
dashed line). θ+ is defined with respect to the propagation direction
of incident light.
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The Lorentz transformation from the projectile frame (primed
variables) to the laboratory frame (unprimed variables)
reads as

sin θ ′
+

sin θ+
=

√
γ 2(g + cos θ ′+)2 + sin2 θ ′+, (18)

dσ

d�
=

∣∣∣∣d cos θ ′
+

d cos θ+

∣∣∣∣ dσ ′

d�′ , (19)

where g = β/β ′ is the ratio of the reduced velocities of the
ion and the positron in the projectile frame. For more details
see [21]. Just as an example we present in Fig. 5 the degree
of positron polarization in the laboratory frame for head-on
collisions of photons with helicity λ = +1 and energy Eph =
2.30 mec2 with bare lead ions. The ions are moving with a
Lorentz factor of either γ = 1.01 or γ = 2.00, which are
typical velocities for the GSI and future FAIR facilities.

As seen from the figure, for the low Lorentz factor, the
degree of polarization is almost identical to the low energy
and high-Z case in Fig. 3. For higher relativistic velocities,
the curve is altered by two effects: (i) The photon energy, as
“seen” by the moving ion, is Doppler boosted, which is why
the result resembles the ones for higher energies, and (ii) the
emission angle is Lorentz transformed, causing a distortion of
the angular distribution.

V. SUMMARY

In conclusion, we presented a theoretical study of bound-
free electron-positron pair production in the interaction of γ

rays with bare ions. Based on the rigorous solutions of the
relativistic Dirac equation and by making use of the first-
order perturbation theory for the electron-photon coupling, we
studied the polarization properties of the created positrons and
residual hydrogenlike ions. Calculations have been performed
for circularly polarized photons in a wide range of energies
and for low- and high-Z targets. Results of these calculations
have clearly shown that in the relatively low energy regime,
i.e., when E+ ≈ mec2, the produced ions are strongly longitu-
dinally polarized in the direction of the incident photon beam
for all positron emission angles. In contrast, for high energies
E+ 
 mec2 and emission close to the forward direction θ+ =
0, the ions are polarized opposite to the photon wave vector.
Moreover, also the positron spin state strongly depends on the
energy of the incident light and nuclear charge of the target.
For example, for low-Z targets, ultrarelativistic energies, and
an initial photon helicity of λ = +1, the positrons are almost
exclusively created in the spin state with ms = +1/2. We
argue, therefore, that bound-free pair production can be used
as a source of strongly polarized positrons and hydrogenlike
ions; this effect is likely to be observed soon in the future
FAIR facility in Darmstadt and in the Gamma Factory at
CERN.
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