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We derive a complete expression for the nonrecoil quantum electrodynamic o

%m correction to the Lamb

shift, the fine and hyperfine structure of light N-electron atoms. The derivation is performed in the framework of
nonrelativistic quantum electrodynamics. The obtained formulas generalize previous ones derived for the specific
cases of the helium atom, and the fine and hyperfine structure of lithium, and pave the way for improving the

theory of light atoms with three and more electrons.
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I. INTRODUCTION

Accurate theoretical predictions of transition energies in
simple atoms are used for high-precision tests of the Standard
Model of fundamental interactions, and determinations of
fundamental constants and of nuclear parameters. The highest
theoretical precision is achieved for the simplest systems,
like the hydrogen and the hydrogenlike ions [1]. However,
comparison of the hydrogen theory with the existing exper-
imental data is presently limited by the uncertainty from two
conflicting values of the proton charge radius [2].

Modern theoretical descriptions of few-electron atoms
gradually approach the level of accuracy of the hydrogen
theory [3], with higher potential for discovery of new effects.
This is because there are several transitions which have nar-
row linewidth. In particular, the calculation of the o®m?/M
correction in helium [4,5] allowed us to extract the difference
of the nuclear charge radii of two helium isotopes, revealing
inconsistencies between different experimental transition en-
ergies [6], which remain to be explained. Furthermore, the
ongoing project of the complete calculation of the a’m effects
will allow the determination of the absolute value of the
helium nuclear charge radius [7].

For atoms with three and more electrons, the dominant
uncertainty of the theoretical energy levels presently comes
from uncalculated quantum electrodynamic (QED) effects
of order a®m. This correction was derived and calculated
numerically for helium in Refs. [8,9] and later for heliumlike
ions in Ref. [10]. The goal of the present paper is to extend the
derivation of Refs. [8,9] to the general case of an atom with
an arbitrary number of electrons, which will open the way
towards numerical calculations of these effects in light atoms,
such as lithium, beryllium, boron, and the corresponding
isoelectronic sequences.

II. NONRELATIVISTIC QED EXPANSION

In order to calculate energy levels of a light atom we em-
ploy the so-called nonrelativistic QED (NRQED), which is an
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effective quantum field theory that gives the same predictions
as the full QED in the region of small momenta, i.e., those
of the order of the characteristic electron momentum in the
atom.

The basic assumption of the NRQED is that the bound-
state energy E can be expanded in powers of the fine-structure
constant a:

E (a ﬁ) —o?E® (ﬂ) + ot E® (ﬁ)
M M M
m m
+aSE® (M> +aSE® (M) TENG))

The coefficients of this expansion E® depend implicitly on
the electron-to-nucleus mass ratio m/M and may contain finite
powers of In . These coefficients may be further expanded in
powers of m/M:
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According to NRQED, the expansion coefficients in Egs. (1)
and (2) can be expressed as expectation values of some
effective Hamiltonians with the nonrelativistic wave function.
The derivation of these effective Hamiltonians is the central
problem of the NRQED approach.

The leading term of the NRQED expansion, E®), is of
order a*m and is just the nonrelativistic energy as obtained
from the Schrodinger equation. The next term, E @ is the
leading relativistic correction of order o*m and is given by the
expectation value of the Breit Hamiltonian H® . The next term
represents the leading QED effect of order a’m, derived many
years ago by Araki and Sucher in Refs. [11,12], respectively.

The subject of the present paper is the next correction of
order «®m, which will be considered in the nonrecoil limit,
E©9 For the helium atom, this correction was derived and
calculated numerically by one of us (K.P.) [8,9] (see also the
recent review [3]). For lithium, the «®m effects were so far
calculated for the fine and hyperfine structure [13,14]. In this
paper we generalize those studies and present derivation of
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complete formulas for the a%m effects valid for arbitrary states
of a general N-electron atom.

We represent the a®m correction to the energy level of an
atom as a sum of three parts:

6,0 (6) (6) (6)
E( )= ELamb + Efs + Ehfs (3)
The first term E, (amb (“Lamb shift”) is the correction to the nLS

centroid energy (n denotes the principal quantum number, and
L and S are the angular momentum and the spin of the state
under consideration). Energy centroid Ej ,n is defined as the
weighted average over the fine levels:

>, 1+ 1)EnLSJ)

Epamy(nLS) = 2SS+ 1DHR2L+1)

; “4)

where J is the total angular momentum of the electronic state.
In the presence of the nuclear spin /, each fine level is in turn
an average over the hyperfine levels, namely,

> (2F + 1) E(nLSJF)

EmLS) = =+ 1)

; (&)

where F' is the total angular momentum of the whole atom.
The second term E is a correction to the fine structure,
defined by the condltlon that its contribution to the nLS
centroid energy vanishes:

> @+ DEY (nLST) = 0. (6)
J

Finally, the third term Eé?s) is a contribution to the hyperfine
structure, defined by the condition that its contribution to the
nLSJ energy centroid vanishes:

> QF + DEQ(LSIF) = 0. (7)
F

We note that this definition of the hyperfine splitting leads
to the appearance of nuclear-spin-dependent contributions in
the Lamb shift and in the fine structure (through second-
order effects) (see Ref. [15] for details). Such corrections are
of order a®m?/M and thus are not relevant for the present
paper.

It should be mentioned that when considering the structure
of atomic levels it is sometimes required to treat several
closely lying levels as quasidegenerate (rather than to consider
each of them separately as isolated levels), because of a
strong mixing between them. In particular, this is the case
for the hyperfine structure of the 23P level of *He, studied
in Ref. [15]. In such cases, the scalar energy E in Eq. (1)
needs to be replaced by a matrix of an effective Hamiltonian
constructed in a subspace of quasidegenerate states, and the
energy levels are determined by diagonalizing this matrix (see
Ref. [15] for details).

III. ENERGY CENTROID

The a®m correction to the energy centroid E{amb is repre-
sented [8] as a sum of several terms:

1
(6) “4) )
ELamb_<§ H+§ HR,+HH> <H T >
®)

where H; are the effective a®m operators induced by the
virtual photon exchange between the particles, Hg; are the
operators representing the radiative corrections, Hy is the ef-
fective operator originating from the forward three-photon
scattering amplitude, and Ey and Hy are the nonrelativistic
energy and Hamiltonian for the infinitely heavy nucleus,
respectively. The last term on the right-hand side of Eq. (8) is
the second-order correction induced by the Breit Hamiltonian
H®:

HY = Hy + Hp + He, ©)
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Hi=)Y [—% - ?ad(m)} +Y ) {(d — 28" (rap)
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b;éa a ﬂh
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(4+) Oq ab 60 : 7ab 6b : ?ab
HED =3 Y (§) (% s e )
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where g denotes the electron g factor, d =3 — 2¢ is the
extended space dimension, 89(r) is the Dirac delta function
in d dimensions, and [x]. stands for the d-dimensional form
of expression x. In the above, the spin-independent part of
the Breit Hamiltonian Hy is written in d dimensions, since
it leads to divergent terms o1/(d — 3) in the second-order
correction. The spin-dependent parts of H® are written in
d =3 as they do not lead to any singularities. The upper
index i 1n Hy “) and H. “) indicates that these operators are of
order a* m but contaln in addition, some higher-order terms
due to the presence of an anomalous magnetic moment. For
further calculations we will also need the g — 2 limit of these
operators:

Hy = é:n% H (13)

withX =B, C.
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The derivation of the effective a®m operators H; is described in Appendix A. It is performed in d = 3 — 2¢ dimensions,

following the approach developed in Ref. [8]. The results are

6
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where [ , ] and { , } denote the commutator and the anti-
commutator, respectively, and V is the nonrelativistic poten-

e iR Ik

€ a<b b
In the case of a two-electron atom, the operators H; agree with
those derived for helium in Ref. [8].
The effective operator originating from the forward three-
photon scattering amplitude is deduced from the results de-
rived in Ref. [16] for parapositronium, which yields

5)

HH__<é+4lna)22%8d(rub)+l']/v (16)
a<b b
where
/ 393) |
HH:< = n——61 n2+ - )ZZ—(S(rub)

a<b b
(17)

and ¢ is the Riemann zeta function.
Radiative corrections to order a®m are represented by the
following one-loop and two-loop effective operators, which

rzizbrz{b_38ijr§b P_i pj
Yab ’ 2 b

(14)

(

have been obtained originally for hydrogen and positronium
spectra:

Hg) = (ﬂ —21n2> st (ra)

6:(3) 697 1099
+ <7—ﬁ—8m2 )ZZT{(S (Fab),
a<b b
(18)
_ [ %G) 2179 32 10 ,
Hr2 = ( 4w’ o48n? | 2 27) Xa:ms (a)
15¢3) 631
+ < 272 54m? )ZZ”‘S (ab).

a<b b
(19)

Both the first-order and second-order terms in Eq. (8)
contain divergences, which need to be separated out and
canceled algebraically. We perform this in two steps. First,
we identify divergences in the second-order corrections [the
last term in the right-hand side of Eq. (8)] and separate them
out in terms of some effective first-order operators by the

042510-3



PATKOS, YEROKHIN, AND PACHUCKI PHYSICAL REVIEW A 100, 042510 (2019)

transformation (B2) as is described in detail in Appendix B. to 1/e. This is done with the help of various identities in d
Second, we algebraically cancel singular terms proportional dimensions listed in Appendix C.

|
After performing all reductions and cancellations of singularities we get the final result:

E{ohy, = Eo + Efy + Ewee + Exi + Ego = Ina <Z 3 ms3(rab>> : (20)
a<b b

where Eg = (Hp) and Ej, = (Hj;). The first term in Eq. (20), Ep, incorporates first-order operators remaining after the

cancellation of divergences. With the help of the identity o, - 0,” = 25, - 65, we obtain the following formula for Hy in terms
of 45 operators Q; listed in Table 1. These operators are similar to those derived in Ref. [8] with two differences: (i) there are
extra three-electron operators which are grouped together with corresponding similar one- and two-electron operators, and (ii)
dependence on spin in the form of the product of ¢ matrices is now included in the definition of Q operators. The result is

E} EzZ 0, Z(1-22) 3Z Q; Qs Qo E2+2EW
HQ=—70—10—6Q1+?2+TQ 3T QS__Q6+2—47+?8—9—69+OTQ10
0 0 EyZ? 373 z3 EoZ V4
——Qu +3—122+3—;+ 0 Q4 + EoZ? Q15+—Q16+—Q17— LQ18 —Z*Q9 — —on
z? Z VA O O Z° z O z?
_ZQZI +—Q22+—Q23—§Q24—T+% ——Q27 Q28+?+ Q30+—Q31
On Q33 O O  On Z O3z Ep Opn Op  Ou
- ¥z 20 2 2u 21
EV) +—= P Q34 e + 192+ n 4Q38+ n 8Q4o Q41+ A + 7 + A + Q45 2D

Here, E® = (H®) is the expectation value of the Breit Hamiltonian, and Ey = E® is the nonrelativistic energy. In the case of
operator Q1,, the expectation value of 1/ rsb is calculated in the sense of the following limit:

1 , 1
<_3> = lim f d*r¢*(r) [—3 O@r —a) +4n8(r)(y + lna)] )
r a—0 r
(22)

In the case of Q3¢, the matrix element is only conditionally convergent, so one has to integrate first over the angles and then over
the radial r,;, variable.
E.. in Eq. (20) incorporates what is left of the second-order correction after separation of divergences. It is given by

1 1 1
Eeoe = (Hp\p ——— Hy —H, He —H¢), 23
sec < N TTAY AR>+< 5 o — Ho) B>+< ¢ o~ Hy) c> (23)
where Hyy is defined by Eq. (B2) and its action on a trial function ¢ is given by

7oV, 1 st i ‘
HAR|¢>=[——(E0—V)2 ZZVZVZ——er3 DN (r—b+%> V,ﬁ] $),  (24)

a<b b a a<b b ab

omitting 83(ry) from differentiation. This is because 83(r,,) in the original Hy in Eq. (10) cancels out with that from %3 %,f
differentiation.

IV. FINE-STRUCTURE CORRECTIONS

6

The fine-structure «®m correction Ef(: ) has a form similar to that for the Lamb shift:

(25)

fs,amm*

(EO - HO), fs

The first term is given by the expectation value of the spin-dependent a®m Hamiltonian H (86), whereas the second term is the
second-order perturbative correction induced by the Breit Hamiltonian. The subscript “fs” in ()tq indicates that only the
spin-dependent part of the correction should be taken. The last term is the anomalous magnetic moment (‘“amm”) correction to
the fine structure from the amm-corrected Breit Hamiltonian [see Eqs. (11) and (12)]. This correction arises from the fact that
the g factor contains higher-order terms in «.

The Hamiltonian Hfsﬁ) for the helium atom was first obtained by Douglas and Kroll [17] in the framework of the Salpeter
equation and later rederived in a more simple way using the effective field theory in Refs. [18,19]. In this paper we use the
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general expression for Hf(f) valid for the N-electron atom which was derived in Ref. [20]:

16

3 - 1 - 1 o "
Hf(s6):Z{—PiegaXﬁa'5a+Z(zpiﬁa'ev‘la-l-pi&a-vaXe.ﬁa)+§3,,-e5,l x e A,
a

ie

16
1 _'a 2 R 2
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| rior!
+—o’o;f|:p2, |:pi’ ahsabi|i“.
64 ¢ “ r

Here, ¢ &, denotes the static electric field at the position of
particle a,

. . 7 7
elo=-VV=-Zas+) a3, Q7
Ta ba Tab

and e A is the vector potential at the position of particle a,
which is produced by all other particles:

. o A I"i I’j ; a(&bxﬂ,)"
Al = §ii ab " ab Jj el a. .
¢ Z[Zm,( + r2, Pyt 2 7

(28)

It is convenient to express Hf(f) in terms of the elementary
spin-dependent operators R; listed in Table II:

H® = — iZRI + iRz — §R3 - lR4 - zR5 - zR6
fs 16 16 8 2 4 4

+ l1’37 + le + lR9 - lR10 - an - lRlz
47Ty 8 4 4

_ lR Z _ Z 3 _ 1 _ 1
R + ZR14 ZR15 + ZR16 ZR17 ZRIS

+ lR19 - leo + ng - lez - lea - 1Rz4
4 4 4 4 8 8

+ 1i6R25 - 3i2R26 - %Rzm (29

These operators are equivalent to operators derived previ-
ously for lithium in Ref. [23]. In particular, operators R;—Ry
correspond to operators Q;—Q»o derived in that paper with
the exception of Rj3 and Rj¢. Operator Rj3 corresponds to
D, in Ref. [23] and operators R,|—Rj4 correspond to Pj—Py,
albeit in a slightly different form. The remaining operators
Rys—R,7 along with R4 are equivalent to two-spin Douglas-
Kroll operators [17].
The second-order term in Eq. (25) can be represented as

<H<4> —H<4)>
(Eo — Hp) s
1
= 2<HA Eo—Hoy [Hp + HC]>
+ <[HB + Hc] m [Hp + HC]>, (30)

- L L L= L, - R S
+—[AaXPa'O’a—O'a'paX-Aaapi]'F562«43}4‘22{_?0:1']%X83(rab)Pa

b#a a

= 2
T Palls Yo Ln sl L s o« 50
) H pb> + 32(% X Pa) [pa, [rab,pb (Gp X Pv)

(26)

(

where Hy, Hg, and Hc are parts of the Breit Hamiltonian
given by Eq. (10) and the g — 2 limit of Egs. (11) and (12),
respectively.

Unlike the «®m correction to the Lamb shift, all «®m
fine-structure corrections are finite and do not require any
regularization. Numerical calculations of the a®m effect to
the helium fine structure were performed first by Lewis and
Serafino [21] and more recently by other authors [18,22].
For Li and Be™, analogous calculations were carried out in
Refs. [14,23].

V. HYPERFINE STRUCTURE

The a%m corrections to the hyperfine structure were cal-
culated for helium in Ref. [15]. Later, this treatment was
extended to lithium in Ref. [13]. Here we reformulate results
obtained in these studies in a general form valid for an N-
electron atom.

The o®m corrections to the hyperfine splitting have the
same structure as the other a®m corrections considered in the
previous sections, namely,

1

_ 31
(Eo — Hy) 9

©6) _ (6) ) 4) (6)
Ehfs - (ths) +2 <H ths > + Ehfs,amm’

where H}ffés) is the effective a®m operator proportional to the
nuclear spin I, H® is the Breit Hamiltonian, Hé?s) is the
nuclear-spin-dependent a*m correction to the Breit Hamilto-

nian, and E © is induced by the electron amm correction

hfs,amm
4)
to Hy. .

The nuclear-spin-dependent correction to the Breit Hamil-
tonian, with inclusion of the electron amm effects, is given by

HED = -3 [eﬁa G+

a

gﬁa -l?(?a)}, (32)

N

where A and B correspond to the magnetic field of the nucleus:

> 8N = 7
ARy =-z2a S Tx 2, 33
eA(7) o M X P (33)
eB(H)=~Za —3” GV

gnv 1 . ripd .
Zoa——|8Y —-3— | I. 34
Tt 2M r3( r2 ) (34
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TABLE 1. Definitions of operators Q;, P,y = B, + Pp, and py = %(p’a — Pp).

i Operator

o Y 483 (r,)

0 D 2 A8 (rp)

Qs Yiia L8 )1

Q4 Zh;ﬁa > A8 (r) py

o Y et Locta Loa 48 (1) 1oe

Qe Y 2y 2o AT (rap) e

& et 2y 4 8 () Py

Os D csab oach 2p A7 8 (ran) P}

O Y ach 253+ 8u - 35)Pap 4708 (rap) Pav

Qo Za<b Zb L/rap

O >y 3,31 456, - G,)1/r2,

Qn Za<b Zb(23 + 56, 3b)1/"2b

O3 Db 2o Deed Zd,ab#cd(3l + 56, - Gb)l/(”gbrrd)

Ous > 1/

Q15 D a<h 2o 1/ (rars)

Qis D acbee 1/ (rarpre)

Qur Yhsa Xa 1/510)

Q18 Dach 2op 2o 1/ ravre)

Qu Dach 2ob 2oced D2oa M Tavrera)

Q0 Pacr Xp Lo (23 455, - 6,)1/(riyre)

Qo Daen 2op eV Gapt?d)

On Dk 2op Doced Zd,ab;&cd Do U/ (rapreare)

02 D as pTa Tan/ (r3r3y)

O Sy S, (13 456, - Gy)Fy - T/ (r213,)

Qs Zc#_a‘b Za<b Zb Fae + 7ab/(”3cr§;,)

S Y ctan Lot 2p 21+ 156 - Gy + 165 - 5o )Fac - Fan/ (1)
Oz Da<h 2ob "érzf(”;b"gb —38Yr2) [ (raryras)

O3 Zc;&ab D ach 2T ’j r(l;brb/b =382,/ (r3riyras)

(0 Dctab Dodsab Doa<h Db acrdh(réb = 3892,/ (r.rsran)
QO30 Zb#a Zn pi/ Ty

s > Bl 72 Pa

Oz s Lo4T + 58, - 5)Pa/12, Ba

033 D csap 2oa<p 2p(31 + 5G4 - 5P/, o De

Qu Yt 2op 2o PaT T2, 4 1) (PP,

QOss Zc#a b Dach 2ob papL(S’/ + rab b)/ be

Os6 Y acs 2p(=3+ G0 GP, Pz{b(3r brab —8ra)/ray

Qu et Lact L Pul® 1 + rirlo )@ e + i) (rcrioop,
O3 S et 2 Phral a8 iy 1ay = 81l 1y = 8Tk fran — 7, a,,n,b/rawpb
Qs Zc#a,h Dt Doy Py Tac (87 7k [rap — 8%, b/rah — 8Urk, Jrap — rh il kI b)Pb
Ouo Dach 2p Do}

Qu ek 2op 2o Pal TPy

Qv Da<h Db 2oc<d Zd,ab#—cd Palreaby

Qi Yt X Ba X Bo/TavBa X By

Oua Yt op PP ik /13y = 8% rl [, 3rir et /T3P
Oss > acbec PaPiPe
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TABLE II. Definitions of the fine-structure a®m operators R;.

TABLE III. Definitions of the hyperfine-structure o®m operators T;.

i Operator i Operator
Ry > GaPe ™ X Pa T Y TG, A8 (r,)
RZ Zb#az aapi;aTb Xﬁu T2 Zh<c ZL‘Z f'6a4ﬂ83(rbC)/ra
7 = T: J-G,4m8%(r)/r
Rs D ta 20 a P ,"h X Py 3 D bta D2a ) (ra)/ro
R Sy . T Y oiia 2oad - BuAT S (ra)py
4 a Uap I X Pb >
" . : N TS Zb<cz Z J- Ga4n63(ra)/rbc
Rs Lta 2 O ’Tb " Py Ts Dbta 2o J -G 4n83(ry)/ra
R() Zb;éa Za _.a r;; (rab pb) T7 Z j O'a l/l‘a
Ry D bta 2ocrta Doa Oa a ,“*b X Pe Ty S TG, 1/r2
Fub X Fac T . ﬁa 1 “
Ry D bta Docta 2oaOa % 3 (Fac - Pe) o Dbta Y7 q(fﬁ /(Fars)
B . Tho Db e Doad Ga 1/ (rarse)
Rg Zb;&aZalo‘ﬂp(l%anPb -
R Z Z iG ZMX(;: ~_>)_’ Tll Zb#aZc;&aZa‘]'Ulll/(rarbrc)
10 bta 22atOa Pa 3, 1 ftb Pb) Pa T Zb#a Zaf Gu 1/(2ry)
> Tap = N
Ru Lico Lia LT 80 X Pe i e Lo Xud - 5u1/0200)
R12 Zc;éb Zb;&a Z G r:bxrb( (rbL‘ pC) T14 Zb<c Z Zd#a Za U” 1/(rarb6rd)
R13 Zh;&a Za i Ua pa X N(S (rab)pa T15 Zb<c Zc Zd<e Ze Za o'a 1/(rarbcrde)
R4 Zb#a Z Ga i % X Pa Tis Zh#a Zaj’ :“f : :*‘j
b N 2 ab :
Rs Pt X O B (- 2 T 2obta 2ot " Ga Z
T J- 0, r
Ris Zb;éa Y .0l0; P%, “,b i 18 Zb#a D /s L .
R 1 rbjb Tl‘) Zb<(‘Zc Za‘] Uapb(aj/rh(‘+rbcrbc/rbc)/rap{-
17 Z“#h Zb#“ 24 Ga Tab 1, X Pa T D hee 2o 2oa J-a, P12;/Va P
Rig Z#b Zb#a > a0 rffbrzc (Fab * Pa) T > J-3, Ga Pal Ty Pa
Rio Sisa a0} L Ba X o Iz LT pat % P
Rao Ybta 2aiGa Py r“*i X (Fap * Pa) Db Ty > ia 2oad - a):;hrb X Pa
R D bta 2-a O, ioj :ﬁ:ﬁb T 2 bta IR ;*E ::*b (Fab * Pa)
rhor Trs S JiaiBriri/r2 — 8y
R /a(a[) a* Va a‘al’a /M a
22 Zb#a Zc;&a Za 04 [; rS,h T26 Za‘,lajpi (3 (llrj/rz_(Slj)/rS
Ra3 Zh;&a Y .00, Gb v, ,"bpj Ty Zb# > Jio) 3r! Sorh = 8Ty R/ (r2rd)
R24 Zb#a Zc#a Z 10'1: :;L rb(
iJok
ik ] jk Tab"ab"a k
Ros Y pia 2ai000) P ) (5 Tap + 8% rg, — 3%) Py where & = (m/M) gn/2 and h, operators are
Ras Zb;éa > 00404 ,3b pip), 47
- T 3
R27 Zb#a Za(rab/rsh) X (rab X Pa - aa)pb + Op ha = T s 6 (Va), (37)
> Fa X P
hy, =27 "_zp”, (38)
Here, I denotes the nuclear-spin operator, M is the nuclear Ta o
mass, and gy is the nuclear g factor defined as W= _ Z1 <8i J_ 3 r r{,) (39)
M /’L 1 2 I’g rg
8y = - (35)
m, N I

where m,, is the proton mass, p is the nuclear magnetic
moment, and uy = |e|/(2m,) is the nuclear magneton.

4) . ..
One can express H,; in a more explicit form:

H;g+>_sz< I-Guhy+1-hy +21’c7]h”>, (36)

Za e . ﬁ;‘ nZ«a
8m?3 2m

We start the derivation of «®m operators with the Breit-
Pauli Hamiltonian Hgp of the atomic system in the external

magnetic field:

where

= 8°(ra) +

042510-7
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a Tma a (8 rr ; o
- 3 i ab Vab j 5 o - - 5 o - -
Hab—_+_23 (rab)__zna — + B 7Tb+ 23 [Ga'rabX(27[17_7[4)_017'7}11)X(zna_ﬂb)]
Tap M 2m Tab r 4 m*r
ab ab
i J iJ
o olo p r,r

a”b ij ab " ab

o E i G B 42)
ab ab

where 77 = j — e A. Magnetic fields A and B induced by the nuclear magnetic moment are given in Eqs. (33) and (34). The
relativistic correction to the hyperfine interaction is obtained from the relativistic terms in the Breit-Pauli Hamiltonian Hgp:

Za | Ty - e . o . R o L 5 -
HY =% =5, =5 X [—eAG) + g (50 Ba Po4PiGaBa)+ Y Y = GuFap X [-2eAR) + e A(7)]

— 4m? 3 =5 4m?rd,
e 20 o Tn I a (8 rfzbrib e
+ g 0B ARG+ 5o AG0 5] = 23 5 v (4 E ) [ eA @l 43)
a b#a a a
Using A and B from Egs. (33) and (34), the effective a®m hfs operator Hlif? is [13,15]
HY =& (6a-TP.—T-P,+0]I'P)), (44)
zZ1 Z Z Fap P, T
Po=—"————|{p2 478, — 2. (2= -4, 45
6 71 1p P A (r)}+z6r3,, < r r3) )
a b#a a a
- V4 27,1 N Z;:h 1 N ?ab - >
Pa=5par—2xpa+§ajggx(ra—bpﬁa(rab-pa)), (46)
. Z( Z rirl s Z rlop TPy T
Pi= "= +p)(3 -~ e B L ] 47
a 4<3ra+p“>< rs r3)+24( r3,rl r3, rl “7)
a a b;é(l . a i a

Both the first-order and second-order terms in Eq. (31) are divergent and need to be regularized and transformed to an
explicitly finite form. In order to do so, it is convenient to rewrite the hfs correction to the energy in terms of the hyperfine
constant A defined as

Eyis =1-TA, (48)
where J is the total electronic angular momentum. Using the notation Hyg = I ﬁhfs, we express A as

> -

A= m (J - Hhpfs). (49)
The expansion of A in « is of the form
A=g ) a"A®, (50)
n=4

where we are interested in the «a®m correction, A®. Due to sz?/mmetry of the intermediate states in the second-order matrix
elements, the A, B, and C parts of the hfs Hamiltonian Hh(fs) give nonvanishing contributions only when coupled to the
corresponding A, B, and C parts of the Breit Hamiltonian H®. So, the total result for A® can be expressed as

6 6 6 6
A® = AQ + A + AL + AP, D
where
A0 2 > T G.h ;HA P > TGPy~ T P, +0)JP) (52)
AN J(J+1) - a a(EO_HO)/ J(J+1) - ata a a a ’
AO - 2 > J-h _ Hp (53)
P I+ \&T T (Eo—Hyy [
A9 = 2 Zji(,ajhy;Hc , (54)
JU+1D\~ (Eo — Ho)'

1 4nZz? - 5
A© _ 7. .58 In2—2>), 55
R J(J+1) 3 <Xa: Oy (ra) n 5 ( )

and where Ag’) is the radiative correction which has the same form as for the hydrogen atom [24].
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We now separate divergencies from the above expressions. This is done with the help of the following identities:

47153(ra)=471[83(ra)],—z{rz, EO—HQ}, (56)

a a

~ 1 VA
HAZHAR‘l‘Z Xa:{Z,EO_HO}- (57)

The regularized operators [83(r,)], and H s have exactly the same expectation value as the nonregularized operators &3(r,) and
H, if the expectatlon values are calculated with the eigenstates of the Schrodinger Hamiltonian Hy. The difference between Hyag
in Eq. (24) and H Ar in Eq. (57) is that in the latter case only electron-nucleus Dirac delta 83 (r,) needs to be regularized while in
the former case we regularize also electron-electron delta §°(r,;). By applying the above identities, we make both the first- and
second-order matrix elements in A/(f,\), separately finite. The result is

A = AP + AP, (58)
AY = 2 Zf' Ga har ! Har ), (59
JU+1)\4& (Eo — Ho)'
1 7, 7p (ra) 83(r )
6 ab a b
A<N>=J—J ; e Zpb 4n6(ra)pa+z ( )+4 ZZ( )
J+1D " bta ub b b#a Ta

1 6” ror . 1 8 o o
__ 224”5 (rpe)+4 ZZPb ( b; b‘)pﬁ—4nZ83(ra) <Z E>+_(HA>} S DAY

b>c b>c ¢ be b Ta
(60)

where h. is obtained from h, by the replacement 8°(r,) — [6°(r,)],. The above expression for A;g) still contains auxiliary
singularities appearing on the level of individual operators. In order to remove them, we repeatedly use the Schrodinger equation,
obtaining the identity

1 4 3 ) Fab ra 1
<r—a;pb—4n5(ra)pa>= -2y % E <(E0— )——)—ZZZpb PP 27 p, 2pa

b#a "b b>c ¢

47 z
+<8n83(ra)+r—2> Zpb+v+——E0 . 61)

a b#a

After this transformation, all matrix elements are finite and can be calculated numerlcally
As in the case of the Lamb shift and the fine structure, it is convenient to rewrite A N) in terms of a set of elementary operators
T; defined in Table III:

z
JU+ DAL = 6< OwThh —2T —ZTs+ Ty +2T5 — Z T + BEW + 4ED) Ty + 4E0Z Ty + 8E0Z Ty

—8EgTig+4Z> T\ +4Z° Ty —4ZTi3 —8Z Ty +4Tis —3Tig +2Ti7 +2Z Tig + 4 Tig — 2 Tog + 2Z Ty

z 3 3
—3(Tn+ T3+ 1) — ETzs - §T26 + §T27>- (62)
[
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APPENDIX A: DERIVATION OF OPERATORS H;

In this section we describe the derivation of the ma® operators H; for the energy centroids. The starting point is the Foldy-
Wouthuysen (FW) Hamiltonian derived in Refs. [4,20]:
72 4 2

_ 0 e i T i o e N i . . e i i ie
HFW eA +E—4m0']Bj 8—+16 {O'UBU,p}—W(V'E”—FO'j{Eﬁ,p]})‘i‘_ZOJJEHA]‘i‘W
2

il 1 2 € = € 2 ijpi o 2 .2 0 2,40 1
x Lo AL P P+ s B o ’Eup’}+128m4[p,[p,eA]]—64 Rl VieAD} + 1 5p,
(AD)

where E; = —VA° and
o' = ~lo'.0l). BT =d'Al — oA’ (A2)
i

Following the approach of Ref. [20] we derive the effective operators H; as follows.

1. H,

Term H; is the relativistic correction to the kinetic energy. We evaluate it as

3
1 1
Hi= e ) re=1g (Zpi) -3 (ZPi) (Zzpipi) +3 ) pmpi { =HU+HP +Hf.  (A3)
a a a

b<c ¢ a<b<c

The individual parts are calculated as

3
1 1 1

H) = — ) = (B -V 2(Egy—V)==(Ey—V A% A4
{ 16(203%) 7 (o >Xajpa<o V=5 E=Vy+ g Z( 2, (A4)

3 3

= (2) (zzpbpﬁ) —-te-v (ST
a b<c b<c
, [ 1
:ZZ __Pb(EO_V)pC pb9 pcﬂ - )
b<c ¢ Tbe Je
and
3

=g 2 Papipr (AS5)

a<b<c

2. Hy

H, is a correction due to the static electric interaction:
(VV)? 5 ro12 305 o2 A B c
H, = _—+ — , V- — , VeV =H H H . A6
2 ;( 8 + 128 [pa [pa ]] 64 {pu a } 2 + 2 + 2 ( )
The first term is just
(VaV)?

H} = ) A7
P=) % (A7)

a

The second term is transformed as

EE AR PO NCALAGIR W A

a#b b

- <2Z(v v+ > eV ) (A8)

a<b b
The third term is

H2C=—33—2 PVaV = ZZpaVZV Y2V =5 Z2(E0—V)VV DI AAE RS

a#b b a#b b

042510-10
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Using the identity
V2V =4 | 289(ry) — Zad (re) | (A10)
c#b
we express it as
3
C __ 2 3 2 3
HY = -+ Xb: 2Ey—V) — %pa 4783 (rp) — ;Xb: 2Ey—V) — X#;pa 4783 (rpe) | . (A11)

Taking into account that

YN )= D )Y Y D ) =Y Y 2B = V)& )y Y > pas (),

a#b c¢#b b a b<c ¢ a#bb<c ¢ b<c ¢ a#bb<c ¢

a#c a#c

(A12)
we finally get

3 2 3 2 3

—55 | 2 (2B =V =3 pi | 4nz8 ) = 33 2B V)= Y p | 4nbine | (A1)
b a#b b<c ¢ a#b,c
3. H;

Term Hj represents another correction to the Coulomb interaction between electrons, coming from higher-order terms in the
FW Hamiltonian. The corresponding operator is

1 2ed 4 i ij (d - 1) = d N i 1 ii r[’;hr;b j
Hy = 226_4 —4m V8 (rap) + dd — )"j% 7 Padmd ) Py = Pl a 8 =325 P
€

a<b b ab
(A14)
This term will be simplified using various identities later on.
4. H,
H, corresponds to the relativistic correction due to the transverse photon exchange and is given by
Hy = 12 PRV AN o | TwTa "a P+ o' o)) (P2, 4w 8} | = HY + HY (A15)
8 a b#a o Fab rab € b 2d “ ! ! s

The first term is transformed as

Hf——zzpapa[ | ‘iﬁi‘{"] ph= Zzzpppa[ o rb}p —ZZZ&&( | “ﬁ3 ”)pb

b#a a ¢ a<b b c#a,ba<b b ab

NP I 1 S iy
- pa (EO - V)< ab ab>p] 2 I:pla’ [pj’ [_] ]} [_ + E ab]
2 ;Xb: T3 b2 " Lra JeddLra ri e
rﬁ;b’éh J
2 Z DD PP, 3 P (A16)
b

c;éa ba<b b a

N |

| —
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The second term is finite and is evaluated as

Hf:%ZZU’JUb”p§4n83(mb):% ZZ Zp%—z 2| ool 4n 83 (ra)

a b#a a<b b c c#a,b
1
= Y |2 -vy= D> pi)ode)dn 8w |- (A17)
a<b b c#a,b
5. Hs

Term Hs is another correction to the transverse photon exchange:

o ol 7y 1 1
ZZ ” ( [Tb} VoV + H , pa}, pﬁD = H{ + HE. (A18)
rab 3 6

b#a a

The first term is calculated as

-t [ st (B Rl -2 () )

b#a a b de a ab Fab de c#a,b Tac Teb Fab

(A19)

whereas the second term is

w=s (1] ) )= st Sl 2] ][] ) )

O'a O'b Z?a Z?b ?ab Yac rcb ?ab 2 2 1
_ _ _ A Tab L, Tab A= . (A20
2.2 i <3 r§>r3 [4]+ Z( r)r3+[”“[”b Al @

a<b b ab Tab c#a,b ac cb

6. Hg

Hg comes from the double transverse photon exchange:

- Jjk J ok ij _ij = =
Tap rab § Tac Tge k ab Oc Yab  Yac 1A B
ZZZ{ ( o ><—+—r3 >Pc+ ¥ [7-71}—1‘16%6, (A21)

b#a c#a a ab Fac ac ab "ac
where
-5 | T xR
b#a a a r ab
Y r o skl gk
2 X TV A(2 ) (2 ) a2
c#a,b a<b b ac ac Tbe Tbe
and

:—ZZ O’ —i—Ob |:r4:| —1—22 ij lj abr’;ac _ ZZ d(d—l)[ ] Z ij 1] abr’;ac 7

a<b b ab c#a,b TabTac a<b b € c#ab Fav"ac

where we have used the identity (U,/ 2= a =d(d-1).
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7. H,

Finally, the term H; = H7, + H7, is the double retardation correction to the nonrelativistic single transverse photon exchange,
We evaluate the first part as

380 r . TpE T — 3802 ;
ab " ab ab J . i b ab " ab ab j
o= 35 - o [RER] wy o [ [ [

a<b b Tab Tab
T vl — 3502 T R Y T 2 -
+lpla|:|: ab " ab ab:| l;a]vjv+ |:p2b |:|: ab " ab ab] ,%}]pi}zl‘l%-l-f‘]f;-l-l‘l%
Yab € Tab €
(A24)
Here,
1 - [riyrl, — 3802 :
H';l — __ VlV [ ab " ab ab:| VZV
1 The "éb”ib_33ijr§b ng rib réb
- XD (B -] - ) [t (Ze[2] s 2
a<b b a ab cta,b ' ac ab € b abde  gzqp 'db
1 zr i\ iyl =382 [ Zr] o Z7, IR\ Ta
DI | B D Dl Rl [ Sl Wi ol Bl G sl Ry
a<b b a c#ab 9 a b d+#a,b db a b ab
1 Foe T 7
+2[T} — 1478 a) +2 ) (% + Tb) Y (A25)
Tab de : Tac  Ten/ Tap
c#a,b C a
Furthermore,
HB :_l ZZ(_Z)VIV P_% rébrc{b_:;aijrsb pj+lp1 ab ab_36”rb p_tzl V/V
b 8 a<b b ‘ 2 ’ Fab € b ¢ Tab 67 2 b
1 zr The k( ‘kr(izb ikrih i‘r§b rib’ibrgb &
= —— — a2 R R R e 7
8 ; ; r3 Lgb r3. ab ab Fab r3,
J 1 ]k 1 3
—ph— (872, — 3l )P+ a<sb)y =2 | +6m8 0w |- (A26)
rab rab €
Finally,
1 [p? o rlo— 38t r2 p
H7C —_ __ pl |:_b’ |:|: ab " ab a Fa pb
=g L ||
8118/1( 51‘1(8_/‘1 aijgkl Sjlri rk 81/( J ri I’j rk rl o
— ZZ |:< + _ _ t;b ab L;b ab +3 ab ubsab ab):| pzapi (A27)
a<b b Tab Fab Tab Tab Tab Tab €

The term H,. is simply

%0, 2 1 A28
-X % [ A ] e

a<b b @

APPENDIX B: SEPARATION OF SINGULARITIES FROM SECOND-ORDER CORRECTION

In this section we examine the second-order perturbation correction induced by the Breit Hamiltonian:
<H(4) ;H(4)> (B1)

with H® = Hy + Hp + Hc . The second-order correction induced by the spin-independent part of the Breit Hamiltonian Hy
contains divergent oc1/(d — 3) contributions which need to be separated out in terms of expectation values of some (singular)
first-order operators, as explained below.
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Following the approach of Ref. [8], we represent the spin-independent part of the Breit Hamiltonian as
Hy = Hag + {Ho — Eo, O},

where

o-— X7+ [

a<b b

The regularized operator Hug acts on the ket vector of a trial function |¢> as

PR ) ij i )
HAR|¢>=[—%(EO—V)2 ZZVZV;,——ZM—ZZ%I);(EV“%)M,}|¢>>.

a<b b Ta a<b b Fab ab

Using Eq. (B2), the second-order correction induced by Hy can be rewritten as

1 1
H ——  H,\=(Hyp ————H X +X + X,
< A(Eo—Ho)/ A> < AR (Eo — HyY AR>+ 1+ X0 + X3

where

X, = (Q(Ho — E0)Q) ., Xo =2(Hy)(Q), X3 =—2(Hs0).

(B2)

(B3)

(B4)

(BS)

(B6)

The second-order correction induced by Hug in Eq. (B5) is finite for d = 3 and can be calculated numerically in its present form.

The other terms are transformed as

1 1
= (1. [Ho — Eo. QI = 5 Z((v 0y),
X2=2E(4)< +- ZZ >

a<b b Fab

The evaluation of the third term is more complicated. We transform it as follows:

2
X; =2 _% (Xa:lﬂi) DI A ZTnZ‘Sd(raH(d_z)”ZZ‘Sd(’ab)

a<b b a a<b b
84 ab ah J A B C D E
__Zzpa Py | Q)= (X8 + X7 + X5 + X7 +X5).
a<b b ab €
The individual terms are evaluated as

1
X3A=Z (Zpi) Q——(Eo—V) <Zpa> Q_—— Z(VV) (Va0) + (Ey — V)20,

a

=t S Vo=t x5 e L[ [1]])

r
a<b b a<b b ab

IR 3 DIEED 35 Bl RO

a b+#a b <c c#a
b#a

£=—2n2263mb)g— Y3 Z—— > Z 8 (rup).

a<b b a<b b c c<d d
cd # ab

84 8 o d-Dr . . T1 sii
=S+ o S Eel e ) 40 [ [ [

ab ¢ Yab

a<b b a<b b Tab
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APPENDIX C: ELIMINATION OF SINGULARITIES

In this section we list the identities in d = 3 — 2¢ dimensions that were used in order to algebraically cancel the singularities
and to get the simplified expression for the final formula for Ey. The following notations are used: Py, = p, + pp and py, =
(Pa — Pv)/2, and (1/r3,) is defined in Eq. (22). The identities are

2 L v 5 1 Y 5 1 P, 3 i pi 3rinay =8 ey
Per | P ==V Va— | = (VsV)| Vo— | = =747 8 (rap) + PPy, —5—%
Yab Yab Yab 3 r,

2 ZF,  ZFy\ Fa Fae  Tep\ Tap P2 oo 3l — 81 2
=—[T]+( ”——3)-%—2(%+% T SR AT 8 ) + PP, = —— 2, (CD)

Tup de ra T Tab £ Tac  Ta) Tup ab
c;ﬁb
1
2 2
— E, — - - — 2 83 (reg) — Z83(r,
pa[rab} = (Eo m[ ] ZchapﬁnZ(Z (rea) (r))
c#ad+#a c#a  d#c
c#bd#b c#b
1
=Y Pe(Eo—V )—Pc Pab - Pb—Pab Pu, (C2)
c#a Tab
c#b
1 :| 1. 1 _ 1. . Z 1 2 1
T | T5Pa g Pat P Ph—|E+ ) —— [—] - =1 (C3)
z? VAR , Z? 4 1\[2?
EIRLE A pbz—2<E+2L—J xa)F)
a a b#a a b € b<c ¢ a
i|:1 (Sij 3r2brib):| ; V25 )+ 48 () By 4+ - [1] 1(Z7a Z7b> Tab
pa -3 YT 5 14 -7 Vab pub Y Yab) Pab - = - —3 | 3
rgb rz%b ¢ b 3 2 Lry a\r ri 31;
Teb ?ab 1 3rb b_aijrzb
2y L2 __pip/ abab ~ ab C5
+-— Z<r3 "b) r3b 4 abt ab rsb (&)
c;éa cl a a
c#b
Z? Z7 Z7 rb 7 rb rb
2 _ a a ac c a
Yo =[5 X w22 E (B -2) 2T ey (B ) 2«
a a a a<b b Fap e a<b b c#aa<b b “‘ Cb ab
c#b
1 (d 1 ) 1 Z?a Z}"b "'ab ac Vcb ?ab
2 _ _ —a ). 2
oor- g [E] r T[] i (B ) B a e (B )
a a a<b b ab € a<b b a c¢aa<b b ac cb ab
c#b
(C7)
ZZpa( Lo “b)pb —2EW — (Eg = V) + - ZZpapb+ZZna )+ 2D ) 78 w).  (C8)
a<b b Fab rab a<b b a<b b
P48 (rap) p, = —pl, 478 (rp) ply, + 78 (rap) PP, (C9)
aalqa_zi - eia S 3 2
Pa " Pv Da Db = D, Py — Pa X Pb— Pa X Po — 2708 (rap) Py, (C10)
Yab ¢ Tab ¢ Tab
1 iy |1 1
[ (5”+ a b)] vzw[—} :[T] — 78 (). (C11)
Zrab ab € Tab 1¢ ab
1 1
— | )={=5)+ @G (C12)
rab € rab
2ed S od = Pz Pg d
Vo8 (rap) = 2 Pap 8 (Yap) Par — 2 | Eo — = 4 ) =V | 8 (w). (C13)
c#a,b
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